Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Catalyst Synthesis
2.3. Reaction System
2.4. Analyses
Preparation and Enumeration of Escherichia coli
3. Results and Discussions
3.1. Characterization of the Materials
3.2. Degradation and Disinfection Using the Photocatalytic System
3.3. Principal Degradation Routes and Transformations Involved in the Photocatalytic Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fish, D.N.; Chow, A.T. The Clinical Pharmacokinetics of Levofloxacin. Clin. Pharmacokinet. 1997, 32, 101–119. [Google Scholar] [CrossRef]
- Zanotto, C.; Bissa, M.; Illiano, E.; Mezzanotte, V.; Marazzi, F.; Turolla, A.; Antonelli, M.; De Giuli Morghen, C.; Radaelli, A. Identification of Antibiotic-Resistant Escherichia Coli Isolated from a Municipal Wastewater Treatment Plant. Chemosphere 2016, 164, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, H.; Cai, M.; Zhou, Y.; Guo, C.; Han, Y.; Zhang, L. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers 2023, 15, 2741. [Google Scholar] [CrossRef] [PubMed]
- Mengyu, C.; Hongmiao, L.Y.; Caiyun, Y.; Yuting, Z.; Hao, W. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Its Degradation Performance of Methylene Blue. J. Inorg. Mater. 2024, 580. [Google Scholar] [CrossRef]
- Rengifo-Herrera, J.A.; Pulgarin, C. Why Five Decades of Massive Research on Heterogeneous Photocatalysis, Especially on TiO2, Has Not yet Driven to Water Disinfection and Detoxification Applications? Critical Review of Drawbacks and Challenges. Chem. Eng. J. 2023, 477, 146875. [Google Scholar] [CrossRef]
- Chiang, K.; Lim, T.M.; Tsen, L.; Lee, C.C. Photocatalytic Degradation and Mineralization of Bisphenol A by TiO 2 and Platinized TiO2. Appl. Catal. A Gen. 2004, 261, 225–237. [Google Scholar] [CrossRef]
- Dimitrakopoulou, D.; Rethemiotaki, I.; Frontistis, Z.; Xekoukoulotakis, N.P.; Venieri, D.; Mantzavinos, D. Degradation, Mineralization and Antibiotic Inactivation of Amoxicillin by UV-A/TiO2 Photocatalysis. J. Env. Manag. 2012, 98, 168–174. [Google Scholar] [CrossRef]
- Xekoukoulotakis, N.P.; Xinidis, N.; Chroni, M.; Mantzavinos, D.; Venieri, D.; Hapeshi, E.; Fatta-Kassinos, D. UV-A/TiO2 Photocatalytic Decomposition of Erythromycin in Water: Factors Affecting Mineralization and Antibiotic Activity. Catal. Today 2010, 151, 29–33. [Google Scholar] [CrossRef]
- Yang, L.; Yu, L.E.; Ray, M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008, 42, 3480–3488. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic Oxidation of Organic Dyes and Pollutants in Wastewater Using Different Modified Titanium Dioxides: A Comparative Review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Thangamuthu, M.; Raziman, T.V.; Martin, O.J.F.; Tang, J. Review—Origin and Promotional Effects of Plasmonics in Photocatalysis. J. Electrochem. Soc. 2022, 169, 036512. [Google Scholar] [CrossRef]
- Kanakaraju, D.; anak Kutiang, F.D.; Lim, Y.C.; Goh, P.S. Recent Progress of Ag/TiO2 Photocatalyst for Wastewater Treatment: Doping, Co-Doping, and Green Materials Functionalization. Appl. Mater. Today 2022, 27, 101500. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Giannakis, S.; Marjanovic, M.; Kohantorabi, M.; Gholami, M.R.; Grandjean, D.; de Alencastro, L.F.; Pulgarín, C. Solar-Assisted Bacterial Disinfection and Removal of Contaminants of Emerging Concern by Fe2+-Activated HSO5- vs. S2O82− in Drinking Water. Appl. Catal. B 2019, 248, 62–72. [Google Scholar] [CrossRef]
