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Abstract: Given the critical importance of addressing effluent quality concerns, the present study
was dedicated to developing a dynamic simulation model based on the Activated Sludge Model 1
(ASM1) of a wastewater treatment plant located in Maghnia City, Algeria. The model calibration
process involved collecting and analyzing 56 samples from the plant over a period of 18 months
(from July 2021 to January 2023). Thirteen physicochemical parameters were analyzed to identify
the variations in their water quality over time. Stoichiometric and kinetic parameters were adjusted
during the plant calibration process. These modifications resulted in a reasonable alignment with the
investigated variables, enabling the accurate prediction of the wastewater treatment plants (WWTPs)’
steady-state behavior regarding the removal measurements of chemical oxygen demand (COD),
total suspended solids (TSS), and ammonium (NH4-N). The model was validated using 14-day
measurements spanning a 4-month duration, and the results indicated good agreement between the
observed and simulated effluent variable of chemical oxygen demand (COD) with a root mean square
error (RMSE) of 23%. These findings highlight the utility of the ASM1 Model in comprehending and
managing the intricate dynamics of the activated sludge process in wastewater treatment plants.

Keywords: activated sludge; Activated Sludge Model 1 (ASM1); calibration; dynamic model;
wastewater treatment

1. Introduction

Activated sludge systems (ASS) have become a widely preferred choice for wastewater
treatment plants (WWTPs) worldwide as their usage has increased significantly over
the past decade. These systems have evolved to incorporate more complex processes,
reflecting the advancements in operational techniques and strategies within the field of
wastewater treatment. This complexity has increased dramatically due to the requirements
for removing nitrogenous and phosphor components together with carbonation ones.
The simulation of biological wastewater treatment helps to understand and operate the
treatment plant and can reduce operational costs and improve the treatability [1].

The activated sludge treatment process comprises two key elements: the reactor,
where pollution is primarily broken down through biological mechanisms, and the clarifier,
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which separates treated water from biomass and other particulate matter using physi-
cal processes [2]. However, activated sludge processes become complicated because of
their changing physical characteristics and the variability of the pollution load of raw
wastewater [3]. In the same context, operators of wastewater treatment plants are often
reluctant to test new or different designs or control strategies on a real plant because the pro-
cess can exhibit unexpected behavior [4]. This underscores the necessity of modeling and
simulations, not only to characterize the various stages and processes within the treatment
procedure but also to forecast outcomes under various management scenarios [5].

The mathematical modelling of the activated sludge process provides a robust tool
for design, operational support, predicting projected behavior, and process control [3,6].
In this regard, the International Water Association (IWA) developed activated sludge
models (ASMs) over the past two decades. These models, including ASM1, ASM2, and
ASM3, are widely acknowledged for their effectiveness in simulating carbon oxidation,
nitrification/denitrification, and biological phosphorus removal processes [7,8] under
different operating conditions [9].

ASM1, one of the well-recognized IWA models, has garnered considerable accep-
tance among researchers. It is also the most widely used biokinetic model, accounting
for 57% of its usage among other models [10,11]. Several studies applying ASM1 to di-
verse biological processes, especially activated sludge, have proven its effectiveness and
practicality. Baek et al. [12] utilized ASM1 to analyze an aerobic membrane bioreactor’s
(MBR) performance, considering factors such as hydraulic retention time (HRT), sludge
retention time (SRT), and mixed-liquor suspended solid (MLSS) concentrations; the model
showed that the MBR performances were unaffected by varying operational conditions.
Elshorbagy and Shawaqfah [13] developed a dynamic simulation model for an activated
sludge process and calibrated and validated ASM1 with GPS-X simulations. The findings
indicated significant concordance for COD and TSS while displaying relatively weaker
agreement for NH4-N. Mohammadi et al. [14] evaluated ASM1′s consistency with data
from a wastewater treatment plant in Isfahan, Iran; the experimental results for COD, total
kjeldahl nitrogen (TKN), and TSS showed good adoption with model outputs. Additionally,
Lahdhiri et al. [15] proposed a simplified version of ASM1, which is useful for estimating
state variables and analyzing operating parameters, particularly in membrane bioreactor
processes. The steady-state expressions revealed pleasing predictions of the concentrations
of the state variables (SRT, HRT, soluble biodegradable substrate (Ss) and particulate inert
substrate (Xi)).

