Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of Maghnia City Wastewater Treatment Plant
2.3. Monitored Parameters and Analytical Methods
2.4. Methodology
2.4.1. Presentation of the Software GPS-X Version 8
2.4.2. The ASM1 Model
2.4.3. Calibration of the Model
- Enhance the clarity of the mathematical response to COD output and dynamic variables by using a range of values for μ–max H [43] while maintaining default values of other parameters to reduce the dynamism.
- Ones μ–max H is obtained, adjusting parameters related to XBH, such as YH and bH, is required for a complete calibration [31].
- Discrepancies between predicted and observed values are identified and adjustments are made in parameter values until achieving a precise match. The objective of the model calibration is to establish a correlation between the model’s prediction and the experimental results.
3. Results & Discussion
3.1. Characterization of Influent Wastewater
3.2. Model Calibration
3.3. Dynamic Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
bA | decay coefficient for autotrophic biomass (d−1); |
bH | decay coefficient for heterotrophic biomass (d−1); |
DO | dissolved oxygen (mg/L); |
fp | fraction of biomass leading to particulate products; |
iXB | nitrogen fraction in biomass; |
iXP | nitrogen fraction in products from biomass; |
kh | hydrolysis rate constant (d−1); |
KOH | oxygen half-saturation coefficient for heterotrophic biomass (mg/L); |
Ks | half-saturation coefficient for readily biodegradable substrate (mg/L); |
Q | influent flow rate (m3/d); |
substrate utilization rate (mg/(L d)); | |
r(ξ) | conversion vector of the variable ξ (mg/(L d)); |
Si | soluble inert organic matter (mg/L); |
SND | soluble biodegradable organic nitrogen (mg/L); |
SNH | ammonia nitrogen (mg/L); |
SNO | nitrate and nitrite nitrogen (mg/L); |
Ss | readily biodegradable substrate (mg/L); |
SS,in | influent readily biodegradable substrate (mg/L); |
t | time (d); |
T | temperature (°C); |
V | reactor volume (L); |
XBA | active autotrophic biomass (mg/L); |
XBH | active heterotrophic biomass (mg/L); |
XBH,in | influent active heterotrophic biomass (mg/L); |
Xi | particulate inert organic matter (mg/L); |
XND | particulate biodegradable organic nitrogen (mg/L); |
XP | particulate products arising from biomass decay (mg/L); |
XS | slowly biodegradable substrate (mg/L); |
XS,in | influent slowly biodegradable substrate (mg/L); |
YA | growth yield of autotrophic biomass; |
YH | growth yield of heterotrophic biomass. |
Greek symbols | |
ξ | vector of reactor and effluent concentration (mg/L); |
ξin | vector of influent concentration (mg/L); |
μ–max H | maximum specific growth rate for heterotrophic biomass (d − 1); |
ρ(ξ) | vector of reaction kinetics (mg/(L d)); |
ρj | process rate (mg/(L d)); |
Θ | hydraulic residence time, HRT (d); |
νij | stoichiometric coefficient; |
ηg | correction factor of µH under anoxic conditions; |
ηh | correction factor for hydrolysis under anoxic conditions. |
References
- McHarg, A.M. Optimisation of Municipal Wastewater Biological Nutrient Removal Using Computer Simulation. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2002. [Google Scholar]
- Chachuat, B.; Latifi, A.; Roche, N. Methodologie d’Optimisation Dynamique et de Commande Optimale des Petites Stations d’Epuration a Boues Activees; Institut National Polytechnique de Lorraine (INPL): Vandoeuvre-lés-Nancy, France, 2001. [Google Scholar]
- Barnett, M.W.; Takacs, I.; Stephenson, J.; Gall, B.; Perdeus, M. Dynamic Modeling. Water Environ. Technol. 1995, 7, 41–44. [Google Scholar]
