Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Locations and Procedures
2.3. Statistical and Wavelet Analysis
- U1 and U2 are the U statistic values used for hypothesis testing;
- n1 and n2 are the sample numbers per group;
- R1 and R2 are the rank sums of each group.
- Ψβγ(ω) = mother wavelet function;
- U(ω) = Heaviside step function (unit step);
- αβ, γ = normalizing constant;
- γ = a constant that controls the symmetry of the wavelet. A γ = 3 is used for the Morse Wavelet;
- β = time-bandwidth product, which controls the shape of the wavelet.
- = the normalization constant;
- s = wavelet scale;
- n = inverse time scale/reversed time index;
- = constant time interval;
- = nondimensional wavelet coefficient;
- = the time series (where = integer time stamps (1, 2, 3 … N).
- = cross wavelet spectrum between the signals and ;
- = The complex conjugate of ;
- S = smoothing operator.
- = phase angle;
- and are the imaginary and real parts.
3. Results
3.1. Pre vs. Post Restoration Water Quality
3.2. Long-Term Trends of Dissolved Oxygen and Water Clarity in the Magothy and Severn Rivers
3.3. Wavelet Analysis
4. Discussion
4.1. Restoration Effectiveness and Resiliency
4.2. Climatological Effects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chilton, D.; Hamilton, D.P.; Nagelkerken, I.; Cook, P.; Hipsey, M.R.; Reid, R.; Sheaves, M.; Waltham, N.J.; Brookes, J. Environmental Flow Requirements of Estuaries: Providing Resilience to Current and Future Climate and Direct Anthropogenic Changes. Front. Environ. Sci. 2021, 9, 764218. [Google Scholar] [CrossRef]
- Altieri, A.H.; Gedan, K.B. Climate change and dead zones. Glob. Chang. Biol. 2015, 21, 1395–1406. [Google Scholar] [CrossRef] [PubMed]
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Sukdeo, P.; Pillay, S.; Ballabh, H. Long-term deterioration of water quality of the Mvoti Estuary, KwaZulu-Natal, South Africa. Curr. Sci. 2014, 106, 739–743. [Google Scholar]
- Dybas, C.L. Dead Zones Spreading in World Oceans. BioScience 2005, 55, 552–557. [Google Scholar] [CrossRef]
- Llansó, R.J. Effects of hypoxia on estuarine benthos: The lower Rappahannock River (Chesapeake Bay), a case study. Estuar. Coast. Shelf Sci. 1992, 35, 491–515. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Duvall, M.S.; Jarvis, B.M.; Wan, Y. Impacts of climate change on estuarine stratification and implications for hypoxia within a shallow subtropical system. Estuar. Coast. Shelf Sci. 2022, 279, 108146. [Google Scholar] [CrossRef]
- Gilbert, D.; Rabalais, N.N.; Díaz, R.J.; Zhang, J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 2010, 7, 2283–2296. [Google Scholar] [CrossRef]
- Testa, J.M.; Clark, J.B.; Dennison, W.C.; Donovan, E.C.; Fisher, A.W.; Ni, W.; Parker, M.; Scavia, D.; Spitzer, S.E.; Waldrop, A.M.; et al. Ecological Forecasting and the Science of Hypoxia in Chesapeake Bay. BioScience 2017, 67, 614–626. [Google Scholar] [CrossRef]
- Murphy, R.R.; Kemp, W.M.; Ball, W.P. Long-Term Trends in Chesapeake Bay Seasonal Hypoxia, Stratification, and Nutrient Loading. Estuaries Coasts 2011, 34, 1293–1309. [Google Scholar] [CrossRef]
- Orth, R.J.; Williams, M.R.; Marion, S.R.; Wilcox, D.J.; Carruthers, T.J.B.; Moore, K.A.; Kemp, W.M.; Dennison, W.C.; Rybicki, N.; Bergstrom, P.; et al. Long-Term Trends in Submersed Aquatic Vegetation (SAV) in Chesapeake Bay, USA, Related to Water Quality. Estuaries Coasts 2010, 33, 1144–1163. [Google Scholar] [CrossRef]
