Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments, and Experimental Reagents
2.2. Preparation and Characterization of Materials
2.2.1. Preparation of ZIF-67 (Co) Material
2.2.2. Characterization of ZIF-67 (Co) Materials
- (1)
- Scanning Electron Microscopy (SEM)
- (2)
- X-ray Diffraction (XRD) Analysis
- (3)
- Fourier Transform Infrared (FT-IR) Spectroscopy
2.3. Experimental Methods
2.4. Removal Efficiency Calculation
3. Results and Discussion
3.1. Characterization of ZIF-67 (Co) Material
3.1.1. SEM Analysis
3.1.2. XRD Analysis
3.1.3. FT-IR Characterization
3.2. UV/ZIF-67 (Co)/PMS System for OTC Removal
3.2.1. Removal Effect of UV/ZIF-67 (Co)/PMS on OTC
3.2.2. Effect of ZIF-67 (Co) Dosage on OTC Removal Efficiency
3.2.3. Effect of PMS Dosage on OTC Removal Efficiency
3.2.4. Effect of pH on OTC Removal Efficiency
3.2.5. Effect of Inorganic Anions on OTC Removal Efficiency
3.2.6. Effect of Different Environment Water on OTC Removal Efficiency
3.3. Free Radical Identification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. Antibiotic use in farming set to soar despite drug-resistance fears. Nature 2023, 614, 397. [Google Scholar] [CrossRef] [PubMed]
- Sanz-García, F.; Gil-Gil, T.; Laborda, P.; Blanco, P.; Ochoa-Sánchez, L.E.; Baquero, F.; Martínez, J.L.; Hernando-Amado, S. Translating eco-evolutionary biology into therapy to tackle antibiotic resistance. Nat. Rev. Microbiol. 2023, 21, 671–685. [Google Scholar] [CrossRef]
- Hanna, N.; Tamhankar, A.J.; Lundborg, C.S. The development of an integrated environment-human risk approach for the prioritisation of antibiotics for policy decisions. Sci. Total Environ. 2023, 880, 163301. [Google Scholar] [CrossRef] [PubMed]
- Tuts, L.; Rasschaert, G.; Heyndrickx, M.; Boon, N.; Eppinger, R.; Becue, I. Detection of antibiotic residues in groundwater with a validated multiresidue UHPLC-MS/MS quantification method. Chemosphere 2024, 352, 141455. [Google Scholar] [CrossRef]
- Turnipseed, S.B.; Rafson, J.P.; Casey, C.R. Determination and identification of antibiotic residues in fruits using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). J. Agr. Food Chem. 2024, 72, 15366–15375. [Google Scholar] [CrossRef]
- Kapley, A.; Sheeraz, M.S.; Kukade, S.; Ansari, A.; Qureshi, A.; Bajaj, A.; Khan, N.A.; Tandon, S.; Jain, R.; Dudhwadkar, S.; et al. Antibiotic resistance in wastewater: Indian scenario. Environ. Pollut. 2023, 337, 122586. [Google Scholar] [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 10610. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Chen, Y.; Huang, H.; Ren, T. Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China. Environ. Sci. Pollut. Res. 2018, 25, 11565–11575. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R. Environmental impact of waste treatment and synchronous hydrogen production: Based on life cycle assessment method. Toxics 2024, 12, 652. [Google Scholar] [CrossRef]
- Su, R.; Chai, L.; Tang, C.; Li, B.; Yang, Z. Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system. Water Sci. Technol. 2018, 77, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Su, R.; Yao, H.; Zhang, A.; Xiang, S.; Huang, L. Degradation of trimethoprim by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Environ. Sci. Pollut. Res. 2021, 28, 62572–62582. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Mao, Y.; Qiu, W.; Wu, Y.; Cai, B. The source and distribution of tetracycline antibiotics in China: A review. Toxics 2023, 11, 214. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate and ecotoxicity of antibiotics in agro-ecosystems: A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Chen, L.; Kumar, S.; Wu, H.Y. A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Arch. Microbiol. 2023, 205, 356. [Google Scholar] [CrossRef]