- Revollar, S.; Vilanova, R.; Vega, P.; Francisco, M.; Meneses, M. Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective. Sustainability 2020, 12, 768. [Google Scholar] [CrossRef]
- Han, H.-G.; Qiao, J.-F. Prediction of Activated Sludge Bulking Based on a Self-Organizing RBF Neural Network. J. Process Control 2012, 22, 1103–1112. [Google Scholar] [CrossRef]
- Olsson, G.; Newell, B. Wastewater Treatment Systems: Modelling, Diagnosis and Control. Water Intell. Online 2015, 4, 9781780402864. [Google Scholar] [CrossRef]
- Gujer, W.; Henze, M. Activated Sludge Modelling and Simulation. Water Sci. Technol. 1991, 23, 1011–1023. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Van Loosdrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Scientific and Technical Report No. 9; IWA 2000 Publishing: London, UK, 2006. [Google Scholar]
- Jeppsson, U. Modelling Aspects of Wastewater Treatment Processes. Ph.D. Thesis, Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology, Lund, Sweden, 1996. [Google Scholar]
- Nuhoglu, A.; Keskinler, B.; Yildiz, E. Mathematical Modelling of the Activated Sludge Process—The Erzincan Case. Process Biochem. 2005, 40, 2467–2473. [Google Scholar] [CrossRef]
- Van Loosdrecht, M.C.M.; Lopez-Vazquez, C.M.; Meijer, S.C.F.; Hooijmans, C.M.; Brdjanovic, D. Twenty-Five Years of ASM1: Past, Present and Future of Wastewater Treatment Modelling. J. Hydroinform. 2015, 17, 697–718. [Google Scholar] [CrossRef]
- Baek, S.H.; Jeon, S.K.; Pagilla, K. Mathematical Modeling of Aerobic Membrane Bioreactor (MBR) Using Activated Sludge Model No. 1 (ASM1). J. Ind. Eng. Chem. 2009, 15, 835–840. [Google Scholar] [CrossRef]
- Elshorbagy, W.E.; Shawaqfah, M. Development of an ASM1 Dynamic Simulation Model for an Activated Sludge Process in United Arab Emirates. Desalination Water Treat. 2015, 54, 15–27. [Google Scholar] [CrossRef]
- Mohammadi, F.; Rahimi, S.; Bina, B.; Amin, M.M. Modeling of Activated Sludge with ASM1 Model, Case Study on Wastewater Treatment Plant of South of Isfahan. Curr. World Environ. 2015, 10, 96–105. [Google Scholar] [CrossRef]
- Lahdhiri, A.; Lesage, G.; Hannachi, A.; Heran, M. Steady-State Methodology for Activated Sludge Model 1 (ASM1) State Variable Calculation in MBR. Water 2020, 12, 3220. [Google Scholar] [CrossRef]
- STOWA. Methoden voor Influentkarakterisering—Inventarisatie en Richtlijnen; STOWA Report 80-96; STOWA: Utrecht, The Netherlands, 1996. [Google Scholar]
- Sollfrank, U.; Gujer, W. Characterisation of Domestic Wastewater for Mathematical Modelling of the Activated Sludge Process. Water Sci. Technol. 1991, 23, 1057–1066. [Google Scholar] [CrossRef]
- Stokes, L.; Takács, I.; Watson, B.; Watts, J.B. Dynamic Modelling of an ASP Sewage Works—A Case Study. Water Sci. Technol. 1993, 28, 151–161. [Google Scholar] [CrossRef]
- Weijers, S.R.; Kok, J.J.; Preisig, H.A.; Buunen, A.; Wouda, T.W.M. Parameter Identifiablity in the IAWQ Model No. 1 for Modelling Activated Sludge Plants for Enhanced Nitrogen Removal. Comput. Chem. Eng. 1996, 20, S1455–S1460. [Google Scholar] [CrossRef]
- Schütze, M.R.; Butler, D.; Beck, M.B. Modelling, Simulation and Control of Urban Wastewater Systems; Springer: London, UK, 2002; ISBN 978-1-4471-1105-4. [Google Scholar]
- Hauduc, H.; Gillot, S.; Rieger, L.; Ohtsuki, T.; Shaw, A.; Takács, I.; Winkler, S. Activated Sludge Modelling in Practice: An International Survey. Water Sci. Technol. 2009, 60, 1943–1951. [Google Scholar] [CrossRef] [PubMed]
- ONS: Office National des Statistiques. Available online: https://www.ons.dz/spip.php?rubrique127 (accessed on 17 June 2023).