- Sanger, D.; Blair, A.; DiDonato, G.; Washburn, T.; Jones, S.; Riekerk, G.; Wirth, E.; Stewart, J.; White, D.; Vandiver, L.; et al. Impacts of Coastal Development on the Ecology of Tidal Creek Ecosystems of the US Southeast Including Consequences to Humans. Estuaries Coasts 2013, 38, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.R.; Leverone, J.R.; Beck, M.W.; Sherwood, E.T.; Hecker, J.; West, S.; Janicki, A. Developing a Water Quality Assessment Framework for Southwest Florida Tidal Creeks. Estuaries Coasts 2022, 45, 17–37. [Google Scholar] [CrossRef]
- Muller, A.; Muller, D. Analysis of nodal point pollution, variability, and sustainability in mesohaline tidal creeks. Mar. Pollut. Bull. 2014, 85, 204–213. [Google Scholar] [CrossRef]
- Diaz, R.J.; Neubauer, R.; Schaffner, L.; Pihl, L.; Baden, S. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. In Marine Coastal Eutrophication; Elsevier: Amsterdam, The Netherlands, 1992; pp. 1055–1068. [Google Scholar]
- Breitburg, D.L.; Loher, T.; Pacey, C.A.; Gerstein, A. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 1997, 67, 489–507. [Google Scholar] [CrossRef]
- Breitburg, D.L.; Adamack, A.; Rose, K.A.; Kolesar, S.E.; Decker, B.; Purcell, J.E.; Keister, J.E.; Cowan, J.H. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 2003, 26, 280–297. [Google Scholar] [CrossRef]
- Jeppesen, R.; Rodriguez, M.; Rinde, J.; Haskins, J.; Hughes, B.; Mehner, L.; Wasson, K. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries Coasts 2018, 41, 89–98. [Google Scholar] [CrossRef]
- Muller, A.C.; Muller, D.L. Forecasting future estuarine hypoxia using a wavelet based neural network model. Ocean Model. 2015, 96, 314–323. [Google Scholar] [CrossRef]
- Scully, M.E. The Importance of Climate Variability to Wind-Driven Modulation of Hypoxia in Chesapeake Bay. J. Phys. Oceanogr. 2010, 40, 1435–1440. [Google Scholar] [CrossRef]
- Zhang, Q.; Tango, P.J.; Murphy, R.R.; Forsyth, M.K.; Tian, R.; Keisman, J.; Trentacoste, E.M. Chesapeake Bay Dissolved Oxygen Criterion Attainment Deficit: Three Decades of Temporal and Spatial Patterns. Front. Mar. Sci. 2018, 5, 422. [Google Scholar] [CrossRef]
- Eisemann, E.R.; Thomas, C.C.; Balazik, M.T.; Acevedo-Acevedo, D.; Altman, S. Environmental Factors Affecting Coastal and Estuarine Submerged Aquatic Vegetation (SAV); US Army Engineer Research and Development Center, Environmental Laboratory: Vicksburg, MI, USA, 2021. [Google Scholar]
- Tango, P.J.; Batiuk, R.A. Deriving Chesapeake Bay water quality standards. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1007–1024. [Google Scholar] [CrossRef]
- Veríssimo, H.; Lane, M.; Patrício, J.; Gamito, S.; Marques, J.C. Trends in water quality and subtidal benthic communities in a temperate estuary: Is the response to restoration efforts hidden by climate variability and the Estuarine Quality Paradox? Ecol. Indic. 2013, 24, 56–67. [Google Scholar] [CrossRef]
- Cizek Adrienne, R.; Hunt William, F.; Winston Ryan, J.; Lauffer Matthew, S. Hydrologic Performance of Regenerative Stormwater Conveyance in the North Carolina Coastal Plain. J. Environ. Eng. 2017, 143, 05017003. [Google Scholar] [CrossRef]
- Buchholz, G. Design Considerations for Regenerative Stormwater Conveyances: What Defines Success? NC State University Libraries: Raleigh, NC, USA, 2017. [Google Scholar]
- Koryto, K.M.; Hunt, W.F.; Page, J.L. Hydrologic and water quality performance of regenerative stormwater conveyance installed to stabilize an eroded outfall. Ecol. Eng. 2017, 108, 263–276. [Google Scholar] [CrossRef]
