Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics
Abstract
:1. Introduction
2. Methods
2.1. Description of Site and Model Input Data
2.2. Description of SWAT and HSPF
2.2.1. SWAT
2.2.2. HSPF
2.3. Model Application and Evaluation
2.4. Approach for Selecting Areas for NPS Pollution Management
2.5. Strategies for Improving Water Quality and Reducing NPS Pollution
3. Results
3.1. Simulation Result Accuracy Analysis
3.2. Identification of Priority Areas for NPS Pollution Management
3.3. NPS Pollution Reduction Results by Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Lee, J.M.; Jang, H.S.; Park, M.; Min, J.H.; Na, E.H. Analyzing the Impacts of Sewer Type and Spatial Distribution of LID Facilities on Urban Runoff and Non-Point Source Pollution Using the Storm Water Management Model (SWMM). Water 2022, 14, 2776. [Google Scholar] [CrossRef]
- Wang, L.; Wei, J.; Huang, Y.; Wang, G.; Maqsood, I. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County. Environ. Pollut. 2011, 159, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, A.J.; Thu, P.A.; Zia-Ud-Din, M.; Caleiro, A.B. Water scarcity and sustainability in an emerging economy: A management perspective for future. Sustainability 2021, 13, 144. [Google Scholar] [CrossRef]
- Lee, J.M.; Shin, Y.; Park, Y.S.; Kum, D.; Lim, K.J.; Lee, S.O.; Kim, H.; Jung, Y. Estimation and assessment of baseflow at an ungauged watershed according to landuse change. J. Wetl. Res. 2014, 16, 303–318. [Google Scholar]
- Lee, G.J.; Park, K.W.; Jung, Y.H.; Jung, I.K.; Jung, K.W.; Jeon, J.H.; Lee, J.M.; Lim, K.J. Analysis of flood control effects of heightening of agricultural reservoir dam. J. Korean Soc. Agric. Eng. 2013, 55, 83–93. [Google Scholar] [CrossRef]
- Poudel, D.D. Surface water quality monitoring of an agricultural watershed for nonpoint source pollution control. J. Soil Water Conserv. 2016, 71, 310–326. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Owen, M.R.; Pavlowsky, R.T. Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application. Sci. Total Environ. 2021, 785, 147295. [Google Scholar] [CrossRef]
- Sun, D.; Wang, X.; Yu, M.; Ouyang, Z.; Liu, G. Dynamic evolution and decoupling analysis of agricultural nonpoint source pollution in Taihu Lake Basin during the urbanization process. Environ. Impact Assess. Rev. 2023, 100, 107048. [Google Scholar] [CrossRef]
- Fleming, P.M.; Stephenson, K.; Collick, A.S.; Easton, Z.M. Targeting for nonpoint source pollution reduction: A synthesis of lessons learned, remaining challenges, and emerging opportunities. J. Environ. Manag. 2022, 308, 114649. [Google Scholar] [CrossRef]
- McGehee, R.P.; Flanagan, D.C.; Engel, B.A. A WEPP-Water Quality model for simulating nonpoint source pollutants in non-uniform agricultural hillslopes: Model development and sensitivity. Int. Soil Water Conserv. Res. 2023, 11, 455–469. [Google Scholar] [CrossRef]
- Ham, J.; Yoon, C.G.; Kim, H.J.; Kim, H.C. Modeling the effects of constructed wetland on nonpoint source pollution control and reservoir water quality improvement. J. Environ. Sci. 2010, 22, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Kumari, R.; Kumar, A.; Tunio, I.A.; Sassanelli, C. Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review. Sustainability 2023, 15, 6246. [Google Scholar] [CrossRef]
- Park, M.; Cho, Y.; Shin, K.; Shin, H.; Kim, S.; Yu, S. Analysis of Water Quality Characteristics in Unit Watersheds in the Hangang Basin with Respect to TMDL Implementation. Sustainability 2021, 13, 9999. [Google Scholar] [CrossRef]