The accurate calibration of these models plays a crucial role in achieving the afore-
mentioned objectives. This calibration process involves the precise estimation of various
stoichiometric and kinetic model parameters. Earlier studies have employed various cal-
ibration approaches to model the dynamic behavior of ASS. Typically, this calibration
process involves extensive sampling programs, chemical and biological analyses, and
laboratory experiments using diverse methods to determine numerous stoichiometric and
kinetic parameters required [16]. However, this process is often considered time-consuming
and costly, demanding meticulousness and accuracy to generate precise and representative
results. It is important to acknowledge that uncertainties related to measurements, analyses,
experimental work, and modelling approaches could introduce potential inaccuracies, thus
requiring careful interpretation of the outcomes [17–20].

In practical applications of WWTPs, the dynamics and stoichiometric parameters of
ASM1 must be ascertained while considering variations in operational conditions and
external environments [21]. This acknowledgment underscores the potential divergence
between model predictions and real outcomes when relying solely on IWA’s standardized
parameters. Consequently, it is crucial to adjust the parameter values of ASM1 to ensure
successful application of the model in practical scenarios. The imperative need to develop a
dynamic simulation model at the Maghnia City Wastewater Treatment Plant (MCWWTP) is
underscored by pressing concerns regarding effluent quality deterioration and international
standard violations. This model holds the potential to significantly improve effluent quality



Water 2024, 16, 269 3 of 18

control by providing real-time insights into system behavior. Furthermore, it assumes a
central role in streamlining the planning of optimal design and operational strategies for the
plant’s upgrade initiative. By means of dynamic simulations, the WWTP can proactively
identify and rectify factors contributing to effluent quality decline, thus ensuring adherence
to international standards and fostering sustainable wastewater management in the region.

This study’s primary objectives encompassed conducting a comprehensive wastewater
characterization of influent COD at MCWWTP, involving the necessary fractionation of
COD influent into Ss, soluble inert substrate (Si), particulate biodegradable substrate (Xs),
and Xi components. The study aimed to provide a mathematical description of the plant
verifying the predictability of the ASM1 under steady-state and dynamic conditions; this
verification involved fine-tuning the model’s performance through calibration, wherein
observed concentration values of COD, TSS, and NH4-N parameters were derived from
routinely collected process data on effluent wastewater.

2. Materials and Methods
2.1. Study Area

The area under investigation is the region of Maghnia, a town in the wilaya of Tlemcen,
Algeria (latitude: 34.85, longitude: −1.68) (Figure 1). It is a semi-arid zone located in the
northwestern region of Algeria, 27 km east of Oujda (Morocco), 26 km west of Tlemcen
and about 60 km from the coast. The region is extended over an area of 294 km2 with a
population of 114,634 inhabitants [22]. The drought that occurred in Algeria during the
past few decades has impacted the entire country, and more particularly its northwestern
part [23]. Our study region, Maghnia is part of the Northwestern Oran coastal river basin.
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2.2. Description of Maghnia City Wastewater Treatment Plant

The Municipal Wastewater Treatment Plant was designed to accommodate a flow
rate of 30,000 m3 per day and has been operational since 1999, managed and operated
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by the Algerian National Sanitation Office. The treatment facility integrates preliminary,
secondary, and tertiary treatment systems, as illustrated in Figure 2. Preliminary treatment
involves screenings and grit removal units. For secondary treatment, an activated sludge
process coupled with clarification units is employed for the biological removal of organic
and nutrient materials from the wastewater. The excess activated sludge is extracted from
the recycled activated sludge line and directed to sludge drying beds. In the aeration tanks,
dissolved oxygen (DO) levels are regulated using an on–off type automatic controller, with
aeration facilitated by slow-rotating surface aerators installed on walkways. Ultrasonic
sensors monitor the plant inflow. After clarification, the effluent proceeds to the chlorina-
tion and disinfection unit for tertiary treatment, and the final effluent is discharged to a
stream [24]. The operating conditions of MCWWTP are detailed in Table 1. The recircula-
tion of activated sludge in the aeration tank follows the scheme outlined in the diagram
depicted in Figure 3.
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Table 1. Operating data of the Maghnia City wastewater treatment plant.