- Hayes, K.A. Regenerative Stormwater Conveyance: Design Implications of an Urban Case Demonstration in Baltimore, Maryland. Master’s Thesis, University of Maryland, College Park, MD, USA, 2016. [Google Scholar]
- Duan, S.; Mayer, P.M.; Kaushal, S.S.; Wessel, B.M.; Johnson, T. Regenerative stormwater conveyance (RSC) for reducing nutrients in urban stormwater runoff depends upon carbon quantity and quality. Sci. Total Environ. 2019, 652, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Bhatt, G.; Filoso, S.; Yactayo, G. Stream Restoration Performance and Its Contribution to the Chesapeake Bay TMDL: Challenges Posed by Climate Change in Urban Areas. Estuaries Coasts 2017, 40, 1227–1246. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Filoso, S.; Smith, S.M.C.; Williams, M.R.; Palmer, M.A. The Efficacy of Constructed Stream-Wetland Complexes at Reducing the Flux of Suspended Solids to Chesapeake Bay. Environ. Sci. Technol. 2015, 49, 8986–8994. [Google Scholar] [CrossRef]
- Thompson, J.; Pelc, C.E.; Brogan, W.R.; Jordan, T.E. The multiscale effects of stream restoration on water quality. Ecol. Eng. 2018, 124, 7–18. [Google Scholar] [CrossRef]
- Cizek, A.R.; Johnson, J.P.; Birgand, F.; Hunt, W.F.; McLaughlin, R.A. Insights from using in-situ ultraviolet–visible spectroscopy to assess nitrogen treatment and subsurface dynamics in a regenerative stormwater conveyance (RSC) system. J. Environ. Manag. 2019, 252, 109656. [Google Scholar] [CrossRef]
- Sleziak, P.; Hlavčová, K.; Szolgay, J. Advantages of a time series analysis using wavelet transform as compared with a fourier analysis. Slovak J. Civ. Eng. 2015, 23, 30–36. [Google Scholar] [CrossRef]
- Kang, S.; Lin, H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J. Hydrol. 2007, 338, 1–14. [Google Scholar] [CrossRef]
- Hao, Y.; Lu, J. Teleconnection between climate oscillations and riverine nutrient dynamics in Southeast China based on wavelet analysis. Environ. Sci. Pollut. Res. 2021, 28, 41807–41820. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, M.N.; Wafdan, R.; Ramli, M.; Muchlisin, Z.A.; Rizal, S. Patterns and wavelet coherence analysis of tidal dynamics and chlorophyll a concentration. Glob. J. Environ. Sci. Manag. 2024, 10, 987–1004. [Google Scholar] [CrossRef]
- Martinez-Ríos, E.A.; Bustamante-Bello, R.; Navarro-Tuch, S.; Perez-Meana, H. Applications of the Generalized Morse Wavelets: A Review. IEEE Access 2023, 11, 667–688. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Labat, D. Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Lilly, J.M. Element analysis: A wavelet-based method for analysing time-localized events in noisy time series. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160776. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Beck, M.W.; Hagy, J.D. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in an Estuary. Environ. Model. Assess. 2015, 20, 637–655. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Liang, S. Prediction of estuarine water quality using interpretable machine learning approach. J. Hydrol. 2022, 605, 127320. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather. Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Bradbury, J.A.; Keim, B.D.; Wake, C.P. U.S. East Coast Trough Indices at 500 hPa and New England Winter Climate Variability. J. Clim. 2002, 15, 3509–3517. [Google Scholar] [CrossRef]
- Manthos, Z.H.; Pegion, K.V.; Dirmeyer, P.A.; Stan, C. The relationship between surface weather over North America and the Mid-Latitude Seasonal Oscillation. Dyn. Atmos. Ocean. 2022, 99, 101314. [Google Scholar] [CrossRef]