- Yi, X.; Zou, R.; Liao, X.; Guo, H.; Liu, Y. An uncertainty-based probabilistic model assessment on one of China’s most eutrophic lakes. J. Environ. Manag. 2023, 328, 116916. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, J.; Lu, T.; Yang, X.; Zhong, Z.; Feng, H.; Wang, M.; Yin, J. Agricultural non-point source pollution and rural transformation in a plain river network: Insights from Jiaxing city, China. Environ. Pollut. 2023, 333, 121953. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Wei, M.; Yao, L.; Li, M. Relationship between non-point source pollution and fluorescence fingerprint of riverine dissolved organic matter is season dependent. Sci. Total Environ. 2022, 823, 153617. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhan, X.; Zhou, F.; Yan, X.; Gu, B.; Reis, S.; Wu, Y.; Liu, H.; Piao, S.; Tang, Y. Detection and attribution of nitrogen runoff trend in China’s croplands. Environ. Pollut. 2018, 234, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.Y.; Ou, Y.; Yan, B.X.; Alain, N.R.; Fang, Y.T.; Geng, R.Z.; Wang, L.X.; Ye, N. A dual isotopic framework for identifying nitrate sources in surface runoff in a small agricultural watershed, northeast China. J. Clean. Prod. 2020, 246, 119074. [Google Scholar] [CrossRef]
- Peng, K.; Li, J.; Hao, G.; Liu, Y.; Zhou, X.; Xie, W. Characteristics of non-point source pollution based on monitoring experiment in the Yingwugou small watershed, China. Ecohydrol. Hydrobiol. 2023, 23, 1–14. [Google Scholar] [CrossRef]
- Jin, G.; Li, Z.; Deng, X.; Yang, J.; Chen, D.; Li, W. An analysis of spatiotemporal patterns in Chinese agricultural productivity between 2004 and 2014. Ecol. Indicat. 2019, 105, 591–600. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Dong, Y.; He, Z.; Wang, P.; Zheng, H.; He, J.; Zeng, W. Modeling the response of agricultural non-point source pollution to planting structure and fertilization level in Erhai Lake Basin under low-latitude plateau climate. Ecol. Indic. 2023, 154, 110829. [Google Scholar] [CrossRef]
- Yasarer, L.M.W.; Lohani, S.; Bingner, R.L.; Locke, M.A.; Baffaut, C.; Thompson, A.L. Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds. J. Soil Water Conserv. 2019, 75, 53–61. [Google Scholar] [CrossRef]
- Kang, M.S. Development of improved farming method to reduce agricultural nonpoint source pollution. Rural Resour. 2010, 52, 40–50. [Google Scholar]
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, Y.; Ni, J.; Xie, D. Best management practices for agricultural non-point source pollution in a small watershed based on the Ann AGNPS model. Soil Use Manag. 2020, 36, 45–57. [Google Scholar] [CrossRef]
- Jung, S.H.; Rhee, H.-P.; Hwang, H.S.; Yoon, C.G. A Study on the Applicability of HSPF Paddy-RCH for Calculating the Reduction of Agricultural Non-point Pollutants. J. Korean Soc. Environ. Eng. 2020, 42, 593–602. [Google Scholar] [CrossRef]