Parameters Unit MCWWTP

Population inhabitants 150,000
Average daily flow rate m3.d−1 29,400

Flow to discharge in case of rain m3.h−1 30,312
peak flow m3.h−1 3266
BOD load kg.d−1 9614

Suspended Solids kg.d−1 17,640
Recirculation Flow RAS m3.h−1 1300
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2.3. Monitored Parameters and Analytical Methods

The laboratory at MCWWTP conducted analyses to derive the physicochemical pa-
rameters. A total of 56 samples were collected between 14 July 2021 and 10 January 2023,
with a monitoring frequency ranging from one to four times per month. These samples
were collected for both influent and effluent waters, aligning with daily monitoring data,
to capture the temporal variations in their qualities. Samples were collected from 10 cm
below the surface using a Silicon/Teflon water pump. Twelve water quality parameters
were measured: temperature, potential of hydrogen (PH), TSS, DO, biochemical oxygen
demand (BOD5), COD, NH4-N, Nitrates (NO3-N), Nitrites (NO2-N), Phosphate (PO4-P),
turbidity, and chloride. Temperature and pH of surface water were assessed promptly
post-collection using HQ40D Portable Multi Parameter Meters (Hach Company, Loveland,
CO, USA). Standard methods for water and wastewater analysis were employed for all the
applied analytical procedures [25].

2.4. Methodology
2.4.1. Presentation of the Software GPS-X Version 8

GPS-X software version 8 developed by Hydromantis Environmental Software So-
lutions, Inc. Ontario, Canada, was used in this current work [26]. It is a widely used
comprehensive standalone model built with integrated biological wastewater treatment
processes for ASP and anaerobic digestion system (ADS), along with numerous other
processes involving physical and chemical reactions [27]. The GPS-X simulator operates
based on a material balance over each of the state variables in the ASM model across the
process units, incorporating both the flow rates in and out of the process unit as well as
the specified generation or consumption rate. The software provides various methods for
entering influent (state variables) COD, nitrogen, phosphorus, and solids fractions in a
number of ways. The Influent Advisor spreadsheet in the simulator illustrates the links
between user input values, state, and composite variables [28]. Users can easily select
the library, with the CN library featuring only COD, oxygen, nitrogen, and phosphorus
fractions. The specific fractions included in any model are dependent on the selected ASM
model, library, and influent model. Additionally, an enhanced nitrogen library, known as
the C2N library, encompasses fractions for nitrogen linked with inert fractions, along with
nitrite–nitrogen associated with the process. The IP libraries introduce industrial pollutant
fractions to either the CN or CNP libraries. The model calculates composite variables from
the state variables using specific ratios, known as “stoichiometric constant”. The default
numerical solver integration method is the Runge–Kutta–Felberg method [29].

2.4.2. The ASM1 Model

The ASM1 is a mathematical model used to simulate the behavior of microorganisms
in the process of WWTP. The model consists of a set of differential equations that describe
the dynamics of the microbial populations and the concentrations of key substrates and
products in the wastewater treatment process.

The mathematical expression of the generic mass balance applied to the vector ξ,
which signifies substrate or biomass concentration, is expressed as follows (Equation (1)):

dξ

dt
= r(ξ) +

1
Θ
(ξin − ξ) (1)

Here, Θ is the HRT and r (ξ) is the conversion vector of the variable ξ (substrate
utilization global rate).

The substrate utilization rate (ri) denotes the conversion rate for the component i
through the process j [30] (Equation (2)):

ri = ∑
j

νijρj (2)
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Here, νij the stoichiometric coefficient and ρj is the process rate. This expression defines
a system of differential equations wherein each equation represents a component of the
model. The Monod equation ρ1 indicates that biomass growth is proportional to the biomass
concentration in a first-order manner and to the substrate concentration in a mixed-order
manner. On the other hand, the Herbert expression ρ2 specifies that biomass decay is
first-order with respect to biomass concentration [8].

When the ASM1 is utilized to simulate oscillations in the effluent organic matter
concentration of a WWTP, three differential equations are necessary for SS, XS, and het-
erotrophic biomass (XBH) [31]. The corresponding system of equations for these three
components (Equations (3)–(5) in Table 2), based on the process rates that influence them,
is as follows:

dSs
dt

=
(
1 − fp

)
bhXBH +

(
1 − fp

)
bAXBA +

1
Θ
(XS,in − XS) (3)

dXs
dt

= −µH
YH

(
SS

KS + SS

)
XBH +

1
Θ
(SS,in − SS) (4)

dXBH
dt

= µH

(
SS

KS + SS

)
XBH − bHXBH +

1
Θ
(XBH,in − XBH) (5)

The interdependence of variables across multiple equations, as mentioned earlier,
greatly adds to the complexity of solving the differential equations. This complexity arises
due to the coupling of variables among different equations [32]. In practical applications,
the material balance equations serve as input to a numerical solver responsible for gener-
ating results, which can be either static, providing a snapshot of the system, or dynamic,
showcasing time-dependent variations. The numerical solver plays a crucial role in han-
dling the intricate relationships between variables and obtaining meaningful outcomes
from the equations.