- Giesen, S. Exploring the Influence of Climate Modes on Extremes Related to Atmospheric Fronts Along the Eastern United States. Master’s Thesis, The Florida State University, Tallahassee, FL, USA, 2023. [Google Scholar]
- Sorooshian, A.; Corral, A.F.; Braun, R.A.; Cairns, B.; Crosbie, E.; Ferrare, R.; Hair, J.; Kleb, M.M.; Hossein Mardi, A.; Maring, H. Atmospheric research over the western North Atlantic Ocean region and North American East Coast: A review of past work and challenges ahead. J. Geophys. Res. Atmos. 2020, 125, e2019JD031626. [Google Scholar] [CrossRef]
- Muller, A.C.; Muller, D.L.; Muller, A. Resolving spatiotemporal characteristics of the seasonal hypoxia cycle in shallow estuarine environments of the Severn River and South River, MD, Chesapeake Bay, USA. Heliyon 2016, 2, e00157. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.R.; Fox, R.J.; Gustafson, A.B.; Koontz, E.; Lepori-Bui, M.; Lewis, J. Localized water quality improvement in the Choptank estuary, a tributary of Chesapeake Bay. Estuaries Coasts 2021, 44, 1274–1293. [Google Scholar] [CrossRef]
- Zhang, Q.; Murphy, R.R.; Tian, R.; Forsyth, M.K.; Trentacoste, E.M.; Keisman, J.; Tango, P.J. Chesapeake Bay’s water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data EPA Public Access. Sci. Total Environ. 2018, 637, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.R.; Keisman, J.; Harcum, J.; Karrh, R.R.; Lane, M.; Perry, E.S.; Zhang, Q. Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management. Environ. Sci. Technol. 2022, 56, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Irby, I.D.; Friedrichs, M.A. Evaluating confidence in the impact of regulatory nutrient reduction on Chesapeake Bay water quality. Estuaries Coasts 2019, 42, 16–32. [Google Scholar] [CrossRef]
- Orth, R.J.; Dennison, W.C.; Lefcheck, J.S.; Gurbisz, C.; Hannam, M.; Keisman, J.; Landry, J.B.; Moore, K.A.; Murphy, R.R.; Patrick, C.J.; et al. Submersed Aquatic Vegetation in Chesapeake Bay: Sentinel Species in a Changing World. BioScience 2017, 67, 698–712. [Google Scholar] [CrossRef]
- Carey, J. The complex case of Chesapeake Bay restoration. Proc. Natl. Acad. Sci. USA 2021, 118, e2108734118. [Google Scholar] [CrossRef]
- Najjar, R.G.; Pyke, C.R.; Adams, M.B.; Breitburg, D.; Hershner, C.; Kemp, M.; Howarth, R.; Mulholland, M.R.; Paolisso, M.; Secor, D.; et al. Potential climate-change impacts on the Chesapeake Bay. Estuar. Coast. Shelf Sci. 2010, 86, 1–20. [Google Scholar] [CrossRef]
- Tzortziou, M.; Neale, P.; Megonigal, P.; Lee Pow Jackson, C.; Butterworth, M. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Mar. Ecol. Prog. Ser. 2011, 426, 41–56. [Google Scholar] [CrossRef]
- Chen, Z.; Doering, P.H.; Ashton, M.; Orlando, B.A. Mixing Behavior of Colored Dissolved Organic Matter and Its Potential Ecological Implication in the Caloosahatchee River Estuary, Florida. Estuaries Coasts 2015, 38, 1706–1718. [Google Scholar] [CrossRef]
- Zhang, Q.; Blomquist, J.D. Watershed export of fine sediment, organic carbon, and chlorophyll-a to Chesapeake Bay: Spatial and temporal patterns in 1984–2016. Sci. Total Environ. 2018, 619–620, 1066–1078. [Google Scholar] [CrossRef]
- Clark, J.B.; Long, W.; Hood, R.R. A Comprehensive Estuarine Dissolved Organic Carbon Budget Using an Enhanced Biogeochemical Model. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005442. [Google Scholar] [CrossRef]
