Evolution Trend of Depth to Groundwater and Agricultural Water-Saving Measure Threshold under Its Constraints: A Case Study in Helan Irrigated Areas, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Methodology
2.3. Statistical Methods for DTG Evolution Trend Analysis
2.3.1. K-Shape Clustering
2.3.2. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) Method
2.4. Scenario Analysis Based on Groundwater Numerical Simulation
2.4.1. Groundwater Numerical Simulation Model Setup
2.4.2. Water-Saving Scenario Scheme Setting
2.5. Optimization Scenario Scheme Evaluation Indices
3. Results
3.1. Classification of Wells Based on Cluster Analysis
3.2. Trend Analysis of Depth to Groundwater
3.3. Identification and Validation of Groundwater Numerical Model
3.4. Determination of the Agricultural Water-Saving Measure Thresholds Based on Groundwater Numerical Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DTG | Depth to groundwater |
CEEMDAN | Complete ensemble empirical mode decomposition with adaptive noise |
CAEGTD | Control area of ecological groundwater table depth |
WSR | Water shortage rate |
EGTD | Ecological groundwater table depth |
References
- Yue, W.; Meng, K.; Hou, K.; Zuo, R.; Zhang, B.-T.; Wang, G. Evaluating climate and irrigation effects on spatiotemporal variabilities of regional groundwater in an arid area using EOFs. Sci. Total Environ. 2020, 709, 136147. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Sheng, Z.; Manevski, K.; Andersen, M.N.; Han, S.; Li, H.; Yang, Y. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agric. Water Manag. 2021, 249, 106793. [Google Scholar] [CrossRef]
- Yue, W.; Zhao, H.; Zan, Z.; Guo, M.; Wu, F.; Zhai, L.; Wu, J. Exploring the Influences of Water-Saving Practices on the Spatiotemporal Evolution of Groundwater Dynamics in a Large-Scale Arid District in the Yellow River Basin. Agronomy 2023, 13, 827. [Google Scholar] [CrossRef]
- Cheng, G.; Xiao, H.; Li, C.; Ren, J.; Wang, S. Water-saving eco-agriculture and integrated water resources management in Heihe River Basin, Northwest China. Adv. Earth Sci. 2008, 23, 661–665. [Google Scholar]
- Hu, Q.; Yang, Y.; Han, S.; Wang, J. Degradation of agricultural drainage water quantity and quality due to farmland expansion and water-saving operations in arid basins. Agric. Water Manag. 2019, 213, 185–192. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Zhang, Y.; Wang, M.; Cheng, Z. Water resources utilization and eco-environmental safety in Northwest China. J. Geogr. Sci. 2006, 16, 277–285. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Pereira, L.S.; Fang, S.X.; Dong, B. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agric. Water Manag. 2007, 94, 93–108. [Google Scholar] [CrossRef]
- Xu, Y.; Shao, J.; Cui, Y. Application of groundwater modeling systems to the evaluation of groundwater resources in the Yinchuan Plain. Hydrogeol. Eng. Geol. 2015, 3, 7–12. [Google Scholar] [CrossRef]
- Zhai, J.; Dong, Y.; Qi, S.; Zhao, Y.; Liu, K.; Zhu, Y. Advances in Ecological Groundwater Level Threshold in Arid Oasis Regions. J. China Hydrol. 2021, 41, 7–14. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Zheng, X.; Wu, X.; Zhu, M.; Sun, F.; Li, Y. Assessing the impacts of irrigated agriculture on hydrological regimes in an oasis-desert system. J. Hydrol. 2021, 594, 125976. [Google Scholar] [CrossRef]
- Porhemmat, J.; Nakhaei, M.; Altafi Dadgar, M.; Biswas, A. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. J. Hydrol. 2018, 565, 455–466. [Google Scholar] [CrossRef]