- Jeon, D.J.; Ki, S.J.; Cha, Y.; Park, Y.; Kim, J.H. New methodology of evaluation of best management practices performances for an agricultural watershed according to the climate change scenarios: A hybrid use of deterministic and decision support models. Ecol. Eng. 2018, 119, 73–83. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Lv, D.; Li, Y.; Wu, J. Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Sci. Total Environ. 2020, 709, 136235. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. Agricultural non-point source pollution model for evaluating agricultural watersheds. J. Soil Water Conservat. 1989, 442, 168–173. [Google Scholar]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finckner, S.C. A process-based soil erosion model for USDA-water erosion prediction project technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Johanson, R.C.; Imhoff, J.D.; Davis, H.H., Jr. Users Manual for Hydrological Simulation Program—Fortran (HSPF); Environmental Research Laboratory: Athens, GA, USA, 1980. [Google Scholar]
- Lee, D.J.; Lee, J.M.; Kum, D.; Park, Y.S.; Jung, Y.; Shin, Y.; Jeong, G.-C.; Lee, B.C.; Lim, K.J. Analysis of effects on soil erosion reduction of various best management practices at watershed scale. J. Korean Soc. Water Environ. 2014, 30, 638–646. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Chen, L.; Hou, X. Quantifying effects of conservation practices on nonpoint source pollution in the Miyun Reservoir Watershed, China. Environ. Monit. Assess. 2019, 191, 582. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Shen, W.; Wang, P.; Chen, X.; He, Y. Response of non-point source pollution loads to land use change under different precipitation scenarios from a future perspective. Water Resour. Manag. 2020, 34, 3987–4002. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Hu, C. A comprehensive study of the effect of input data on hydrology and non-point source pollution modeling. Water Resour. Manag. 2015, 29, 1505–1521. [Google Scholar] [CrossRef]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.; Zhang, Z. Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrol. Process. 2014, 28, 431–445. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B.; Ouyang, Y. Impact of BMPs on water quality: A case study in Big Sunflower River watershed, Mississippi. Int. J. River Basin Manag. 2022, 20, 375–388. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, Y.S.; Kum, D.; Jung, Y.; Kim, B.; Hwang, S.J.; Kim, H.B.; Kim, C.; Lim, K.J. Assessing the effect of watershed slopes on recharge/baseflow and soil erosion. Paddy Water Environ. 2014, 12 (Supp. S1), S169–S183. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Kim, J.; Lim, K.J.; Engel, B.A.; Yang, E.Y.; Jung, Y. Effects of Slope Magnitude and Length on SWAT Baseflow Estimation. J. Irrig. Drain. Eng. 2018, 145, 04018037. [Google Scholar] [CrossRef]
- Han, J.H.; Ryu, T.S.; Lim, K.J.; Jung, Y. A Review of Baseflow Analysis Techniques of Watershed-Scale Runoff Models. J. Korean Soc. Agric. Eng. 2016, 58, 75–83. [Google Scholar]
- Park, Y.S.; Ryu, J.; Kim, J.; Kum, D.; Lim, K.J. Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea. J. Korean Soc. Water Environ. 2020, 36, 592–610. [Google Scholar]
- Bello, A.A.D.; Haniffah, M.R.M. Modelling the effects of urbanization on nutrients pollution for prospective management of a tropical watershed: A case study of Skudai River watershed. Ecol. Model. 2021, 459, 109721. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Scott, D.; Liao, H. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.M.; Shin, H.S.; Kwon, S. Evaluation of Riparian Buffer for the Reduction Efficiency of Non-point Sources Using HSPF Model. J. Korean Soc. Hazard Mitig. 2019, 19, 341–349. [Google Scholar] [CrossRef]
- Park, K.; Chung, E.S.; Kim, S.U.; Lee, K.S. Effectiveness Analysis of Alternatives for Water Resources Management Considering climate change and Urbanization. J. Korea Water Resour. Assoc. 2009, 42, 1103–1111. [Google Scholar] [CrossRef]