- Muller, A.C.; Muller, D.L. Spatial Heterogeneity of CDOM, Optical Brighteners, and Oils in Mesohaline Tidal Creeks Using Self-Organizing Maps. Water 2022, 14, 2533. [Google Scholar] [CrossRef]
- St.Laurent, K.A.; Coles, V.J.; Hood, R.R. Climate Extremes and Variability Surrounding Chesapeake Bay: Past, Present, and Future. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 826–854. [Google Scholar] [CrossRef]
Station | Location Description | Latitude | Longitude |
---|---|---|---|
WT 6.1 | Middle Section of Magothy River | 39.0751 | −76.475 |
WT 7.1 | Middle Section of Severn River | 39.0068 | −76.5046 |
WT 8.1 | Middle Section of South River | 38.9493 | −76.5464 |
WT 8.2 | Rhode River | 38.8834 | −76.533 |
MS 1 | Mouth of South River | 38.89568 | −76.4736 |
SLT | Saltworks Creek, Severn River | 39.0085 | −76.5319 |
BRO | Broad Creek, South River | 38.97287 | −76.5762 |
CHR | Church Creek, South River | 38.9639 | −76.5381 |
Site | Latitude | Longitude | Site Description | Year Completed |
---|---|---|---|---|
AHC | 38.972 | −76.537 | Annapolis Harbour Center, Church Creek | 2016 |
WIL | 38.966 | −76.539 | Wilelinor Drive, Church Creek | 2014 |
PBR | 38.96 | −76.572 | Preserve at Broad Creek | 2015 |
CW | 38.968 | −76.568 | Camp Woodland, Broad Creek | 2016 |
HOC | 38.976 | −76.563 | Heritage office complex | 2021 |
ACP2 | 38.98 | −76.565 | Annapolis Corporate Park 2 | 2016 |
BC2 | 38.98 | −76.563 | Broad Creek Headwaters 2 | 2019 |
BC1 | 38.98 | −76.561 | Broad Creek Headwaters 1 | 2018 |
ACP1 | 38.979 | −76.559 | Annapolis Corporate Park 1 | 2016 |
HPF | 38.966 | −76.544 | Homeport Farms | 2005 |
KH | 38.931 | −76.614 | Killarney House | 2018 |
HSG | 38.923 | −76.625 | Homestead Gardens | 2013 |
SD | 39.008 | −76.533 | Severn Drive | 2012 |
HHB | 38.048 | −76.568 | Herald Harbor Bonaparte | 2017 |
BHT | 39.051 | −76.574 | Buttonhead trail | 2016 |
ME | 39.054 | −76.638 | Millersville Elementary | 2012 |
CBP | 38.993 | −76.536 | Cabin branch pond | 2013 |
CC | 39.02 | −76.508 | Chase Creek | 2015 |
WIN | 39.018 | −76.51 | Winchester on Severn | 2018 |
CD | 39.018 | −76.509 | Circle Drive | 2020 |
MC | 38.8815 | −76.5436 | Rhode River | 2016 |
SV | 39.095 | −76.474 | Magothy River, Severn RD. | 2010 |
HP | 39.102 | −76.454 | Magothy River, Heilman Property | 2019 |
CSC2 | 39.05 | −76.448 | Magothy River, Cape St. Claire | 2020 |
MB | 39.073 | −76.522 | Magothy River, Manhattan Beach | 2012 |
CFCF | 39.036 | −76.440 | Magothy River, Cape St. Claire Fire Station | 2019 |
CSC1 | 39.040 | −76.438 | Magothy River, Cape St. Claire | 2019 |
WL | 39.031 | −76.432 | Magothy River, Woods Landing Outfall | 2019 |
DC | 39.031 | −76.438 | Magothy River, Delso Court Outfall | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, A.C.; Muller, K.A.; Muller, D.L. Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks. Water 2024, 16, 2433. https://doi.org/10.3390/w16172433
Muller AC, Muller KA, Muller DL. Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks. Water. 2024; 16(17):2433. https://doi.org/10.3390/w16172433
Chicago/Turabian StyleMuller, Andrew C., Keaghan A. Muller, and Diana L. Muller. 2024. "Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks" Water 16, no. 17: 2433. https://doi.org/10.3390/w16172433
APA StyleMuller, A. C., Muller, K. A., & Muller, D. L. (2024). Continuous Wavelet Transform Analysis of Climate Variability, Resiliency, and Restoration Strategies in Mesohaline Tidal Creeks. Water, 16(17), 2433. https://doi.org/10.3390/w16172433