In order to ensure precise outcomes, it is necessary to combine the ASM1 model with
a decantation process model; the traditional layer model developed by [33] is used to
describe the clarification and thickening processes. According to this model, the settler
is represented as a tank with ten horizontal layers, assuming perfect mixing within each
layer. The transfer of solids between adjacent layers is influenced by both sedimentation
and liquid fluxes occurring in the settler, and the sedimentation rate is determined by
considering the concept of limiting flux. The sedimentation velocity is computed using
the double exponential velocity method proposed by [33] (Equation (6)), whose settling
parameters are defined in Table 3:

us(Xset
t ) = max

[
0, min

[
u′

s,0, us,0

(
e−rhXset

t (1− fns) − e−rpXset
t (1− fns)

)]] (6)

The settling parameters (us,0), (u′
s,0), (rh), (fns), (rp), and (Xt

max) are defined in Table 3.

2.4.3. Calibration of the Model

Calibrating the ASM1 model usually involves a step-by-step process, adjusting a few
parameters instead of using an automated optimization routine [34]. This approach typi-
cally yields a reasonably accurate description, especially for standard municipal cases. [35].

The model is based on COD fractions (Figure 4) and several stoichiometric coeffi-
cients (such as VSS (volatile suspended solids)/TSS ratio, soluble fraction of total COD,
heterotrophic yield coefficient YH, and autotrophic yield coefficient YA), which required
determination to enhance wastewater characterization. To accomplish this, the study uti-
lized the Influent Advisor developed by Hydromantis Co., Ontario, Canada, inputting the
average of observed concentration values of COD, TSS, and NH4-N parameters.
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Table 2. Peterson State variables and process matrix. Components are recorded in columns and processes are identified in rows.

i Component 1 2 3 4 5 6 7 8 9 10 11 12 13

j Process SI SS XI XS XBH XBA XP SO SNO SNH SD XND SALK

1-Aerobic growth of
heterotrophs − 1

YH
1 − 1−YH

YH
−iXB

−iXB
14

2-Anoxic growth of
heterotrophs − 1

YH
1 − 1−YH

2.86YH
−iXB

1−YH
14×2.86YH

− −iXB
14

3-Aerobic growth of
autotrophs 1 − 4.57−YA

YA

1
YA

−iXB − 1
YA

−iXB
14 − 1

7YA

4-Decay of
heterotrophs 1 − fP −1 fP −iXB− fP iXB

5-Decay of
autotrophs 1 − fP −1 fP −iXB− fP iXB

6-Ammonification of soluble
organic nitrogen 1 −1 1

14

7-Hydrolysis of entrapped
organics 1 −1

8-Hydrolysis of entrapped
organics nitrogen 1 −1
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Table 3. Settling model parameters.

Parameters Symbol Unit Default Value

Theoretical maximum sedimentation rate. ◦F m.j−1 712
Maximum effective sedimentation rate. u′

s,0 m.j−1 340
Sedimentation parameter for highly

concentrated suspensions. rh m3.g−1 4.26 × 10−4

Sedimentation parameter for weakly
concentrated suspensions. rp m3.g−1 5.0 × 10−3

Unsettled fraction of incidental solids. fns - 5.0 × 10−4

Limit concentration of suspended solids. Xmax
t g.m−3 3000
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The total COD concentration within the influent of the treatment plant underwent a
comprehensive fractionation into distinct components: SS, XS, SI, and XI. SI is commonly
estimated using the soluble COD in the effluent or as 90% of the effluent COD, a method
supported by research like that conducted by [36]. Considering that the process data from
the studied treatment plant only provide measurements of total COD, SI was approximated
as 90% of the effluent COD. To accomplish the COD influent fraction characterization, the
CEMAGRAF protocol was adopted, and the adjustment fractionations were conducted using
CEMAGREF’s default parameters for SS and XI, a well-established practice in the field.

The approach proposed by [34] was used for steady-state calibration. The influent
flow was characterized by inputting averaged concentrations of COD, TSS, NO2-N, NO3-N,
NH4-N, PH, and temperature for 28 samples provided by the plant laboratory over the
period between 14 July 2021 and 10 January 2023. The model was fine-tuned to match the
average effluent concentration data for the specified period. Mass balance was conducted
in terms of COD. As a result, the concentrations of all organic materials, including biomass,
were expressed in COD units [35].