- Wellen, C.; Kamran-Disfani, A.R.; Arhonditsis, G.B. Evaluation of the Current State of Distributed Watershed NutrientWater Quality Modeling. Environ. Sci. Technol. 2015, 49, 3278–3290. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Frederiksen, R.R.; Molina-Navarro, E. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW. Agric. Water Manag. 2021, 255, 107058. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Chen, J.; Yu, Y.; Ma, X. Overcoming equifinality: Time-varying analysis of sensitivity and identify ability of SWAT runoff and sediment parameters in an arid and semiarid watershed. Environ. Sci. Pollut. Res. 2022, 29, 31631–31645. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Park, G.; Park, M.; Park, J.Y.; Lee, J.; Kim, S. Evaluation of non-point source pollution reduction by applying Best Management Practices using a SWAT model and QuickBird high resolution satellite imagery. J. Environ. Sci. 2010, 22, 826–833. [Google Scholar] [CrossRef]
- Lee, J.M.; Ryu, J.C.; Kang, H.W.; Kang, H.S.; Kum, D.H.; Jang, C.H.; Choi, J.D.; Lim, K.J. Evaluation of SWAT flow and sediment estimation and effects of soil erosion best management practices. J. Korean Soc. Agric. Eng. 2012, 54, 99–108. [Google Scholar] [CrossRef]
- Duda, P.B.; Hummel, P.R.; Donigian, A.S.; Imhoff, J.C. BASINS/HSPF: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1523–1547. [Google Scholar] [CrossRef]
- Gong, S.H.; Kim, T.G. Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model. J. Environ. Impact Assess. 2018, 27, 73–82. [Google Scholar]
- Chen, Y.; Xu, C.Y.; Chen, X.W.; Xu, Y.P.; Yin, Y.X.; Gao, L.; Liu, M.B. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. J. Hydrol. 2019, 573, 486–500. [Google Scholar] [CrossRef]
- Xie, H.; Dong, J.W.; Shen, Z.Y.; Chen, L.; Lai, X.J.; Qiu, J.L.; Wei, G.Y.; Peng, Y.X.; Chen, X.Q. Intra- and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events. Catena 2019, 182, 104105. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Model: Performance Measures and Evaluation Criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar]
Study Area | Total Area (km2) | Agriculture | Forest | Urban | Etc. |
---|---|---|---|---|---|
Dongcheon | 89.477 | 16.155 | 43.743 | 19.585 | 9.994 |
(18.0%) | (48.9%) | (21.9%) | (11.2%) | ||
Hwapocheon | 134.850 | 30.824 | 65.775 | 24.519 | 13.732 |
(22.8%) | (48.8%) | (18.2%) | (10.2%) | ||
Gyesungcheon | 104.324 | 29.039 | 55.236 | 2.457 | 17.592 |
(27.8%) | (52.9%) | (2.4%) | (16.9%) | ||
Nakdong Miryang | 165.380 | 63.781 | 59.279 | 14.770 | 27.550 |
(38.6%) | (35.8%) | (8.9%) | (16.7%) | ||
Nakdong Namhae | 272.629 | 18.927 | 149.564 | 83.868 | 20.27 |
(6.9%) | (54.9%) | (30.8%) | (7.4%) |
Precipitation(mm) | |||||
---|---|---|---|---|---|
Year | Dongcheon | Hwapocheon | Gyesungcheon | NakdongMiryang | NakdongNamhae |
2012 | 1458.1 | 1432.2 | 1621.4 | 1828.5 | 1559.4 |
2013 | 858.3 | 1057.2 | 1092.3 | 1114.9 | 1110.6 |
2014 | 1398.7 | 1634.8 | 1767.4 | 1549.4 | 1525.8 |
2015 | 1044.6 | 1034.6 | 1236.0 | 1101.1 | 1110.7 |
2016 | 1693.9 | 1634.0 | 1978.8 | 1985.7 | 1892.9 |
2017 | 671.4 | 755.8 | 720.2 | 945.7 | 879.3 |
2018 | 1416.1 | 1469.7 | 1589.2 | 1654.9 | 1507.3 |
2019 | 1450.1 | 1494.0 | 1536.1 | 1675.3 | 1675.3 |
2020 | 1557.9 | 1702.5 | 1892.5 | 1798.6 | 1798.6 |
2021 | 1337.0 | 1552.6 | 1708.2 | 1555.8 | 1710.6 |
