Rigid Vegetation Affects Slope Flow Velocity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Hydrodynamic Parameters
2.3. Data Processing
Model Accuracy Assessment Indicators
2.4. Statistical Analyses
3. Results
3.1. The Impact of Flow Rate and Slope on Mean Velocity
3.2. The Impact of Rigid Vegetation on Mean Velocity
3.3. Mean Velocity Prediction Model
Treatment | Fitting Formula | Adj.R2 | NSE | RRMSE | SE | |
---|---|---|---|---|---|---|
BS | (17) | 0.83 | 0.83 | 0.15 | 0.049 | |
BH | (18) | 0.77 | 0.77 | 0.15 | 0.060 | |
ALL | (19) | 0.80 | 0.80 | 0.15 | 0.042 |
4. Discussion
4.1. The Impact of Flow Rate and Slope on Mean Velocity
4.2. The Impact of Rigid Vegetation on Mean Velocity
4.3. Evaluation of Mean Flow Velocity Prediction Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Yi, Y.; Liu, H.; Tang, C.; Zhang, S.H. Spatiotemporal dynamic of soil erosion and the key factors impact processes over semi-arid catchments in Southwest China. Ecol. Eng. 2024, 201, 14. [Google Scholar] [CrossRef]
- Zeng, X.; Peng, X.D.; Liu, T.T.; Dai, Q.H.; Chen, X.Y. Runoff generation and erosion processes at the rock-soil interface of outcrops with a concave surface in a rocky desertification area. Catena 2024, 239, 11. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q. Change pathway and intersection of rainfall, soil, and land use influencing water-related soil erosion. Ecol. Indic. 2020, 113, 14. [Google Scholar] [CrossRef]
- Zhang, X.C.; Zheng, F.L.; Chen, J.; Garbrecht, J.D. Characterizing detachment and transport processes of interrill soil erosion. Geoderma 2020, 376, 15. [Google Scholar] [CrossRef]
- Ma, Q.H.; Zhang, K.L.; Cao, Z.H.; Wei, M.Y.; Yang, Z.C. Soil detachment by overland flow on steep cropland in the subtropical region of China. Hydrol. Process. 2020, 34, 1810–1820. [Google Scholar] [CrossRef]
- Wang, G.Y.; Sun, G.R.; Li, J.K.; Li, J. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat. J. Hydrodyn. 2018, 30, 153–159. [Google Scholar] [CrossRef]
- Wang, H.M.; Ni, W.K.; Yuan, K.Z.; Ren, S.Y. An experimental study on the behavior of loess-clay mixtures upon wetting and its implications for tillage on the Loess Plateau. Soil Tillage Res. 2024, 240, 12. [Google Scholar] [CrossRef]
- Zhang, S.-Q.; Wang, Y.-W.; Zhang, H.-B.; Lyu, F.-G.; Yang, T.-Z.; Li, Y.-B.; Yao, C.-C. Investigating the Loess Plateau’s coevolution of precipitation and natural vegetation cover. Environ. Earth Sci. 2024, 83, 15. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Liu, Y.; Yu, X.B. Contribution of hydrological connectivity to the retention of soil organic carbon by vegetation patches: Insight from a dryland hillslope on the Loess Plateau, China. Catena 2022, 216, 9. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, J.; Yu, W.; Li, Q.; Feng, Z.; Zhang, H. Resilience and community dynamics of understorey vegetation in Mongolian pine plantations at the southeastern edge of the Mu Us Sandy Land, China. For. Ecol. Manage. 2024, 555, 9. [Google Scholar] [CrossRef]
- Montakhab, A.; Yusuf, B.; Ghazali, A.H.; Mohamed, T.A. Flow and sediment transport in vegetated waterways: A review. Rev. Environ. Sci. Bio-Technol. 2012, 11, 275–287. [Google Scholar] [CrossRef]
- Wu, S.F.; Wu, P.T.; Feng, H.; Merkley, G.P. Effects of alfalfa coverage on runoff, erosion and hydraulic characteristics of overland flow on loess slope plots. Front. Environ. Sci. Eng. China 2011, 5, 76–83. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, K.; Wei, S.; Wang, P.; Cen, Y.; Xia, J. Evaluation of the effects of grass and shrub cover on overland flow resistance and its attributes under simulated rainfall. J. Hydrol. 2023, 626, 14. [Google Scholar] [CrossRef]