Initially, default values of stoichiometric, kinetic, and other parameters associated with
biochemical and clarification-thickening processes were used [35]. These parameters can
be determined either directly through tests under specific conditions [37] or indirectly by
numerically calibrating the model using experimental data obtained through the treatment
process. This consists of determining some of the parameters by comparing simulated
concentrations with measured values [38].

Given that COD provides a link between electron equivalents in the organic substrate,
the biomass, and the utilized oxygen [39], we focused on dynamic variables affecting the
output COD value, such as XBH and maximum specific growth rate (µ–max H) [31].

The important point of calibrating the model using dynamic data is to achieve a more
accurate estimation of the saturation constant (KS), decay coefficient of heterotrophic biomass
(bH), and µ–max H and one stoichiometric coefficient, the heterotrophic yield coefficient (YH),
which are the most important parameters in predicting dynamic situations [40–42].
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To approximate the simulation line to the experimental data, the steady-state simula-
tion protocol is divided into three steps:

• Enhance the clarity of the mathematical response to COD output and dynamic vari-
ables by using a range of values for µ–max H [43] while maintaining default values of
other parameters to reduce the dynamism.

• Ones µ–max H is obtained, adjusting parameters related to XBH, such as YH and bH, is
required for a complete calibration [31].

• Discrepancies between predicted and observed values are identified and adjustments
are made in parameter values until achieving a precise match. The objective of the
model calibration is to establish a correlation between the model’s prediction and the
experimental results.

A simulation algorithm can handle model calibration visually or mathematically. In
the study, due to the ASM1 model’s complexity and the absence of detailed data needed
for automatic calibration, a direct mathematical simulation for practical parameter identifi-
cation issues was not feasible [44,45]. Therefore, we chose to visually and manually adjust
the parameters based on the experimental measurements.

Visual inspection of the agreement between observed and simulated values was rein-
forced by employing statistical method to assess this alignment. To validate the model and
confirm its reliability in reflecting reality, the root mean square error (RMSE) (Equation (7))
was employed in this study [46].

RMSE
y

=

√
∑ (y−ŷ)2

n
y

(7)

3. Results & Discussion
3.1. Characterization of Influent Wastewater

The physicochemical parameters derived from analyses were processed by the lab-
oratory of MCWWTP. A total of 56 water samples were collected from 14 July 2021 to
10 January 2023 for influent and effluent waters through daily monitoring to identify tem-
poral changes in water quality. Table 4 presents the descriptive statistics including the
mean, median, standard deviation (SD), minimum (Min), maximum (Max), 1st quartile
(Q1), 3rd quartile (Q3), mean, and median values of the analyzed parameters for the water
samples. Throughout the observed timeframe, the mean pH value of the influent samples
surpassed that of the effluent samples by 1.31%. This discrepancy can be attributed to
the pH increase resulting from the denitrification process [47]. The TSS removal efficiency
of the MCWWTP was calculated as being 91.31%, while temperature changes between
influent and effluent samples were negligible. The BOD and COD treatment performances
of the ASP in MCWWTP were 95.15% and 90.85%, respectively. NH4-N was the predomi-
nant nitrogen form, treated with an efficiency of 38.24%. In contrast, NO3-N and NO2-N
ions showed removal efficiencies of 55% and 75%, respectively. Additionally, the mean
concentration of PO4-P increased by 3% in the influent flow, primarily because there is no
phosphorous removal process implemented in the plant. While the heterotrophic bacteria
within the ASS do assimilate phosphorus to some extent, their contribution alone appears
insufficient to induce a substantial reduction in phosphorus concentration.

As mentioned previously, the adjustment fractions were derived using CEMAGREF’s
default parameters as reported in Table 5. For SI, the ratio was estimated at 90% of the
effluent COD, as proposed by [36]. The Si fraction was determined to have a mean value of
0.056. Deviating from CEMAGREF’s default value of 0.13, a fraction of 0.32 was taken for
SS according to CEMAGREF defaults. The inert particulate fraction XI was also given from
CEMAGREF defaults with a mean value of 0.05 [48–50]. The remaining 57.4% of the COD
is considered as being the biodegradable substrate XS.
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Table 4. Statistical results of measured parameters for influent wastewater.