- Kisekka, I.; Schlegel, A.; Ma, L.; Gowda, P.H.; Prasad, P.V.V. Optimizing preplant irrigation for maize under limited water in the High Plains. Agric. Water Manag. 2017, 187, 154–163. [Google Scholar] [CrossRef]
- Mi, L.; Tian, J.; Si, J.; Chen, Y.; Li, Y.; Wang, X. Evolution of Groundwater in Yinchuan Oasis at the Upper Reaches of the Yellow River after Water-Saving Transformation and Its Driving Factors. Int. J. Environ. Res. Public Health 2020, 17, 1304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Zhou, W. Effects of Water-Saving Irrigation on Hydrological Cycle in an Irrigation District of Northern China. Sustainability 2021, 13, 8488. [Google Scholar] [CrossRef]
- Wang, X.; Hollanders, P.H.J.; Wang, S.; Fang, S. Effect of field groundwater table control on water and salinity balance and crop yield in the Qingtongxia Irrigation District, China. Irrig. Drain. 2004, 53, 263–275. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. Simulation of groundwater spatial distribution influenced by agricultural water-saving in Northern Irrigation Districts. Int. J. Geoherit. 2016, 4, 70–72. [Google Scholar]
- Shan, S.; Ni, H.; Lin, X.; Chen, G. Evaluation of Water Saving and Economy Impact for Tax Reform Policy Using CGE Model with Integrated Multiple Types of Water. Water 2023, 15, 2118. [Google Scholar] [CrossRef]
- Yang, G.; Tian, L.; Li, X.; He, X.; Gao, Y.; Li, F.; Xue, L.; Li, P. Numerical assessment of the effect of water-saving irrigation on the water cycle at the Manas River Basin oasis, China. Sci. Total Environ. 2020, 707, 135587. [Google Scholar] [CrossRef]
- Azizpour, A.; Izadbakhsh, M.A.; Shabanlou, S.; Yosefvand, F.; Rajabi, A. Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model. Environ. Sci Pollut. Res. Int 2022, 29, 28414–28430. [Google Scholar] [CrossRef]
- Bahmani, R.; Ouarda, T.B.M.J. Groundwater level modeling with hybrid artificial intelligence techniques. J. Hydrol. 2021, 595, 125659. [Google Scholar] [CrossRef]
- Moosavi, V.; Mahjoobi, J.; Hayatzadeh, M. Combining Group Method of Data Handling with Signal Processing Approaches to Improve Accuracy of Groundwater Level Modeling. Nat. Resour. Res. 2021, 30, 1735–1754. [Google Scholar] [CrossRef]
- Oh, Y.-Y.; Yun, S.-T.; Yu, S.; Hamm, S.-Y. The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer. J. Hydrol. 2017, 555, 938–955. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, L.; Liu, D.; Li, G. PSO-ELM prediction model of regional groundwater depth based on EEMD. Water Resour. Hydropower Eng. 2020, 51, 45–51. [Google Scholar]
- Rahman, A.T.M.S.; Hosono, T.; Quilty, J.M.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Wang, W.; Lu, C.; Zhang, Y.; Qin, W.; Tick, G.R.; Liu, B.; Shu, L. Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model. Sci. Total Environ. 2021, 783, 146948. [Google Scholar] [CrossRef]
- Yang, T.; Wang, G. Periodic variations of rainfall, groundwater level and dissolved radon from the perspective of wavelet analysis: A case study in Tengchong, southwest China. Environ. Earth Sci. 2021, 80, 1–3. [Google Scholar] [CrossRef]
- Yosefvand, F.; Shabanlou, S. Forecasting of Groundwater Level Using Ensemble Hybrid Wavelet–Self-adaptive Extreme Learning Machine-Based Models. Nat. Resour. Res. 2020, 29, 3215–3232. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhao, R.; Mu, W.; Wu, C. Identifying the facts and driving factors of deceleration of groundwater table decline in Beijing during 1999–2018. J. Hydrol. 2022, 607, 127475. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Bloomfield, J.P.; Marchant, B.P.; Bricker, S.H.; Morgan, R.B. Regional analysis of groundwater droughts using hydrograph classification. Hydrol. Earth Syst. Sci. 2015, 19, 4327–4344. [Google Scholar] [CrossRef]