- Medejerab, A.; Henia, L. Variations spatio-temporelles de la sècheresse climatique en Algérie nord-occidentale. Courr. Savoir 2011, 11, 71–79. [Google Scholar]
- ONA. 2013 National Sanitation Office. Available online: http://ona-dz.org/cgi-sys/suspendedpage.cgi (accessed on 17 June 2023).
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri, L.S., Eds.; American Public Health Association (APHA): Washington, DC, USA, 2012. [Google Scholar]
- Hydromantis Water and Wastewater Treatment Modeling and Simulation Software|Hydromantis. Available online: https://www.hydromantis.com/ (accessed on 17 June 2023).
- Mu’azu, N.D.; Alagha, O.; Anil, I. Systematic Modeling of Municipal Wastewater Activated Sludge Process and Treatment Plant Capacity Analysis Using GPS-X. Sustainability 2020, 12, 8182. [Google Scholar] [CrossRef]
- Hydromantis, G.-X.; Environmental Software Solutions Inc. Hydromantis GPS-X Technical Reference; Environmental Software Solutions Inc.: Hamilton, ON, Canada, 2017; Available online: https://www.hydromantis.com/help/GPS-X/docs/8.0/Technical/index.html (accessed on 11 June 2023).
- Fehlberg, E. Klassische Runge-Kutta-Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 1969, 4, 93–106. [Google Scholar] [CrossRef]
- Henze, M.; Grady, C.P.L.; Gujer, W.; Marais, G.V.R.; Matsuo, T. A General Model for Single-Sludge Wastewater Treatment Systems. Water Res. 1987, 21, 505–515. [Google Scholar] [CrossRef]
- Costa, C. A Comprehensive View of the ASM1 Dynamic Model: Study on a Practical Case. Water 2022, 14, 1046. [Google Scholar] [CrossRef]
- Costa, C.; Domínguez, J.; Autrán, B.; Márquez, M.C. Dynamic Modeling of Biological Treatment of Leachates from Solid Wastes. Environ. Model. Assess. 2018, 23, 165–173. [Google Scholar] [CrossRef]
- Takacs, I. A Dynamic Model of the Clarification-Thickening Process. Water Res. 1991, 25, 1263–1271. [Google Scholar] [CrossRef]
- Petersen, B.; Gernaey, K.; Henze, M.; Vanrolleghem, P.A. Calibration of Activated Sludge Models: A Critical Review of Experimental Designs. In Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling; Agathos, S.N., Reineke, W., Eds.; Focus on Biotechnology; Springer: Dordrecht, The Netherlands, 2003; pp. 101–186. ISBN 978-94-017-0932-3. [Google Scholar]
- Henze, M.; Grady, L., Jr.; Gujer, W.; Marais, G.; Matsuo, T. Activated Sludge Model No 1. Wat. Sci. Technol. 1987, 29, 183–193. [Google Scholar]
- Siegrist, H.; Tschui, M. Interpretation of Experimental Data with Regard to the Activated Sludge Model No.1 and Calibration of the Model for Municipal Wastewater Treatment Plants. Water Sci. Technol. 1992, 25, 167–183. [Google Scholar] [CrossRef]
- Maurer, M.; Gujer, W. Dynamic Modelling of Enhanced Biological Phosphorus and Nitrogen Removal in Activated Sludge Systems. Water Sci. Technol. 1998, 38, 203–210. [Google Scholar] [CrossRef]
- Van Veldhuizen, H. Modelling Biological Phosphorus and Nitrogen Removal in a Full Scale Activated Sludge Process. Water Res. 1999, 33, 3459–3468. [Google Scholar] [CrossRef]
- Gaudy, A.F.; Jrand Gaudy, E.T. Biological Concepts for Design and Operation of the Activated Sludge Process; US Environmental Protection Agency Water Pollution Research Series, Report No. 17090, FQJ, 09/71; US EPA: Washington, DC, USA, 1971. [Google Scholar]