- Li, C.J.; Pan, C.Z. Overland runoff erosion dynamics on steep slopes with forages under field simulated rainfall and inflow. Hydrol. Process. 2020, 34, 1794–1809. [Google Scholar] [CrossRef]
- Zhang, G.H.; Hu, J.J. Effects of patchy distributed Artemisia capillaris on overland flow hydrodynamic characteristics. Int. Soil Water Conserv. Res. 2019, 7, 81–88. [Google Scholar] [CrossRef]
- Cen, Y.; Zhang, K.; Peng, Y.; Rubinato, M.; Zhang, H.; Shang, H.; Li, P. Quantification of the effects on the flow velocity caused by gramineous plants in the loess plateau in North-Western China. Geoderma 2023, 429, 15. [Google Scholar] [CrossRef]
- Zhu, P.Z.; Zhang, G.H.; Wang, H.X.; Zhang, B.J.; Wang, X. Land surface roughness affected by vegetation restoration age and types on the Loess Plateau of China. Geoderma 2020, 366, 11. [Google Scholar] [CrossRef]
- Vermang, J.; Norton, L.; Huang, C.; Cornelis, W.; da Silva, A.; Gabriels, D. Characterization of Soil Surface Roughness Effects on Runoff and Soil Erosion Rates under Simulated Rainfall. Soil Sci. Soc. Am. J. 2015, 79, 903–916. [Google Scholar] [CrossRef]
- De Serio, F.; Ben Meftah, M.; Mossa, M.; Termini, D. Experimental investigation on dispersion mechanisms in rigid and flexible vegetated bed. Adv. Water Resour. 2018, 120, 98–113. [Google Scholar] [CrossRef]
- Emmett, W.W. The Hydraulics of Overland Flow on Hillslopes; U.S. Geological Survey Professional Paper 662-A; U.S. Geological Survey: Washington, DC, USA, 1970. [Google Scholar]
- Cen, Y.; Zhang, K.; Peng, Y.; Rubinato, M.; Liu, J.; Ling, P. Experimental study on the effect of simulated grass and stem coverage on resistance coefficient of overland flow. Hydrol. Process. 2022, 36, 17. [Google Scholar] [CrossRef]
- Wu, Y.J.; Jing, H.F.; Li, C.G.; Song, Y.T. Flow characteristics in open channels with aquatic rigid vegetation. J. Hydrodyn. 2020, 32, 1100–1108. [Google Scholar] [CrossRef]
- Teng, S.F.; Feng, M.Q.; Chen, K.L.; Wang, W.J.; Zheng, B.M. Effect of a Lateral Jet on the Turbulent Flow Characteristics of an Open Channel Flow with Rigid Vegetation. Water 2018, 10, 15. [Google Scholar] [CrossRef]
- Fukaki, H.; Fujii, N.; Itoh, E.; Yoshioka, Y.; Nakamura, M.; Morita, M.T. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat. Commun. 2020, 11, 76. [Google Scholar]
- Waite, J.M.; Dardick, C. IGT/LAZY genes are differentially influenced by light and required for light-induced change to organ angle. BMC Biol. 2024, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Mori, S.; Shikata, H.; Nakamura, M.; Hashiguchi, Y.; Abe, Y.; Morita, M.T. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023, 381, eadh9978. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.H.; Gao, J.E.; Zhang, M.J.; Wang, F.; Zhang, T. Sediment deposition and overland flow hydraulics in simulated vegetative filter strips under varying vegetation covers. Hydrol. Process. 2016, 30, 163–175. [Google Scholar] [CrossRef]
- Zhao, C.H.; Gao, J.E.; Huang, Y.F.; Wang, G.Q.; Zhang, M.J. Effects of Vegetation Stems on Hydraulics of Overland Flow Under Varying Water Discharges. Land Degrad. Dev. 2016, 27, 748–757. [Google Scholar] [CrossRef]
- Wang, W.-J.; Peng, W.-Q.; Huai, W.-X.; Katul, G.G.; Liu, X.-B.; Qu, X.-D.; Dong, F. Friction factor for turbulent open channel flow covered by vegetation. Sci. Rep. 2019, 9, 16. [Google Scholar] [CrossRef]
- Nearing, M.A.; Simanton, J.R.; Norton, L.D.; Bulygin, S.J.; Stone, J. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surf. Process. Landf. 1999, 24, 677–686. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, K.; Peng, Y.; Rubinato, M.; Zhang, H.; Li, P. Effect of gravel coverage on the hydrodynamic characteristics of overland flow on the Loess Plateau in China. J. Hydrol. 2013, 627, 22. [Google Scholar] [CrossRef]