- Kansal, S.K.; Kundu, P.; Sood, S.; Lamba, R.; Umar, A.; Mehta, S.K. Photocatalytic Degradation of the Antibiotic Levofloxacin Using Highly Crystalline TiO2 Nanoparticles. New J. Chem. 2014, 38, 3220–3226. [Google Scholar] [CrossRef]
- Kaur, A.; Salunke, D.B.; Umar, A.; Mehta, S.K.; Sinha, A.S.K.; Kansal, S.K. Visible Light Driven Photocatalytic Degradation of Fluoroquinolone Levofloxacin Drug Using Ag2O/TiO2 Quantum Dots: A Mechanistic Study and Degradation Pathway. New J. Chem. 2017, 41, 12079–12090. [Google Scholar] [CrossRef]
- Nair, N.G.; Gandhi, V.G.; Modi, K.; Shukla, A. Photocatalytic Degradation of Levofloxacin by GO-TiO2 under Visible Light. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Jandaghian, F.; Ebrahimian Pirbazari, A.; Tavakoli, O.; Asasian-Kolur, N.; Sharifian, S. Comparison of the Per-formance of Ag-Deposited ZnO and TiO2 Nanoparticles in Levofloxacin Degradation under UV/Visible Radia-tion. J. Hazard. Mater. Adv. 2023, 9, 100240. [Google Scholar] [CrossRef]
- Sharma, S.; Ibhadon, A.O.; Grazia Francesconi, M.; Mehta, S.K.; Elumalai, S.; Kansal, S.K.; Umar, A.; Baskoutas, S. Bi2WO6/C-Dots/TiO2: A Novel z-Scheme Photocatalyst for the Degradation of Fluoroquinolone Levofloxacin from Aqueous Medium. Nanomaterials 2020, 10, 910. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H.; Li, G.; An, T.; Zhao, H.; Wong, P.K. Catalyst-Free Activation of Persulfate by Visible Light for Water Disinfection: Efficiency and Mechanisms. Water Res. 2019, 157, 106–118. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Li, G.; Wong, P.K.; An, T. Visible Light Activation of Persulfate by Magnetic Hydrochar for Bacterial Inactivation: Efficiency, Recyclability and Mechanisms. Water Res. 2020, 176, 115746. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y. A Comprehensive Review on Persulfate Activation Treatment of Wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef] [PubMed]
- Lara, M.A.; Sayagués, M.J.; Navío, J.A.; Hidalgo, M.C. A Facile Shape-Controlled Synthesis of Highly Photoactive Fluorine Containing TiO2 Nanosheets with High {001} Facet Exposure. J. Mater. Sci. 2018, 53, 435–446. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Silva-Agredo, J.; Giraldo, A.L.; Flórez, O.A.; Torres-Palma, R.A. Comparison of Route, Mechanism and Extent of Treatment for the Degradation of a β-Lactam Antibiotic by TiO2 Photocatalysis, Sonochemistry, Electrochemistry and the Photo-Fenton System. Chem. Eng. J. 2016, 284, 953–962. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Sehnal, D.; Falginella, F.L.; Pant, P.; Pravda, L.; Bouchal, T.; Svobodová Vařeková, R.; Geidl, S.; Koča, J. AtomicChargeCalculator: Interactive Web-Based Calculation of Atomic Charges in Large Biomolecular Complexes and Drug-like Molecules. J. Cheminform. 2015, 7, 50. [Google Scholar] [CrossRef]
- Sehnal, D. AtomicChargeCalculator. Available online: https://webchem.ncbr.muni.cz/Platform/ChargeCalculator (accessed on 28 July 2022).
- W2D Team—PharmaExpert PASS Online. Available online: http://www.pharmaexpert.ru/passonline/index.php (accessed on 2 May 2021).