- Dupont, R.; Sinkjær, O. Optimisation of W ASTEW A TER treatment plants by means of computer models. Water Sci. Technol. 1994, 30, 181–190. [Google Scholar] [CrossRef]
- Kristensen, G.H.; Jansen, J.L.C.; Jorgensen, P.E. Batch Test Procedures as Tools for Calibration of the Activated Sludge Model—A Pilot Scale Demonstration. Water Sci. Technol. 1998, 37, 235–242. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.V.R.; Van Loosdrecht, M.C.M. Activated Sludge Model No.2d, ASM2D. Water Sci. Technol. 1999, 39, 165–182. [Google Scholar] [CrossRef]
- Sharifi, S.; Murthy, S.; Takács, I.; Massoudieh, A. Probabilistic Parameter Estimation of Activated Sludge Processes Using Markov Chain Monte Carlo. Water Res. 2014, 50, 254–266. [Google Scholar] [CrossRef]
- Spérandio, M.; Espinosa, M.C. Modelling an Aerobic Submerged Membrane Bioreactor with ASM Models on a Large Range of Sludge Retention Time. Desalination 2008, 231, 82–90. [Google Scholar] [CrossRef]
- Sin, G.; Kaelin, D.; Kampschreur, M.J.; Takács, I.; Wett, B.; Gernaey, K.V.; Rieger, L.; Siegrist, H.; Van Loosdrecht, M.C.M. Modelling Nitrite in Wastewater Treatment Systems: A Discussion of Different Modelling Concepts. Water Sci. Technol. 2008, 58, 1155–1171. [Google Scholar] [CrossRef] [PubMed]
- Power, M. The Predictive Validation of Ecological and Environmental Models. Ecol. Model. 1993, 68, 33–50. [Google Scholar] [CrossRef]
- Surampalli, R. Nitrification, Denitrification and Phosphorus Removal in Sequential Batch Reactors. Bioresour. Technol. 1997, 61, 151–157. [Google Scholar] [CrossRef]
- Choubert, J.M. Analyse et Optimisation du Traitement de l’Azote par Boues Activées à Basse Température. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 2002. [Google Scholar]
- Choubert, J.-M.; Racault, Y.; Grasmick, A.; Beck, C.; Heduit, A. Nitrogen Removal from Urban Wastewater by Activated Sludge Process Operated over the Conventional Carbon Loading Rate Limit at Low Temperature. Water SA 2005, 31, 503–510. [Google Scholar] [CrossRef]
- Marquot, A.; Stricker, A.-E.; Racault, Y. ASM1 Dynamic Calibration and Long-Term Validation for an Intermittently Aerated WWTP. Water Sci. Technol. 2006, 53, 247–256. [Google Scholar] [CrossRef]
- Elawwad, A.; Matta, M.; Abo-Zaid, M.; Abdel-Halim, H. Plant-Wide Modeling and Optimization of a Large-Scale WWTP Using BioWin’s ASDM Model. J. Water Process Eng. 2019, 31, 100819. [Google Scholar] [CrossRef]
- Barker, P.S.; Dold, P.L. General Model for Biological Nutrient Removal Activated-Sludge Systems: Model Presentation. Water Environ. Res. 1997, 69, 969–984. [Google Scholar] [CrossRef]
- Henze, M.; Van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design; IWA Publishing: London, UK, 2008; ISBN 978-1-78040-186-7. [Google Scholar]
- Makinia, J.; Rosenwinkel, K.-H.; Spering, V. Comparison of Two Model Concepts for Simulation of Nitrogen Removal at a Full-Scale Biological Nutrient Removal Pilot Plant. J. Environ. Eng. 2006, 132, 476–487. [Google Scholar] [CrossRef]
- Vanrolleghem, P.; Insel, G.; Petersen, B.; Sin, G.; Pauw, D.; Nopens, I.; Dovermann, H.; Weijers, S.; Gernaey, K. A Comprehensive Model Calibration Procedure for Activated Sludge Models; Water Environment Federation: Alexandria, VA, USA, 2003. [Google Scholar] [CrossRef]