- Clark, S.R. Unravelling groundwater time series patterns: Visual analytics-aided deep learning in the Namoi region of Australia. Environ. Model. Softw. 2022, 149, 105295. [Google Scholar] [CrossRef]
- Jeihouni, E.; Eslamian, S.; Mohammadi, M.; Zareian, M.J. Simulation of groundwater level fluctuations in response to main climate parameters using a wavelet–ANN hybrid technique for the Shabestar Plain, Iran. Environ. Earth Sci. 2019, 78, 293. [Google Scholar] [CrossRef]
- Kayhomayoon, Z.; Ghordoyee Milan, S.; Arya Azar, N.; Kardan Moghaddam, H. A New Approach for Regional Groundwater Level Simulation: Clustering, Simulation, and Optimization. Nat. Resour. Res. 2021, 30, 4165–4185. [Google Scholar] [CrossRef]
- Naranjo-Fernández, N.; Guardiola-Albert, C.; Aguilera, H.; Serrano-Hidalgo, C.; Montero-González, E. Clustering Groundwater Level Time Series of the Exploited Almonte-Marismas Aquifer in Southwest Spain. Water 2020, 12, 1063. [Google Scholar] [CrossRef]
- Ning, L.; De-peng, Y.; Qiang, Y.; Qi-bin, Z.; Huan, M. Temporal and spatial variation characteristics of groundwater depth in Dengkou County. South-North Water Transf. Water Sci. Technol. 2017, 15, 49–54. [Google Scholar] [CrossRef]
- Noori, A.R.; Singh, S.K. Spatial and temporal trend analysis of groundwater levels and regional groundwater drought assessment of Kabul, Afghanistan. Environ. Earth Sci. 2021, 80, 1–16. [Google Scholar] [CrossRef]
- Sahoo, S.; Swain, S.; Goswami, A.; Sharma, R.; Pateriya, B. Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundw. Sustain. Dev. 2021, 14, 100644. [Google Scholar] [CrossRef]
- Paparrizos, J.; Gravano, L. k-Shape. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Australia, 31 May–4 June 2015; pp. 1855–1870. [Google Scholar]
- Water Conservancy Department of Ningxia Hui Autonomous Region. Statistical Bulletin on Water Conservancy in the Ningxia Hui Autonomous Region for the Year 2017. Available online: http://slt.nx.gov.cn/xxgk_281/fdzdgknr/gbxx/sltjgb/202105/t20210507_2824670.html (accessed on 10 August 2022).
- Qu, L.; Zhu, Q.; Zhu, C.; Zhang, J. Monthly Precipitation Data Set with 1 km Resolution in China from 1960 to 2020; Science Data Bank: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1990 to 2020 (1.0.0). Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, S.; Yang, G.; Wang, H.; Song, X.; Chang, C.; Du, J.; Gao, D. A spatial-temporal optimal allocation method of irrigation water resources considering groundwater level. Agric. Water Manag. 2023, 275, 108021. [Google Scholar] [CrossRef]
- Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz, G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Kolar, K.; et al. Tslearn, a Machine Learning Toolkit for Time Series Data. J. Mach. Learn. Res. 2020, 21, 1–6. [Google Scholar]
- Pele, O.; Werman, M. A linear time histogram metric for improved sift matching. In Computer Vision-ECCV 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 495–508. [Google Scholar]
- Pele, O.; Werman, M. Fast and robust earth mover’s distances. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 460–467. [Google Scholar]
- Panday, S.; Langevin, C.D.; Niswonger, R.G.; Ibaraki, M.; Hughes, J.D. MODFLOW-USG version 1.4.00: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geol. Surv. Softw. Release 2017, 27. [Google Scholar] [CrossRef]
- Ningxia Groundwater Bulletin. 2015–2019.
- Water Quota of Related Industries in Ningxia Hui Autonomous Region. 2020.
- Helan County Water Saving Plan. 2018.