- Hui, X.S.; Fang, W.J.; Wang, G.; Liu, H.L.; Dai, X.H. Waste recycling of antibiotic mycelial residue: The feasible harmless treatment and source control of antibiotic resistance. J. Clean. Prod. 2023, 401, 136786. [Google Scholar] [CrossRef]
- Li, W.Q.; Zhou, D.; Jiang, H.W.; Chen, H.Y.; Guo, J.Y.; Yang, J.J.; Wang, X.Y.; Wang, H.; Yuan, X.Z.; Jiang, L.B. MoO2 co-catalytic Fe3+/periodate for tetracycline degradation: Key role of Fe/Mo cycling and high-valent iron (Fe(IV)) generation. Sep. Purif. Technol. 2024, 346, 127509. [Google Scholar] [CrossRef]
- Zhu, Y.K.; Ke, M.J.; Yu, Z.T.; Lei, C.T.; Liu, M.; Yang, Y.H.; Lu, T.; Zhou, N.Y.; Peijnenburg, W.; Tang, T.; et al. Combined effects of azoxystrobin and oxytetracycline on rhizosphere microbiota of Arabidopsis thaliana. Environ. Int. 2024, 186, 108655. [Google Scholar] [CrossRef]
- Gugger, M.K.; Hergenrother, P.J. New antibiotic targets a drug-resistant bacterium. Nat. Biotechnol. 2024, 625, 451–452. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Guan, R.Q.; Chen, Y.N.; Qian, Y.D.; Shang, Q.K.; Sun, Y.N. Adsorption and photocatalytic degradation process of oxytetracycline using mesoporous Fe-TiO2 based on high-resolution mass spectrometry. Chem. Eng. J. 2023, 460, 141618. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Y.Y.; Ke, Y.C.; Chen, C.; Xie, S.G. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Sci. Total Environ. 2022, 814, 152852. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Dai, X.; Wang, H.; Wang, Z.; Li, Z.; Chen, Y.; Luo, Y.; Ouyang, D. Metronidazole degradation by UV and UV/H2O2 advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Int. J. Environ. Res. Public Health 2022, 19, 12354. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Su, R.; Xue, R.; Ma, X.; Zeng, Z.; Li, L.; Wang, S. Targeted improvement of narrow micropores in porous carbon for enhancing trace benzene vapor removal: Revealing the adsorption mechanism via experimental and molecular simulation. J. Colloid Interface Sci. 2024, 671, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.J.; Jiao, G.J.; Li, X.Z.; Gao, C.L.; Zhang, Y.R.; Hashan, D.; Liu, J.; She, D. High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: Adsorption behavior and mechanism. Int. J. Biol. Macromol. 2023, 234, 123689. [Google Scholar] [CrossRef]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen reduction reaction in the field of water environment for application of nanomaterials. Nanomaterials 2020, 10, 1719. [Google Scholar] [CrossRef]
- Su, R.; Zhang, H.; Chen, F.; Wang, Z.; Huang, L. Applications of single atom catalysts for environmental management. Int. J. Environ. Res. Public Health 2022, 19, 11155. [Google Scholar] [CrossRef]
- Park, J.-A.; Pineda, M.; Peyot, M.-L.; Yargeau, V. Degradation of oxytetracycline and doxycycline by ozonation: Degradation pathways and toxicity assessment. Sci. Total Environ. 2023, 856, 159076. [Google Scholar] [CrossRef]
- Huang, H.M.; Jiang, L.B.; Yang, J.J.; Zhou, S.Y.; Yuan, X.Z.; Liang, J.; Wang, H.; Wang, H.; Bu, Y.Q.; Li, H. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sust. Energy Rev. 2023, 173, 113110. [Google Scholar] [CrossRef]
- Su, R.K.; Li, Z.S.; Cheng, F.H.; Dai, X.R.; Wang, H.Q.; Luo, Y.T.; Huang, L. Advances in the degradation of emerging contaminants by persulfate oxidation technology. Water Air Soil Pollut. 2023, 234, 754. [Google Scholar] [CrossRef]