- Nelson, M.I.; Sidhu, H.S. Analysis of the Activated Sludge Model (Number 1). Appl. Math. Lett. 2009, 22, 629–635. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Latifi, M.A.; Lesage, F.; Mulholland, M. Dynamic Simulation and Optimization of Wastewater Treatment Plants. In Proceedings of the 2013 International Conference on Process Control (PC), Strbske Pleso, Slovakia, 18–21 June 2013; pp. 407–414. [Google Scholar]
- Dairi, S.; Yassine, D.; Yahia, H.; Mrad, D. Dynamic Simulation for Wastewater Treatment Plants Management: Case of Souk-Ahras Region, North-Eastern Algeria. J. Water Land Dev. 2017, 34, 221. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 4: Excreta and Greywater Use in Agriculture; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Fenu, A.; Guglielmi, G.; Jimenez, J.; Spèrandio, M.; Saroj, D.; Lesjean, B.; Brepols, C.; Thoeye, C.; Nopens, I. Activated Sludge Model (ASM) Based Modelling of Membrane Bioreactor (MBR) Processes: A Critical Review with Special Regard to MBR Specificities. Water Res. 2010, 44, 4272–4294. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | MCWWTP |
---|---|---|
Population | inhabitants | 150,000 |
Average daily flow rate | m3.d−1 | 29,400 |
Flow to discharge in case of rain | m3.h−1 | 30,312 |
peak flow | m3.h−1 | 3266 |
BOD load | kg.d−1 | 9614 |
Suspended Solids | kg.d−1 | 17,640 |
Recirculation Flow RAS | m3.h−1 | 1300 |
i | Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
j | Process | SI | SS | XI | XS | XBH | XBA | XP | SO | SNO | SNH | SD | XND | SALK |
1-Aerobic growth of heterotrophs | 1 | |||||||||||||
2-Anoxic growth of heterotrophs | 1 | |||||||||||||
3-Aerobic growth of autotrophs | 1 | |||||||||||||
4-Decay of heterotrophs | 1 fP | 1 | fP | fP | ||||||||||
5-Decay of autotrophs | 1 fP | 1 | fP | fP | ||||||||||
6-Ammonification of soluble organic nitrogen | 1 | 1 | ||||||||||||
7-Hydrolysis of entrapped organics | 1 | 1 | ||||||||||||
8-Hydrolysis of entrapped organics nitrogen | 1 | 1 |
Parameters | Symbol | Unit | Default Value |
---|---|---|---|
Theoretical maximum sedimentation rate. | °F | m.j−1 | 712 |
Maximum effective sedimentation rate. | m.j−1 | 340 | |
Sedimentation parameter for highly concentrated suspensions. | m3.g−1 | 4.26 × 10−4 | |
Sedimentation parameter for weakly concentrated suspensions. | m3.g−1 | 5.0 × 10−3 | |
Unsettled fraction of incidental solids. | - | 5.0 × 10−4 | |
Limit concentration of suspended solids. | g.m−3 | 3000 |
Parameter | Unit | Min | Q1 | Median | Q3 | Max | Mean | SD |
---|---|---|---|---|---|---|---|---|
Influent Values | ||||||||
TSS | mg/L | 76.00 | 210.00 | 261.00 | 335.00 | 583.00 | 280.44 | 123.84 |
BOD | mgO2/L | 170.00 | 360.00 | 460.00 | 592.00 | 850.00 | 467.52 | 152.96 |
COD | mgCOD/L | 190.00 | 555.50 | 653.00 | 918.00 | 1403.00 | 719.04 | 271.67 |
NH4-N | mgN/L | 25.36 | 49.67 | 52.00 | 60.11 | 79.74 | 54.31 | 10.27 |
NO3-N | mgN/L | 0.14 | 0.23 | 0.32 | 0.52 | 2.70 | 0.51 | 0.52 |
NO2-N | mgN/L | 0.15 | 0.28 | 0.40 | 0.49 | 0.96 | 0.40 | 0.17 |
PO4-P | mg/L | 7.30 | 10.40 | 11.90 | 14.90 | 21.50 | 12.65 | 3.28 |
Temp | °C | 13.00 | 20.00 | 26.50 | 29.50 | 32.00 | 24.85 | 5.72 |