Parameter Unit Min Q1 Median Q3 Max Mean SD

Influent Values

TSS mg/L 76.00 210.00 261.00 335.00 583.00 280.44 123.84
BOD mgO2/L 170.00 360.00 460.00 592.00 850.00 467.52 152.96
COD mgCOD/L 190.00 555.50 653.00 918.00 1403.00 719.04 271.67

NH4-N mgN/L 25.36 49.67 52.00 60.11 79.74 54.31 10.27
NO3-N mgN/L 0.14 0.23 0.32 0.52 2.70 0.51 0.52
NO2-N mgN/L 0.15 0.28 0.40 0.49 0.96 0.40 0.17
PO4-P mg/L 7.30 10.40 11.90 14.90 21.50 12.65 3.28
Temp ◦C 13.00 20.00 26.50 29.50 32.00 24.85 5.72

PH - 7.05 7.37 7.57 7.95 8.21 7.63 0.33

Effluent Values

TSS mg/L 13.00 21.00 24.50 28.00 35.00 24.39 5.45
BOD mgO2/L 4.00 20.00 23.50 26.50 36.00 22.68 8.40
COD mgCOD/L 42.00 61.50 70.00 72.75 90.00 67.71 11.33

NH4-N mgN/L 18.50 25.48 32.58 40.03 57.08 33.54 10.12
NO3-N mgN/L 0.02 0.03 0.06 0.08 2.40 0.23 0.62
NO2-N mgN/L 0.02 0.04 0.05 0.07 0.57 0.10 0.14
PO4-P mg/L 2.10 5.63 10.05 17.70 34.80 13.03 9.40
Temp ◦C 13.00 19.38 26.25 29.63 32.00 24.68 5.84

PH - 6.77 7.35 7.69 7.96 8.19 7.62 0.39

Table 5. Parameters related to the organic matter fractionations (COD).

Parameter Fraction Symbol Ratio Value gCOD/m3 Reference

Soluble biodegradable
substrate SS 0.32 230.10 [49,50]

Soluble inert substrate SI 0.056 40.26 [36]
Particulate

biodegradable substrate XS 0.574 412.72 Own Study [XS = TCOD
− (SS + SI + XI)]

Particulate inert
substrate XI 0.05 35.95 [49,50]

3.2. Model Calibration

The ASM1 model was calibrated using steady-state data on treatment plant operation,
prioritizing the calibration of the COD, the TSS, and NH4-N.

The COD calibration depended mainly on adjusting the ASM1 kinetic and stoichio-
metric parameters. The model was calibrated adjusting two stoichiometric coefficients, YH
and Yield for Autotrophic Biomass (YA); and three kinetic parameters, µ–max H, bH, and Ks.
Table 6 shows the calibrated parameters and their default values for the ASM1. The rest of
the parameters were expected to have minimal impact on the model’s outcome [34]; hence,
the default ASM1 values were retained for them. The calibrated heterotrophic biomass
yield (YH = 0.66 g COD/g COD) closely aligned with both the default value and values
reported in the literature. Similarly, the autotrophic biomass yield maintained the same
default value (YA = 0.24 g COD/g COD) as that mentioned in the literature. However,
the calibrated values for the maximum heterotrophic growth rate (µ–max H = 3.2 d−1) and
heterotrophic decay coefficient (bH = 0.66 d−1) deviated significantly from the default val-
ues (Table 6). Nonetheless, the half-saturation constant value remained unchanged as per
the default setting. The calibration of TSS primarily relied on the precision of wastewater
characterization, as the model computes suspended solids by utilizing the proportion of
soluble (S) and particulate (X) COD to the total COD. Hence, it hinges upon the accurate
fractionation of total COD [51].
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Table 6. Calibrated and typical values for kinetic and stoichiometric parameters at neutral pH.

Parameters Symbol Unit Range Default
Values

Calibrated
Values References

Stoichiometric Parameters

Yield for heterotrophic
biomass YH g COD/g COD (0.57–0.67) 0.67 0.66 [52]

Yield for Autotrophic
biomass YA g COD/g COD (0.15–0.24) 0.24 0.24 [53]

volatile suspended
solids/total suspended

solids
VSS/TSS g VSS/g TSS - 0.70 0.80 [52]

particulate COD to total
COD XCOD/VSS1 g COD/g VSS - 1.48 1.3 [54]

Kinetic Parameters

Maximum specific growth
rate for heterotrophic

biomass
µ–max H d−1 (0.6–13.2) 6 3.2 [52]

Heterotrophic decay
coefficient bH d−1 (0.3–1.2) 0.62 0.66 [30]

Half saturation constant Ks mg3 COD/L (10–40) 20 20 [30]

The primary objective of steady-state model calibration is to align the simulated values
for each variable with the corresponding mean values obtained from plant data collected
during measurements. This approach has been commonly employed in numerous studies
to characterize the performance of ASSs in large-scale MCWWTPs [34,55–57].