- Plew, D.R. Depth-Averaged Drag Coefficient for Modeling Flow through Suspended Canopies. J. Hydraul. Eng.-ASCE 2011, 137, 234–247. [Google Scholar] [CrossRef]
- Fu, S.H.; Mu, H.L.; Liu, B.Y.; Yu, X.J.; Liu, Y.N. Effect of plant basal cover on velocity of shallow overland flow. J. Hydrol. 2019, 577, 8. [Google Scholar] [CrossRef]
- Li, D.; Peng, Z.Y.; Liu, G.Q.; Wei, C.Y. Flow Structures in Open Channels with Emergent Rigid Vegetation: A Review. Water 2023, 15, 15. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Pampalone, V.; Sanzone, F. Field investigation of rill and ephemeral gully erosion in the Sparacia experimental area, South Italy. Catena 2013, 101, 226–234. [Google Scholar] [CrossRef]
- Zhang, K.D.; Wang, Z.G.; Wang, G.Q.; Sun, X.M.; Cui, N.B. Overland-Flow Resistance Characteristics of Nonsubmerged Vegetation. J. Irrig. Drainage Eng-ASCE 2017, 143, 9. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, S.T.; Wang, C.T.; Wang, W.J.; Ma, L.J. Influence of combined stem vegetation distribution and discretization on the hydraulic characteristics of overland flow. J. Clean Prod. 2022, 376, 20. [Google Scholar] [CrossRef]
- Shang, H.; Zhang, K.; Wang, Z.; Yang, J.; He, M.; Pan, X.; Fang, C. Effect of varying wheatgrass density on resistance to overland flow. J. Hydrol. 2020, 591, 15. [Google Scholar] [CrossRef]
- Jain, M.K.; Singh, V.P. DEM-based modelling of surface runoff using diffusion wave equation. J. Hydrol. 2004, 302, 107–126. [Google Scholar] [CrossRef]
- Wu, F.C.; Shen, H.W.; Chou, Y.J. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. Hydraul Eng.-ASCE 1999, 125, 934–942. [Google Scholar] [CrossRef]
- Yang, P.; Li, R.; Pan, L.; Wang, Y.; Huang, K.; Zhang, L. Effects of surface roughness and vegetation coverage on Manning’s resistance coefficient to overland flow. Trans. CSAE 2020, 36, 106–114. [Google Scholar]
- Zhang, G.H.; Liu, G.B.; Wang, G.L.; Wang, Y.X. Effects of patterned Artemisia capillaris on overland flow velocity under simulated rainfall. Hydrol. Process. 2012, 26, 3779–3787. [Google Scholar] [CrossRef]
- Zhang, K.; Weber, P.L.; Jonge, L.W.D.; Wang, X.; Bai, Y.K. Effect of different underlying surfaces on hydraulic parameters of overland flow. Soil Tillage Res. 2023, 232, 10. [Google Scholar] [CrossRef]
- Liu, X.N.; Fan, D.X.; Yu, X.X.; Liu, Z.Q.; Sun, J.M. Effects of simulated gravel on hydraulic characteristics of overland flow under varying flow discharges, slope gradients and gravel coverage degrees. Sci. Rep. 2019, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Z.; Ma, L.; Shangguan, Z.P. Effectiveness of grass strips in trapping suspended sediments from runoff. Earth Surf. Process. Landf. 2010, 35, 1006–1013. [Google Scholar] [CrossRef]
- Ali, M.; Sterk, G.; Seeger, M.; Stroosnijder, L. Effect of flow discharge and median grain size on mean flow velocity under overland flow. J. Hydrol. 2012, 452, 150–160. [Google Scholar] [CrossRef]
- Giménez, R.; Planchon, O.; Silvera, N.; Govers, G. Longitudinal velocity patterns and bed morphology interaction in a rill. Earth Surf. Process. Landf. 2004, 29, 105–114. [Google Scholar] [CrossRef]
- Li, L.; Nearing, M.A.; Polyakov, V.O.; Nichols, M.H.; Cavanaugh, M.L. Evolution of rock cover, surface roughness, and flow velocity on stony soil under simulated rainfall. J. Soil Water Conserv. 2020, 75, 651–668. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, D.C.; Sun, W.P.; Guo, M.M. Impacts of grass planting density and components on overland flow hydraulics and soil loss. Land Degrad. Dev. 2023, 34, 234–249. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Liu, C.; Diao, Y.; Ma, D.; Li, F.; Rahma, A.; Lei, T. Flow velocity on cultivated soil slope with wheat straw incorporation. J. Hydrol. 2020, 584, 9. [Google Scholar] [CrossRef]