Average | 1288.6 | 1376.7 | 1514.2 | 1521.0 | 1477.1 |
Max. | 1693.9 | 1702.5 | 1978.8 | 1985.7 | 1892.9 |
Min. | 671.4 | 755.8 | 720.2 | 945.7 | 879.3 |
Output Response | Very Good | Good | Satisfactory | Not Satisfactory | |
---|---|---|---|---|---|
NSE | Streamflow | >0.80 | 0.80 ≥ NSE > 0.70 | 0.70 ≥ NSE > 0.50 | 0.50≥ |
T-P | >0.80 | 0.80 ≥ NSE > 0.70 | 0.70 ≥ NSE > 0.45 | 0.45≥ | |
R2 | Streamflow | >0.85 | 0.85 ≥ R2 > 0.75 | 0.75 ≥ R2 > 0.60 | 0.60≥ |
T-P | >0.80 | 0.80 ≥ R2 > 0.65 | 0.65 ≥ R2 > 0.40 | 0.40≥ |
Study Area | Main Outlet (Monitoring) | Number of Monitoring (Streamflow, T-P) | Period (Year) |
---|---|---|---|
Dongcheon | Dongcheon | Streamflow (3639) | Calibration 2010~2013 Validation 2014~2019 |
Naehwang | T-P (120) | Calibration 2012~2016 Validation 2017~2021 | |
Hwapocheon | Hwapocheon | Streamflow (374), T-P (377) | Calibration 2012~2016 Validation 2017~2021 |
Gyeseongcheon | Gyeseongcheon | Streamflow (371), T-P (377) | Calibration 2012~2016 Validation 2017~2021 |
Nakdong Miryang | Jucheon | Streamflow (374), T-P (374) | Calibration 2012~2016 Validation 2017~2021 |
Nakdong Namhae | Samho, Changwon, Namcheon | Streamflow (183), T-P (183) | Calibration 2012~2016 Validation 2017~2021 |
Study Area | Scenario 1 (S1) | Scenario 2 (S2) | Scenario 3 (S3) |
---|---|---|---|
Dongcheon | NPS pollution control facilities (4 Priority management area) | NPS pollution control facilities (4 Priority management area) | NPS pollution control facilities (10 Priority management area) |
- | Applying LID to 30% of impervious area | Applying LID to 30% of impervious area | |
- | Combined Sewer Overflows (CSOs) | Combined Sewer Overflows (CSOs) | |
- | Road vacuum cleaning 50% within the management area | Road vacuum cleaning 50% within the management area | |
Hwapocheon | Reducing fertilizer usage by 30% | Reducing fertilizer usage by 30% | Reducing fertilizer usage by 30% |
Road vacuum cleaning within the management area | Road vacuum cleaning within the management area | Road vacuum cleaning within the management area | |
- | Livestock rainwater reduction facility (3 Priority management area) | Livestock rainwater reduction facility (3 Priority management area) | |
- | - | NPS pollution control facilities (3 Priority management area) | |
Gyesungcheon | Application of 30% rice straw mat in the field | Application of 30% rice straw mat in the field | Application of 50% rice straw mat in the field |
Managing water flow for 30% of paddy fields | Managing water flow for 30% of paddy fields | Managing water flow for 50% of paddy fields | |
- | Application of two NPS pollution control facilities (3 Priority management area) | Application of two NPS pollution control facilities (3 Priority management area) | |
Nakdong Namhae | Application of two NPS pollution control facilities (3 Priority management area) | Application of two NPS pollution control Facilities (3 Priority management area) | Application of two NPS pollution control facilities (3 Priority management area) |
Buffer storage facility | Buffer storage facility | Buffer storage facility | |
Applying LID to 5% of impervious area | Applying LID to 5% of impervious area | Applying LID to 5% of impervious area | |
Road vacuum cleaning 20% within the management area | Road vacuum cleaning 30% within the management area | Road vacuum cleaning 40% within the management area | |