- Chen, L.; Cai, T.; Cheng, C.; Xiong, Z.; Ding, D. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study. Chem. Eng. J. 2018, 351, 1137–1146. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, W.W.; Li, Q.C.; Li, W.Q.; Chen, H.Y.; Liu, W.; Yang, J.J.; Yuan, X.Z.; Wang, H.; Jiang, L.B. Accelerated Fe(III)/Fe(II) cycle for ultrafast removal of acetaminophen by a novel W 18 O 49 co-catalytic Fe 3+/H2 O2 fenton-like system. Sep. Purif. Technol. 2024, 342, 127056. [Google Scholar] [CrossRef]
- Huang, W.; Jin, X.; Li, Q.; Wang, Y.; Huang, D.; Fan, S.; Yan, J.; Huang, Y.; Astruc, D.; Liu, X. Co3O4 nanocubes for degradation of oxytetracycline in wastewater via peroxymonosulfate activation. ACS Appl. Nano Mater. 2023, 6, 12497–12506. [Google Scholar] [CrossRef]
- Achola, L.A.; Ghebrehiwet, A.; Macharia, J.; Kerns, P.; He, J.; Fee, J.; Tinson, C.; Shi, J.; March, S.; Jain, M.; et al. Enhanced visible-light-assisted peroxymonosulfate activation on cobalt-doped mesoporous iron oxide for orange II degradation. Appl. Catal. B-Environ. 2020, 263, 118332. [Google Scholar] [CrossRef]
- Annamalai, S.; Shin, W.S. Efficient degradation of trimethoprim with ball-milled nitrogen-doped biochar catalyst via persulfate activation. Chem. Eng. J. 2022, 440, 135815. [Google Scholar] [CrossRef]
- Khalil, I.E.; Fonseca, J.; Reithofer, M.R.; Eder, T.; Chin, J.M. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord. Chem. Rev. 2023, 481, 215043. [Google Scholar] [CrossRef]
- Song, J.Y.; Yu, Y.Y.; Han, X.S.; Yang, W.S.; Pan, W.B.; Jian, S.J.; Duan, G.G.; Jiang, S.H.; Hu, J.P. Novel MOF(Zr)-on-MOF(Ce) adsorbent for elimination of excess fluoride from aqueous solution. J. Hazard. Mater. 2024, 463, 132843. [Google Scholar] [CrossRef]
- Zhuang, X.L.; Zhang, S.T.; Tang, Y.J.; Yu, F.; Li, Z.M.; Pang, H. Recent progress of MOF/MXene-based composites: Synthesis, functionality and application. Coord. Chem. Rev. 2023, 490, 215208. [Google Scholar] [CrossRef]
- He, X.F.; Chang, L.B.; Wu, H.J.; Liu, G.Y.; Zhang, Y.T.; Zhou, A.N. Design of ZIF-67-derived Fe, N and F co-doped porous carbon material and evaluation of its ORR and OER performance. J. Alloys Compd. 2023, 967, 171709. [Google Scholar] [CrossRef]
- Tran, T.V.; Jalil, A.A.; Nguyen, D.T.C.; Nguyen, T.M.; Alhassan, M.; Nabgan, W.; Rajendran, S.; Firmansyah, M.L. Novel ZIF-67-derived Co@CNTs nanocomposites as effective adsorbents for removal of tetracycline and sulfadiazine antibiotics. Environ. Res. 2023, 225, 115516. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Wu, C.; Bai, W.; Li, N.; Gao, Y.; Ge, L. CdS supported on ZIF-67-derived Co-NC as efficient nano polyhedron photocatalysts for visible light induced hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131089. [Google Scholar] [CrossRef]
- Mahmoud, S.M.; Ammar, S.H.; Ali, N.D.; Ali, F.D.; Jabbar, Z.H. Visible-light-prompted photocatalytic degradation of emerging contaminants over facile constructed ZIF-67/Bi25FeO40 hybrids. J. Water Process Eng. 2024, 59, 104990. [Google Scholar] [CrossRef]
- Abdul-wahid, I.K.; Ammar, S.H.; Elaibi, A.I.; Jabbar, Z.H. Enhanced synergistic photocatalytic degradation of oxytetracycline antibiotic using novel Ag2MoO4/Co-zeolitic imidazolate framework (ZIF-67) Z-type heterojunction. Inorg. Chem. Commun. 2023, 156, 111277. [Google Scholar] [CrossRef]