After being measured at the plant, the influent COD is inputted into the GPS-X soft-
ware. Figure 5 illustrates the effective representation of MCWWTP performance provided
by the ASM1 model. The simulated effluent COD values closely align with the actual
measured COD readings, demonstrating a low RMSE of 3.70% (Table 7). Given that COD
stands as the principal parameter within ASM models, the major calibration efforts are
directed towards fine-tuning COD adjustments. For TSS, the influent average was intro-
duced through the calibration of two stoichiometric coefficients: the VSS/TSS ratio was
fixed at 0.80 g VSS/ g TSS, consistent with the findings of [58], and XCOD/VSS was ad-
justed to 1.3 g COD/g VSS, differing from the default value of 1.48. The model effectively
mirrored the observed TSS data in Figure 6, with an RMSE of 17% calculated. Nitrifying
microorganisms responsible for the nitrification process are highly sensitive to a number of
environmental factors (DO levels, temperature, pH, increased BOD, and the existence of
harmful or inhibitory substances); therefore, the calibration of NH4-N was neglected. All
kinetic and stoichiometric parameters related to the nitrification process (Mass N/mass
COD in biomass (iXB), Nitrate for denitrifying heterotrophs (KNO), ammonification rate
(Ka), and correction factor for anoxic hydrolysis (
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h)) were set to the default values. This
approach aligns with the perspective presented by [51]. The ASM1 model showed less
alignment with measured data for NH4-N during calibration (Figure 7), resulting in an
RMSE of 37% (Table 7).

Table 7. RMSE values of different output variables tested for a steady-state simulation (COD, TSS,
and NH4-N).

Parameter Unit Measurement Simulation RMSE

COD mg/L 67.71 70.25 0.037
TSS mg/L 24.39 20.23 0.17

NH4-N mg/L 33.54 21.03 0.37
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3.3. Dynamic Simulation Results

The model’s validation process involved conducting a long-term simulation using
influent process data spanning a 4-month period (from 14 July 2021 to 30 November 2021)
as input for the model. Subsequently, the simulation results were compared against the
effluent process data.

The average relative error between the simulated data and the measured data for the
whole year was calculated, wherein RMSE values were 23, 67, and 56% for COD, TSS, and
NH4-N, respectively (Table 8).

Table 8. RMSE values of different output variables tested for a dynamic simulation (COD, TSS,
and NH4-N).

Parameter Unit Measurement Simulation RMSE

COD mg/L 66.75 70.44 0.23
TSS mg/L 8.15 25.06 0.67

NH4-N mg/L 14.54 32.27 0.56

Figure 8 depicts the comparison between simulated and measured COD concentra-
tions in the plant effluent, demonstrating a strong agreement during most of the simulation
period. This should be attributed to both the good description of detailed influent wastew-
ater characterization (SS, XS, SI, and XI) as well as the adjustment of the µ-max H value in
accordance with the insights provided by [34].
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However, there is a relatively lower precision observed in depicting the behavior
of TSS and NH4-N in the effluent (Figures 9 and 10). The observed discrepancies could
potentially stem from uncertainties linked to the observed TSS flows. It is notable that a
considerable portion (86%) of the measured TSS effluent exceeds the 20 mg/L threshold,
which corresponds to the limit discharge standards according to the World Health Orga-
nization (WHO) for wastewater [59]. Furthermore, the NH4-N effluent failed to meet the
international discharge standard (<20 mg/L), with a deviation of 93.33% in NH4-N effluent
concentrations exceeding the specified limit. These outcomes are consistent with similar
findings in two separate studies conducted on sewage treatment plants in northeastern Al-
geria [58] and the United Arab Emirates [13]. In both cases, the dynamic simulation results
exhibited relatively low congruence with the observed TSS and NH4-N values. Figure 10
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provided additional insights, indicating that some parameters may not be suitable for
autotrophic nitrifiers, including ammonium-oxidizing bacteria and little nitrite-oxidizing
bacteria. This further confirms the challenges faced in accurately representing the behavior
of these variables in the dynamic simulation.
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Figure 10. Dynamic simulation results for the effluent NH4-N.