- Cheng, X.-G.; Zhang, X.; Jiang, B.-Z. Research on appropriate water saving threshhold in Qingtongxia irrigation district of Ningxia autonomous region. J. Water Resour. Water Eng. 2010, 21, 83–86. [Google Scholar]
- Feng, Q.; Peng, J.; Li, J.; Xi, H.; Si, J. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. J. Arid Land 2012, 4, 378–389. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Zhao, Y.; Qiao, J. Modelling the response of vegetation restoration to changes in groundwater level, based on ecologically suitable groundwater depth. Hydrogeol. J. 2018, 26, 2189–2204. [Google Scholar] [CrossRef]
- Wang, L.H.G.; Wang, S.; Fang, S.; Zhang, H.; Yu, F.; Zhao, H. Evolution and Regulation of Hydrological and Salinity Dynamics in the Huanghe River Diversion Irrigation Areas in Ningxia; China Water&Power Press: Beijing, China, 2003; p. 158. [Google Scholar]
- Jin, X.; Wan, L.; Zhang, Y.; Xue, Z.; Yin, Y. A Study of the Relationship between Vegetation Growth and Groundwater in the Yinchuan Plain. Earth Sci. Front. 2007, 14, 197–203. [Google Scholar] [CrossRef]
- Sun, X.-C.; Jin, X.-M.; Wan, L. Effect of Groundwater on Vegetation Growth in Yinchuan Plain. Geoscience 2008, 22, 321–325. [Google Scholar]
- Han, Y.; Ruan, B.; Wang, F. Estimation of suitable ecological water requirement for Yellow River irrigation area in Ningxia Autonomous Region. J. Hydraul. Eng. 2009, 40, 716–723. [Google Scholar]
- Wang, Z.; Zheng, J.; Wang, H. Desertization Pre-Warning Model and Its Application. China Rural Water Hydropower 2004, 38, 1321–1329. [Google Scholar]
- Ruan, B.-Q.; Han, Y.-P.; Jiang, R.-F.; Xu, F.-R. Appropriate water saving extent for ecological vulnerable area. J. Hydraul. Eng. 2008, 39, 809–814. [Google Scholar]
- Li, J.; Zhou, Y.; Wang, W.; Liu, S.; Li, Y.; Wu, P. Response of hydrogeological processes in a regional groundwater system to environmental changes: A modeling study of Yinchuan Basin, China. J. Hydrol. 2022, 615, 128619. [Google Scholar] [CrossRef]
- Luo, J.; Wang, W.; Duan, L.; Li, Y.; Zhang, Z. Dynamic Analysis of Groundwater Level in Yinchuan Plain. Northwestern Geol. 2020, 35, 195–204. [Google Scholar]
- Jiang, X.; Zhang, X.; Zhang, Q.; Cheng, X. Analysis of response correlation between the Yellow River water and groundwater level in Qingtongxia irrigation district. J. Water Resour. Water Eng. 2012, 23, 148–150. [Google Scholar]
- Fan, L.-Q.; Li, L.; Wu, X. Relationship between Soil Salinity and Groundwater Characteristics in Saline-alkali Land with High Groundwater Level of Yinbei Irrigation Area. Water Sav. Irrig. 2019, 6, 55–59. [Google Scholar]
Water-Saving Measures | Water-Saving Scenario Schemes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Z7 | Z8 | Z9 | Z10 | Z11 | Z12 | ||
Canal lining | 0.62 | √ | √ | √ | √ | √ | √ | ||||||
0.64 | √ | √ | √ | √ | √ | √ | |||||||
Water-efficient irrigation transformation | 30%; 70% | √ | √ | √ | √ | ||||||||
35%; 80% | √ | √ | √ | √ | |||||||||
40%; 90% | √ | √ | √ | √ | |||||||||