- Khalil, M.; Anggraeni, E.S.; Ivandini, T.A.; Budianto, E. Exposing TiO2 (001) Crystal Facet in Nano Au-TiO2 Heterostructures for Enhanced Photodegradation of Methylene Blue. Appl. Surf. Sci. 2019, 487, 1376–1384. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Q.; Li, C.; Li, J.; Yang, J. Surface Heterojunction between (001) and (101) Facets of Ultrafine Anatase TiO2 Nanocrystals for Highly Efficient Photoreduction CO2 to CH4. Appl. Catal. B 2016, 198, 378–388. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Chai, S.P.; Yong, S.T.; Mohamed, A.R. Highly Reactive {001} Facets of TiO2-Based Composites: Synthesis, Formation Mechanism and Characterization. Nanoscale 2014, 6, 1946–2008. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hernández, J.S.; Rojas, H.; Moreno-Cascante, J.; Sánchez-Cid, P.; Hidalgo, M.C.; Navío, J.A.; Jaramillo-Páez, C. Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment. Top. Catal. 2020, 63, 1286–1301. [Google Scholar] [CrossRef]
- Zielińska, A.; Kowalska, E.; Sobczak, J.W.; Łacka, I.; Gazda, M.; Ohtani, B.; Hupka, J.; Zaleska, A. Silver-Doped TiO2 Prepared by Microemulsion Method: Surface Properties, Bio- and Photoactivity. Sep. Purif. Technol. 2010, 72, 309–318. [Google Scholar] [CrossRef]
- Puga, F.; Navío, J.A.; Paulete-Romero, M.A.; Córdoba, J.M.; Hidalgo, M.C. Exploring the Photocatalytic Activities of a Highly {0 0 1} Faceted TiO2 Sensitized by Coupling with AgBr or Ag3PO4. Mater. Sci. Eng. B 2022, 276, 115555. [Google Scholar] [CrossRef]
- Akshay, V.R.; Arun, B.; Mukesh, M.; Chanda, A.; Vasundhara, M. Tailoring the NIR Range Optical Absorption, Band-Gap Narrowing and Ferromagnetic Response in Defect Modulated TiO2 Nanocrystals by Varying the An-nealing Conditions. Vacuum 2021, 184, 109955. [Google Scholar] [CrossRef]
- Vanlalhmingmawia, C.; Lee, S.M.; Tiwari, D. Plasmonic Noble Metal Doped Titanium Dioxide Nanocomposites: Newer and Exciting Materials in the Remediation of Water Contaminated with Micropollutants. J. Water Process Eng. 2023, 51, 103360. [Google Scholar] [CrossRef]
- Albini, A.; Monti, S. Photophysics and Photochemistry of Fluoroquinolones. Chem. Soc. Rev. 2003, 32, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Jojoa-Sierra, S.D.; Berrio-Perlaza, K.E.; Ferraro, F.; Torres-Palma, R.A. Structure-Reactivity Rela-tionship in the Degradation of Three Representative Fluoroquinolone Antibiotics in Water by Electrogenerated Active Chlorine. Chem. Eng. J. 2017, 315, 552–561. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, S.M.; Lee, H.; Naik, B. Hot Electron and Surface Plasmon-Driven Catalytic Reaction in Metal-Semiconductor Nanostructures. Catal. Lett. 2014, 144, 1996–2004. [Google Scholar] [CrossRef]
- Wang, D.; Pillai, S.C.; Ho, S.H.; Zeng, J.; Li, Y.; Dionysiou, D.D. Plasmonic-Based Nanomaterials for Environmen-tal Remediation. Appl. Catal. B 2018, 237, 721–741. [Google Scholar] [CrossRef]
- Norouzi, M.; Fazeli, A.; Tavakoli, O. Phenol Contaminated Water Treatment by Photocatalytic Degradation on Electrospun Ag/TiO2 Nanofibers: Optimization by the Response Surface Method. J. Water Process Eng. 2020, 37, 101489. [Google Scholar] [CrossRef]
- Jojoa-Sierra, S.D.; Herrero-Albillos, J.; Ormad, M.P.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Mosteo, R. Wüstite as a Catalyst Source for Water Remediation: Differentiated Antimicrobial Activity of by-Products, Action Routes of the Process, and Transformation of Fluoroquinolones. Chem. Eng. J. 2022, 435, 134850. [Google Scholar] [CrossRef]
- Ge, M.; Hu, Z.; Wei, J.; He, Q.; He, Z. Recent Advances in Persulfate-Assisted TiO2-Based Photocatalysis for Wastewater Treatment: Performances, Mechanism and Perspectives. J. Alloys Compd. 2021, 888, 161625. [Google Scholar] [CrossRef]