PH | - | 7.05 | 7.37 | 7.57 | 7.95 | 8.21 | 7.63 | 0.33 |
Effluent Values | ||||||||
TSS | mg/L | 13.00 | 21.00 | 24.50 | 28.00 | 35.00 | 24.39 | 5.45 |
BOD | mgO2/L | 4.00 | 20.00 | 23.50 | 26.50 | 36.00 | 22.68 | 8.40 |
COD | mgCOD/L | 42.00 | 61.50 | 70.00 | 72.75 | 90.00 | 67.71 | 11.33 |
NH4-N | mgN/L | 18.50 | 25.48 | 32.58 | 40.03 | 57.08 | 33.54 | 10.12 |
NO3-N | mgN/L | 0.02 | 0.03 | 0.06 | 0.08 | 2.40 | 0.23 | 0.62 |
NO2-N | mgN/L | 0.02 | 0.04 | 0.05 | 0.07 | 0.57 | 0.10 | 0.14 |
PO4-P | mg/L | 2.10 | 5.63 | 10.05 | 17.70 | 34.80 | 13.03 | 9.40 |
Temp | °C | 13.00 | 19.38 | 26.25 | 29.63 | 32.00 | 24.68 | 5.84 |
PH | - | 6.77 | 7.35 | 7.69 | 7.96 | 8.19 | 7.62 | 0.39 |
Parameter Fraction | Symbol | Ratio | Value gCOD/m3 | Reference |
---|---|---|---|---|
Soluble biodegradable substrate | SS | 0.32 | 230.10 | [49,50] |
Soluble inert substrate | SI | 0.056 | 40.26 | [36] |
Particulate biodegradable substrate | XS | 0.574 | 412.72 | Own Study [XS = TCOD − (SS + SI + XI)] |
Particulate inert substrate | XI | 0.05 | 35.95 | [49,50] |
Parameters | Symbol | Unit | Range | Default Values | Calibrated Values | References |
---|---|---|---|---|---|---|
Stoichiometric Parameters | ||||||
Yield for heterotrophic biomass | YH | g COD/g COD | (0.57–0.67) | 0.67 | 0.66 | [52] |
Yield for Autotrophic biomass | YA | g COD/g COD | (0.15–0.24) | 0.24 | 0.24 | [53] |
volatile suspended solids/total suspended solids | VSS/TSS | g VSS/g TSS | - | 0.70 | 0.80 | [52] |
particulate COD to total COD | XCOD/VSS1 | g COD/g VSS | - | 1.48 | 1.3 | [54] |
Kinetic Parameters | ||||||
Maximum specific growth rate for heterotrophic biomass | μ–max H | d−1 | (0.6–13.2) | 6 | 3.2 | [52] |
Heterotrophic decay coefficient | bH | d−1 | (0.3–1.2) | 0.62 | 0.66 | [30] |
Half saturation constant | Ks | mg3 COD/L | (10–40) | 20 | 20 | [30] |
Parameter | Unit | Measurement | Simulation | RMSE |
---|---|---|---|---|
COD | mg/L | 67.71 | 70.25 | 0.037 |
TSS | mg/L | 24.39 | 20.23 | 0.17 |
NH4-N | mg/L | 33.54 | 21.03 | 0.37 |
Parameter | Unit | Measurement | Simulation | RMSE |
---|---|---|---|---|
COD | mg/L | 66.75 | 70.44 | 0.23 |
TSS | mg/L | 8.15 | 25.06 | 0.67 |
NH4-N | mg/L | 14.54 | 32.27 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiar, S.M.; Bessedik, M.; Abdelbaki, C.; ElSayed, N.B.; Badraoui, A.; Slimani, A.; Kumar, N. Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria. Water 2024, 16, 269. https://doi.org/10.3390/w16020269
Tiar SM, Bessedik M, Abdelbaki C, ElSayed NB, Badraoui A, Slimani A, Kumar N. Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria. Water. 2024; 16(2):269. https://doi.org/10.3390/w16020269
Chicago/Turabian StyleTiar, Sidi Mohamed, Madani Bessedik, Chérifa Abdelbaki, Nadia Badr ElSayed, Abderrahim Badraoui, Amaria Slimani, and Navneet Kumar. 2024. "Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria" Water 16, no. 2: 269. https://doi.org/10.3390/w16020269
APA StyleTiar, S. M., Bessedik, M., Abdelbaki, C., ElSayed, N. B., Badraoui, A., Slimani, A., & Kumar, N. (2024). Steady-State and Dynamic Simulation for Wastewater Treatment Plant Management: Case Study of Maghnia City, North-West Algeria. Water, 16(2), 269. https://doi.org/10.3390/w16020269