Wastewater treatment does not appear to be an exact science; indeed, the ASP has im-
proved considerably over the past few decades since the development of the ASM models,
which constitute a management support tool particularly suitable for optimizing biolog-
ical wastewater treatment processes. These results are commonly observed in dynamic
simulations of biological treatment processes [60].

It is worth noting that a calibrated ASM1 model provides an accurate representation of
the plant’s operations that constitutes a management support tool particularly suitable for
describing biological wastewater treatment processes [34]. This study report can serve as a
valuable training tool for plant operators, demonstrating its worth in predicting the oscillatory



Water 2024, 16, 269 15 of 18

behavior of the output parameter values of COD effluent. This, in turn, equips the plant with
the ability to proactively address challenges and strategically plan for future upgrades.

4. Conclusions

ASSs have emerged as the preferred choice for WWTPs worldwide as their usage has
increased significantly over the past decade. In this contribution, a successful plant-wide
modeling approach was undertaken for the Maghnia WWTP in Algeria. The physico-
chemical parameters for 56 water samples from both influent and effluent discharges were
collected to detect the temporal changes in their qualities. The characterization of wastew-
ater followed the CEMAGREF protocol, and the GPS-X simulation environment, based
on the IWA ASM1 model for the activated sludge process, was implemented through a
systematic step-wise procedure that involved adjusting certain stoichiometric and kinetic
parameters of the model. The ASM1 model proved effective in precisely predicting the
steady-state behavior of the WWTP’s removal processes for COD, TSS, and NH4-N, with
corresponding RMSE values of 3.7%, 17%, and 37%, over an 18-month data period. Dy-
namic validation of the model using four months of acquired data produced RMSE values
of less than 23% for the COD effluent, affirming the robust calibration of the model. How-
ever, simulated TSS and NH4-N exhibited less accuracy compared to measured values, with
root mean square errors of 67% and 56%, respectively. Our study highlights the efficacy of
plant-wide modeling in predicting COD removal performance, providing valuable insights
and guidance for similar WWTPs in conducting plant-wide modeling and optimization.
Nevertheless, the study faced challenges due to uncertainties in measuring TSS and NH4-N,
warranting further efforts for the enhanced validation of the model concerning nitrogen
and suspended solid removal processes.
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Abbreviations
Nomenclature
bA decay coefficient for autotrophic biomass (d−1);
bH decay coefficient for heterotrophic biomass (d−1);
DO dissolved oxygen (mg/L);
fp fraction of biomass leading to particulate products;
iXB nitrogen fraction in biomass;
iXP nitrogen fraction in products from biomass;
kh hydrolysis rate constant (d−1);
KOH oxygen half-saturation coefficient for heterotrophic biomass (mg/L);
Ks half-saturation coefficient for readily biodegradable substrate (mg/L);
Q influent flow rate (m3/d);
ri substrate utilization rate (mg/(L d));
r(ξ) conversion vector of the variable ξ (mg/(L d));
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Si soluble inert organic matter (mg/L);
SND soluble biodegradable organic nitrogen (mg/L);
SNH ammonia nitrogen (mg/L);
SNO nitrate and nitrite nitrogen (mg/L);
Ss readily biodegradable substrate (mg/L);
SS,in influent readily biodegradable substrate (mg/L);
t time (d);
T temperature (◦C);
V reactor volume (L);
XBA active autotrophic biomass (mg/L);
XBH active heterotrophic biomass (mg/L);
XBH,in influent active heterotrophic biomass (mg/L);
Xi particulate inert organic matter (mg/L);
XND particulate biodegradable organic nitrogen (mg/L);
XP particulate products arising from biomass decay (mg/L);
XS slowly biodegradable substrate (mg/L);
XS,in influent slowly biodegradable substrate (mg/L);
YA growth yield of autotrophic biomass;
YH growth yield of heterotrophic biomass.

Greek symbols
ξ vector of reactor and effluent concentration (mg/L);
ξin vector of influent concentration (mg/L);
µ–max H maximum specific growth rate for heterotrophic biomass (d − 1);
ρ(ξ) vector of reaction kinetics (mg/(L d));
ρj process rate (mg/(L d));
Θ hydraulic residence time, HRT (d);
νij stoichiometric coefficient;
ηg correction factor of µH under anoxic conditions;
ηh correction factor for hydrolysis under anoxic conditions.
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