Nakdong Miryang | Managing water flow For paddy fields | Managing water flow For paddy fields | Managing water flow For paddy fields |
Reducing fertilizer usage by 40% | Reducing fertilizer usage by 50% | Reducing fertilizer usage by 50% | |
30% reduction in livestock load | 40% reduction in livestock load | 50% reduction in livestock load |
Study Area (Using Model) | Main Outlet (Monitoring Data) | Model Evaluation (SWAT, HSPF) | NSE | R2 | |
---|---|---|---|---|---|
Dongcheon (HSPF) | Dongcheon | Streamflow | Calibration | 0.77 (Good) | 0.84 (Good) |
Validation | 0.52 (Satisfactory) | 0.67 (Satisfactory) | |||
Naehwang | T-P | Calibration | 0.62 (Good) | 0.70 (Good) | |
Validation | 0.55 (Good) | 0.65 (Satisfactory) | |||
Hwapocheon (SWAT) | Hwapocheon | Streamflow | Calibration | 0.89 (Very Good) | 0.93 (Very Good) |
Validation | 0.74 (Good) | 0.77 (Good) | |||
T-P | Calibration | 0.94 (Very Good) | 0.74 (Good) | ||
Validation | 0.95 (Very Good) | 0.75 (Good) | |||
Gyeseongcheon (SWAT) | Gyeseongcheon | Streamflow | Calibration | 0.70 (Satisfactory) | 0.93 (Very Good) |
Validation | 0.69 (Satisfactory) | 0.84 (Good) | |||
T-P | Calibration | 0.46 (Satisfactory) | 0.51 (Satisfactory) | ||
Validation | 0.68 (Very Good) | 0.82 (Very Good) | |||
Nakdong Miryang (SWAT) | Jucheon | Streamflow | Calibration | 0.71 (Good) | 0.75 (Satisfactory) |
Validation | 0.80 (Good) | 0.80 (Good) | |||
T-P | Calibration | 0.46 (Satisfactory) | 0.46 (Satisfactory) | ||
Validation | 0.61 (Good) | 0.69 (Good) | |||
Nakdong Namhae (HSPF) | Samho | Streamflow | Calibration | 0.81 (Very Good) | 0.85 (Good) |
Validation | 0.62 (Satisfactory) | 0.65 (Satisfactory) | |||
T-P | Calibration | 0.78 (Very Good) | 0.86 (Very Good) | ||
Validation | 0.83 (Very Good) | 0.86 (Very Good) | |||
Changwon | Streamflow | Calibration | 0.79 (Good) | 0.82 (Good) | |
Validation | 0.81 (Very Good) | 0.81 (Good) | |||
T-P | Calibration | 0.66 (Very Good) | 0.68 (Good) | ||
Validation | 0.46 (Satisfactory) | 0.51 (Satisfactory) | |||
Namcheon | Streamflow | Calibration | 0.59 (Satisfactory) | 0.64 (Satisfactory) | |
Validation | 0.57 (Satisfactory) | 0.68 (Satisfactory) | |||
T-P | Calibration | 0.71 (Very Good) | 0.77 (Good) | ||
Validation | 0.82 (Very Good) | 0.88 (Very Good) |
Final Ranking | (1) | (2) | (3) | (4) | (5) | Sub-Basin Number | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | ||
1 | 0.215 | 7 | 0.871 | 12 | 17.21 | 2 | 7719 | 6 | 6.11 | 2 | 15 |
2 | 0.202 | 12 | 1.229 | 8 | 10.81 | 8 | 30,508 | 1 | 4.57 | 5 | 14 |
3 | 0.138 | 23 | 2.292 | 4 | 15.65 | 4 | 16,678 | 2 | 1.84 | 10 | 17 |
Final Ranking | (1) | (2) | (3) | (4) | (5) | Sub-Basin Number | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | ||
1 | 0.304 | 1 | 6.36 | 3 | 23.3 | 3 | 37,247 | 1 | 316.15 | 1 | 3 |
2 | 0.282 | 2 | 9.34 | 1 | 16.4 | 5 | 757 | 3 | 164.51 | 2 | 4 |
3 | 0.259 | 3 | 3.17 | 4 | 33.2 | 2 | 15,620 | 2 | 77.77 | 4 | 2 |
Final Ranking | (1) | (2) | (3) | (4) | Sub-Basin Number | ||||
---|---|---|---|---|---|---|---|---|---|
Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | ||
1 | 0.093 | 1 | 59.2 | 1 | 8067 | 2 | 7.22 | 1 | 19 |
2 | 0.07 | 10 | 41.5 | 2 | 2768 | 9 | 5.57 | 2 | 21 |
3 | 0.065 | 11 | 37.1 | 4 | 6032 | 4 | 3.08 | 7 | 18 |
4 | 0.072 | 8 | 30.7 | 7 | 5032 | 5 | 2.6 | 8 | 17 |
5 | 0.078 | 7 | 24.2 | 9 | 6793 | 3 | 1.38 | 14 | 4 |
6 | 0.019 | 20 | 33.4 | 6 | 5019 | 6 | 4.87 | 4 | 5 |
7 | 0.084 | 3 | 12.2 | 12 | 2414 | 13 | 2.59 | 9 | 2 |