- Ding, W.F.; Huang, C.H. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 2017, 295, 801–810. [Google Scholar] [CrossRef]
- Rashedunnabi, A.H.M.; Tanaka, N. Effectiveness of double-layer rigid vegetation in reducing the velocity and fluid force of a tsunami inundation behind the vegetation. Ocean Eng. 2020, 201, 12. [Google Scholar] [CrossRef]
- Iimura, K.; Tanaka, N. Numerical simulation estimating effects of tree density distribution in coastal forest on tsunami mitigation. Ocean Eng. 2012, 54, 223–232. [Google Scholar] [CrossRef]
- Lu, R.; Liu, Y.-F.; Jia, C.; Huang, Z.; Liu, Y.; He, H.; Liu, B.-R.; Wang, Z.-J.; Zheng, J.; Wu, G.-L. Effects of mosaic-pattern shrub patches on runoff and sediment yield in a wind-water erosion crisscross region. Catena 2019, 174, 199–205. [Google Scholar] [CrossRef]
- Monger, F.; Bond, S.; Spracklen, D.V.; Kirkby, M.J. Overland flow velocity and soil properties in established semi-natural woodland and wood pasture in an upland catchment. Hydrol. Process. 2022, 36, 13. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Parsons, A.J. Hydraulics of Interrill Overland Flow on Stone-Covered Desert Surfaces. Catena 1994, 23, 111–140. [Google Scholar] [CrossRef]
- Schoelynck, J.; Meire, D.; Bal, K.; Buis, K.; Troch, P.; Bouma, T.; Meire, P.; Temmerman, S. Submerged macrophytes avoiding a negative feedback in reaction to hydrodynamic stress. Limnologica 2013, 43, 371–380. [Google Scholar] [CrossRef]
- Shan, Y.Q.; Liu, X.N.; Yang, K.J.; Liu, C. Analytical model for stage-discharge estimation in meandering compound channels with submerged flexible vegetation. Adv. Water Resour. 2017, 108, 170–183. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, S.T.; Li, G.B.; Liu, M.; Chen, S. Effects of vegetation lodging on overland runoff flow regime and resistance. Water Supply 2020, 20, 1463–1473. [Google Scholar] [CrossRef]
- Guo, T.L.; Wang, Q.J.; Li, D.Q.; Zhuang, J. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China. J. Soils Sediments 2010, 10, 1200–1208. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, K.D.; Liu, C.L.; Cen, Y.D.; Xia, J.Q. Effects of different vegetation components on soil erosion and response to rainfall intensity under simulated rainfall. Catena 2024, 235, 15. [Google Scholar] [CrossRef]
Treatment | Fitting Formula | Adj.R2 | NSE | RRMSE | SE | |
---|---|---|---|---|---|---|
BS | (28) | 0.88 | 0.88 | 0.12 | 0.044 | |
BH | (29) | 0.88 | 0.88 | 0.12 | 0.041 | |
ALL | (30) | 0.87 | 0.86 | 0.12 | 0.036 |
Mean Flow Velocity Prediction Model | Adj.R2 | NSE | RRMSE | SE |
---|---|---|---|---|
Nearing et al. [31] | 0.45 | −0.01 | 0.34 | 0.082 |
Cen et al. [17] | 0.61 | 0.55 | 0.22 | 0.053 |
This study’s Equation (19) | 0.80 | 0.80 | 0.15 | 0.042 |
This study’s Equation (30) | 0.87 | 0.86 | 0.12 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Xie, J.; Chen, Y.; Yang, Y.; Wang, C.; Wang, J. Rigid Vegetation Affects Slope Flow Velocity. Water 2024, 16, 2240. https://doi.org/10.3390/w16162240
Cai Z, Xie J, Chen Y, Yang Y, Wang C, Wang J. Rigid Vegetation Affects Slope Flow Velocity. Water. 2024; 16(16):2240. https://doi.org/10.3390/w16162240
Chicago/Turabian StyleCai, Zekang, Jiabo Xie, Yuchi Chen, Yushuo Yang, Chenfeng Wang, and Jian Wang. 2024. "Rigid Vegetation Affects Slope Flow Velocity" Water 16, no. 16: 2240. https://doi.org/10.3390/w16162240
APA StyleCai, Z., Xie, J., Chen, Y., Yang, Y., Wang, C., & Wang, J. (2024). Rigid Vegetation Affects Slope Flow Velocity. Water, 16(16), 2240. https://doi.org/10.3390/w16162240