Plant structural adjustment | 50% | √ | √ | √ | √ | √ | √ | ||||||
75% | √ | √ | √ | √ | √ | √ |
Periods | Range of the EGTD/m |
---|---|
Thawing to summer irrigation (March–April) | 2.0–3.0 |
Crop growth period (May–August) | 1.2–1.8 |
Cessation of irrigation to winter irrigation (September–October) | 1.5–2.5 |
Winter irrigation until the following year’s thawing season (November–the following February) | 1.5–2.2 |
Parameters Zone | Kx = Ky m/d | Kz m/d | Sy |
---|---|---|---|
1 | 35 | 0.0023 | 0.3 |
2 | 25 | 0.0018 | 0.25 |
3 | 3 | 0.00003 | 0.1 |
4 | 12 | 0.00012 | 0.2 |
5 | 7.2 | 0.00072 | 0.18 |
6 | 7 | 0.0007 | 0.16 |
7 | 10 | 0.001 | 0.15 |
Water-Saving Scenario Schemes | Thawing to Summer Irrigation | Crop Growth Period | Cessation of Irrigation to Winter Irrigation | Winter Irrigation Until the Following Year’s Thawing Season | Average of Four Periods | The Growth Rate of the CAEGTD Compared to the Baseline Year (%) | WSR (%) |
---|---|---|---|---|---|---|---|
March–April | May–August | September–October | November–The Following February | ||||
Baseline year | 250.95 | 93.24 | 251.65 | 160.97 | 189.20 | — | 21.00 |
Z1 | 269.26 | 93.81 | 254.29 | 165.01 | 195.59 | 3.38 | 7.34 |
Z2 | 276.05 | 96.59 | 261.18 | 172.06 | 201.47 | 6.48 | 4.49 |
Z3 | 273.54 | 93.37 | 253.95 | 165.01 | 196.47 | 3.84 | 6.51 |
Z4 | 273.23 | 96.66 | 260.53 | 170.17 | 200.15 | 5.79 | 3.64 |
Z5 | 270.07 | 94.82 | 257.45 | 167.70 | 197.51 | 4.39 | 5.66 |
Z6 | 275.46 | 96.40 | 260.17 | 171.12 | 200.79 | 6.12 | 2.77 |
Z7 | 279.50 | 96.74 | 260.59 | 174.80 | 202.91 | 7.24 | 5.41 |
Z8 | 276.93 | 95.81 | 259.03 | 174.26 | 201.51 | 6.50 | 2.51 |
Z9 | 279.50 | 96.87 | 261.70 | 174.62 | 203.17 | 7.38 | 4.54 |
Z10 | 277.66 | 96.17 | 258.82 | 173.27 | 201.48 | 6.49 | 1.62 |
Z11 | 279.55 | 97.13 | 260.92 | 175.09 | 203.17 | 7.38 | 3.66 |
Z12 | 276.78 | 95.71 | 258.59 | 173.79 | 201.22 | 6.35 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Yang, G.; Li, S.; Wang, H. Evolution Trend of Depth to Groundwater and Agricultural Water-Saving Measure Threshold under Its Constraints: A Case Study in Helan Irrigated Areas, Northwest China. Water 2024, 16, 220. https://doi.org/10.3390/w16020220
Chang C, Yang G, Li S, Wang H. Evolution Trend of Depth to Groundwater and Agricultural Water-Saving Measure Threshold under Its Constraints: A Case Study in Helan Irrigated Areas, Northwest China. Water. 2024; 16(2):220. https://doi.org/10.3390/w16020220
Chicago/Turabian StyleChang, Cui, Guiyu Yang, Shuoyang Li, and Hao Wang. 2024. "Evolution Trend of Depth to Groundwater and Agricultural Water-Saving Measure Threshold under Its Constraints: A Case Study in Helan Irrigated Areas, Northwest China" Water 16, no. 2: 220. https://doi.org/10.3390/w16020220
APA StyleChang, C., Yang, G., Li, S., & Wang, H. (2024). Evolution Trend of Depth to Groundwater and Agricultural Water-Saving Measure Threshold under Its Constraints: A Case Study in Helan Irrigated Areas, Northwest China. Water, 16(2), 220. https://doi.org/10.3390/w16020220