8 | 0.071 | 9 | 40.7 | 3 | 2573 | 11 | 0.72 | 18 | 7 |
9 | 0.064 | 12 | 22.3 | 11 | 8616 | 1 | 0.49 | 19 | 20 |
10 | 0.027 | 17 | 36.6 | 5 | 2657 | 10 | 1.48 | 13 | 3 |
Name | Final Ranking | (1) | (2) | (3) | (4) | (5) | Sub-Basin Number | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | |||
Sincheon | 1 | 0.052 | 1 | 9.1 | 1 | 837 | 1 | 0.343 | 3 | 208.2 | 1 | 1 |
2 | 0.045 | 5 | 7.6 | 2 | 705 | 2 | 0.322 | 4 | 175.3 | 2 | 3 | |
3 | 0.04 | 6 | 7.3 | 3 | 687 | 3 | 0.457 | 1 | 170.9 | 3 | 5 | |
Miryang | 1 | 0.079 | 3 | 7.9 | 1 | 136 | 1 | 0.525 | 1 | 1471.8 | 1 | 3 |
2 | 0.102 | 1 | 7.4 | 2 | 122 | 2 | 0.48 | 2 | 1321.8 | 2 | 2 | |
3 | 0.08 | 2 | 5.1 | 3 | 90 | 3 | 0.39 | 3 | 977.2 | 3 | 1 | |
Jucheon | 1 | 0.099 | 1 | 14.6 | 1 | 742 | 1 | 0.543 | 1 | 4269.1 | 1 | 5 |
2 | 0.054 | 4 | 8.9 | 2 | 445 | 2 | 0.294 | 5 | 2558.9 | 2 | 3 | |
3 | 0.088 | 2 | 5.6 | 4 | 322 | 4 | 0.521 | 2 | 1853.0 | 4 | 6 | |
4 | 0.046 | 6 | 6.8 | 3 | 374 | 3 | 0.213 | 6 | 2148.2 | 3 | 2 | |
5 | 0.067 | 3 | 5.4 | 5 | 279 | 5 | 0.415 | 4 | 1604.4 | 5 | 1 | |
6 | 0.048 | 5 | 3.3 | 6 | 181 | 6 | 0.508 | 3 | 1043.0 | 6 | 4 |
Name | Final Ranking | (1) | (2) | (3) | (4) | Sub-Basin Number | ||||
---|---|---|---|---|---|---|---|---|---|---|
Result | Ranking | Result | Ranking | Result | Ranking | Result | Ranking | |||
Samho | 1 | 0.159 | 4 | 29.5 | 1 | 6423 | 1 | 0.413 | 1 | 6 |
2 | 4.509 | 1 | 25.7 | 2 | 5125 | 2 | 0.333 | 3 | 2 | |
3 | 0.17 | 3 | 21.2 | 3 | 5008 | 3 | 0.351 | 2 | 5 | |
Namcheon | 1 | 2.962 | 4 | 44.7 | 4 | 5573 | 4 | 3.99 | 4 | 3 |
2 | 2.768 | 6 | 36.7 | 5 | 5004 | 5 | 6.935 | 1 | 4 | |
3 | 6.883 | 1 | 30.4 | 6 | 4047 | 8 | 4.717 | 3 | 8 | |
Yanggog | 1 | 0.116 | 2 | 19.3 | 2 | 2770 | 1 | 0.338 | 1 | 1 |
2 | 0.044 | 5 | 22.1 | 1 | 2298 | 2 | 0.246 | 4 | 3 | |
3 | 0.371 | 1 | 11.2 | 6 | 2005 | 4 | 0.271 | 2 | 5 |
Management Plan | Default | Scenario 1 (S1) | Scenario 2 (S2) | Scenario 3 (S3) | |
---|---|---|---|---|---|
Gyesungcheon | Average T-P pollution load (kg/d) | 36.2 | 33.1 | 30.4 | 28.7 |
Reduction of NPS pollution (%) | - | 8.6% | 16.0% | 20.7% | |
Hwapocheon | Average T-P pollution load (kg/d) | 79.8 | 67.8 | 67.2 | 58.4 |
Reduction of NPS pollution (%) | - | 15.0% | 15.8% | 26.8% | |
Dongcheon | Average T-P pollution load (kg/d) | 29.0 | 26.0 | 25.2 | 22.7 |
Reduction of NPS pollution (%) | - | 10.3% | 13.1% | 21.7% | |
Nakdong Namhae | Average T-P pollution load (kg/d) | 6.0 | 5.2 | 5.0 | 4.7 |
Reduction of NPS pollution (%) | - | 13.3% | 16.7% | 21.7% | |
Nakdong Miryang | Average T-P pollution load (kg/d) | 21.2 | 18.0 | 16.7 | 16.4 |
Reduction of NPS pollution (%) | - | 15.1% | 21.2% | 22.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, M.; Choi, B.; Kim, J.; Na, E.H. Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics. Water 2024, 16, 1333. https://doi.org/10.3390/w16101333
Lee J, Park M, Choi B, Kim J, Na EH. Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics. Water. 2024; 16(10):1333. https://doi.org/10.3390/w16101333
Chicago/Turabian StyleLee, Jimin, Minji Park, Byungwoong Choi, Jinsun Kim, and Eun Hye Na. 2024. "Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics" Water 16, no. 10: 1333. https://doi.org/10.3390/w16101333
APA StyleLee, J., Park, M., Choi, B., Kim, J., & Na, E. H. (2024). Analyzing Priority Management for Water Quality Improvement Strategies with Regional Characteristics. Water, 16(10), 1333. https://doi.org/10.3390/w16101333