- Peng, H.H.; Xiong, W.P.; Yang, Z.H.; Tong, J.; Xiang, Y.P.; Zhang, Z.F.; Xu, Z.Y. Insights into the mechanism of persulfate activation by hollow MOF-derived carbon: Electron transfer-triggered non-radical oxidization for antibiotic removal. Environ. Sci.-Nano 2024, 11, 216–228. [Google Scholar] [CrossRef]
- Liu, J.S.; Zhao, L.; Geng, H.Z.; Wang, B.; Tong, X.J.; Li, Y.H.; Chen, D.Y.; Sun, P.Z.; Yang, Y.K. Fe-MOF-derived carbon compounds as catalysts for trichloroethylene degradation via persulfate oxidation: Role of precursor template and pyrolysis temperature. J. Environ. Chem. Eng. 2023, 11, 110649. [Google Scholar] [CrossRef]
- Luo, Y.; Su, R. Cobalt-based mof material activates persulfate to degrade residual ciprofloxacin. Water 2024, 16, 2299. [Google Scholar] [CrossRef]
- Saghir, S.; Zhang, S.J.; Wang, Y.Q.; Fu, E.F.; Xiao, Z.G.; Zahid, A.H.; Pu, C.K. Review, recent advancements in zeolitic imidazole frameworks-67 (ZIF-67) and its derivatives for the adsorption of antibiotics. J. Environ. Chem. Eng. 2024, 12, 113166. [Google Scholar] [CrossRef]
- Wan, D. Preparation of Co-TiO2-SiO2 Aerogel and ZIF-67 (Co) and Their Catalytic Oxidation of p-Chlorotoluene. Chem. Ind. Eng. Prog. 2016, 38, 304. [Google Scholar]
- Xu, D.; Wu, H.; Zhan, X.; Li, Y.; Ke, J. Study on Co doped ZIF-67 based mesoporous carbon material activated PS degradation of phenol. Environ. Sci. Technol. 2021, 44, 90–95. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Chang, H.-A. Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. J. Taiwan Inst. Chem. Eng. 2015, 53, 40–45. [Google Scholar] [CrossRef]
- Luo, C.; Jiang, J.; Ma, J.; Pang, S.; Liu, Y.; Song, Y.; Guan, C.; Li, J.; Jin, Y.; Wu, D. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Res. 2016, 96, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Ling, L.; Dionysiou, D.D.; Wang, Y.; Huang, J.; Guo, K.; Li, X.; Fang, J. Chlorate Formation Mechanism in the Presence of Sulfate Radical, Chloride, Bromide and Natural Organic Matter. Environ. Sci. Technol. 2018, 52, 6317–6325. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.W.; Ma, J.; Jiang, J.; Liu, Y.Z.; Song, Y.; Yang, Y.; Guan, Y.H.; Wu, D.J. Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5−nd UV/S2O82−. Water Res. 2015, 80, 99–108. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 2003, 37, 4790–4797. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B-Environ. 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D.; Gonzalez, M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions. Environ. Sci. Technol. 2006, 40, 1000–1007. [Google Scholar] [CrossRef]
- Li, S.X.; Wei, D.; Mak, N.K.; Cai, Z.; Xu, X.R.; Li, H.B.; Jiang, Y. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism. J. Hazard. Mater. 2009, 164, 26–31. [Google Scholar] [CrossRef]
- Liang, C.J.; Su, H.W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Liu, Z.; Ye, M.; Zhou, Y.; Su, R.; Huang, S.; Chen, Y.; Dai, X. Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate. Water 2024, 16, 2586. https://doi.org/10.3390/w16182586
Luo Y, Liu Z, Ye M, Zhou Y, Su R, Huang S, Chen Y, Dai X. Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate. Water. 2024; 16(18):2586. https://doi.org/10.3390/w16182586
Chicago/Turabian StyleLuo, Yiting, Zhao Liu, Mingqiang Ye, Yihui Zhou, Rongkui Su, Shunhong Huang, Yonghua Chen, and Xiangrong Dai. 2024. "Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate" Water 16, no. 18: 2586. https://doi.org/10.3390/w16182586
APA StyleLuo, Y., Liu, Z., Ye, M., Zhou, Y., Su, R., Huang, S., Chen, Y., & Dai, X. (2024). Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate. Water, 16(18), 2586. https://doi.org/10.3390/w16182586