- Jia, J.; Giannakis, S.; Li, D.; Yan, B.; Lin, T. Efficient and Sustainable Photocatalytic Inactivation of E. Coli by an Innovative Immobilized Ag/TiO2 Photocatalyst with Peroxymonosulfate (PMS) under Visible Light. Sci. Total Environ. 2023, 901, 166376. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Villamena, F.A.; Weavers, L.K. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study. Environ. Sci. Technol. 2017, 51, 3410–3417. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y. Non-Photochemical Production of Singlet Oxygen via Activation of Persulfate by Carbon Nanotubes. Water Res. 2017, 113, 80–88. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Q.; Li, Y.; Li, Y.; Gou, J.; Cheng, X. Degradation of Sulfamethoxazole by Peroxymonosulfate Acti-vated by Waste Eggshell Supported Ag2O-Ag Nano–Particles. Chem. Eng. J. 2021, 405, 126719. [Google Scholar] [CrossRef]
- Cao, X.; Huo, W.; Wang, M.; Wei, H.; Lu, Z.; Li, K. Visible-Light-Assisted Peroxydisulfate Activation over Ag6Si2O7/Cu(II)-Modified Palygorskite Composite for the Effective Degradation of Organic Pollutants by Radical and Nonradical Pathways. Environ. Res. 2022, 214, 113970. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Heo, J.; Wang, D.; Su, C.; Yoon, Y. Heterogeneous Activation of Persulfate by Reduced Graphene Ox-ide–Elemental Silver/Magnetite Nanohybrids for the Oxidative Degradation of Pharmaceuticals and Endocrine Disrupting Compounds in Water. Appl. Catal. B 2018, 225, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Demyanenko, A.V.; Bogomolov, A.S.; Dozmorov, N.V.; Svyatova, A.I.; Pyryaeva, A.P.; Goldort, V.G.; Kochubei, S.A.; Baklanov, A.V. Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come From? J. Phys. Chem. 2019, 123, 2175–2181. [Google Scholar] [CrossRef]
- Bogomolov, A.S.; Demyanenko, A.V.; Selishchev, D.S.; Kozlov, D.V.; Baklanov, A.V. Photogeneration of Singlet Oxygen on the Surface of TiO2, Doped by Nitrogen and Non-Doped, under UV- and VIS-Irradiation. High. Energy Chem. 2023, 57, S391–S396. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Lu, S.; Wang, Z.; Wang, Y.; Zhang, G.; Guo, X.; Guo, W.; Zhang, T.; Xi, B. Degradation Difference of Ofloxacin and Levofloxacin by UV/H2O2 and UV/PS (Persulfate): Efficiency, Factors and Mechanism. Chem. Eng. J. 2020, 385, 123987. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, Y.; Jiang, J.; Shen, Y.M.; Pang, S.Y.; Song, Y.; Guo, Q. A Comparison Study of Levofloxacin Degra-dation by Peroxymonosulfate and Permanganate: Kinetics, Products and Effect of Quinone Group. J. Hazard. Mater. 2021, 403, 123834. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.W.; Mabury, S.A. Photodegradation of the Pharmaceuticals Atorvastatin, Carbamazepine, Levofloxacin, and Sulfamethoxazole in Natural Waters. Aquat. Sci. 2005, 67, 177–188. [Google Scholar] [CrossRef]
- Rameel, M.I.; Wali, M.; Al-Humaidi, J.Y.; Liaqat, F.; Khan, M.A. Enhanced Photocatalytic Degradation of Levofloxacin over Heterostructured C3N4/Nb2O5 System under Visible Light. Heliyon 2023, 9, e20479. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.I.; MacGowan, A.P. Development of the Quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. 1), 1–11. [Google Scholar] [CrossRef]
- Paul, T.; Dodd, M.C.; Strathmann, T.J. Photolytic and Photocatalytic Decomposition of Aqueous Ciprofloxacin: Transformation Products and Residual Antibacterial Activity. Water Res. 2010, 44, 3121–3132. [Google Scholar] [CrossRef]
- Alovero, F.L.; Pan, X.; Morris, J.E.; Manzo, R.H.; Fisher, L.M. Engineering the Specificity of Antibacterial Fluoro-quinolones: Benzenesulfonamide Modifications at C-7 of Ciprofloxacin Change Its Primary Target in Streptococ-cus Pneumoniae from Topoisomerase IV to Gyrase. Antimicrob. Agents Chemother. 2000, 44, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Varma, K.S.; Shukla, A.D.; Tayade, R.J.; Joshi, P.A.; Das, A.K.; Modi, K.B.; Gandhi, V.G. Photocatalytic Perfor-mance and Interaction Mechanism of Reverse Micelle Synthesized Cu-TiO2 Nanomaterials towards Levofloxa-cin under Visible LED Light. Photochem. Photobiol. Sci. 2022, 21, 77–89. [Google Scholar] [CrossRef]
- DrugBank Ciprofloxacin. Available online: https://go.drugbank.com/drugs/DB00537 (accessed on 10 November 2023).
- Zhang, X.; Wu, L.; Zhen, W.; Li, S.; Jiang, X. Generation of Singlet Oxygen via Iron-Dependent Lipid Peroxidation and Its Role in Ferroptosis. Fundam. Res. 2022, 2, 66–73. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Wang, Z.; He, H.; Zhao, J.; Jian, X.; Liu, C.; Gao Supervison, Z.; Song, Y.Y. Enhanced Inactivation of Bacteria on Capacitive Semiconductor Nanotubes by Self-Discharging Triggered Photoelectrocatalysis. Appl. Surf. Sci. 2023, 611, 155660. [Google Scholar] [CrossRef]
- Karbasi, M.; Karimzadeh, F.; Raeissi, K.; Rtimi, S.; Kiwi, J.; Giannakis, S.; Pulgarin, C. Insights into the Photocata-lytic Bacterial Inactivation by Flower-like Bi2WO6 under Solar or Visible Light, through in Situ Monitoring and Determination of Reactive Oxygen Species (ROS). Water 2020, 12, 1099. [Google Scholar] [CrossRef]
- Gandhi, J.; Prakash, H. Photo-Disinfection Processes for Bacterial Inactivation and Underlying Principles for Water Constituents’ Impact: A Review. Chem. Eng. J. Adv. 2023, 14, 100482. [Google Scholar] [CrossRef]
- Giannakis, S.; Polo López, M.I.; Spuhler, D.; Sánchez Pérez, J.A.; Fernández Ibáñez, P.; Pulgarin, C. Solar Disinfec-tion Is an Augmentable, in Situ-Generated Photo-Fenton Reaction—Part 1: A Review of the Mechanisms and the Fundamental Aspects of the Process. Appl. Catal. B 2016, 199, 199–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jojoa-Sierra, S.D.; Jaramillo-Paez, C.; Serna-Galvis, E.A.; García-Rubio, I.; Hidalgo, M.C.; Navío, J.A.; Ormad, M.P.; Torres-Palma, R.A.; Mosteo, R. Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight. Water 2024, 16, 2434. https://doi.org/10.3390/w16172434
Jojoa-Sierra SD, Jaramillo-Paez C, Serna-Galvis EA, García-Rubio I, Hidalgo MC, Navío JA, Ormad MP, Torres-Palma RA, Mosteo R. Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight. Water. 2024; 16(17):2434. https://doi.org/10.3390/w16172434
Chicago/Turabian StyleJojoa-Sierra, Sindy D., Cesar Jaramillo-Paez, Efraím A. Serna-Galvis, Inés García-Rubio, María C. Hidalgo, José A. Navío, María P. Ormad, Ricardo A. Torres-Palma, and Rosa Mosteo. 2024. "Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight" Water 16, no. 17: 2434. https://doi.org/10.3390/w16172434
APA StyleJojoa-Sierra, S. D., Jaramillo-Paez, C., Serna-Galvis, E. A., García-Rubio, I., Hidalgo, M. C., Navío, J. A., Ormad, M. P., Torres-Palma, R. A., & Mosteo, R. (2024). Levofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight. Water, 16(17), 2434. https://doi.org/10.3390/w16172434