Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Iran’s Metropolises and Data Sources
City | Population (Million) | Climate |
---|---|---|
Tehran | 7.15 | Situated in northern Iran, Tehran experiences a cold, semi-arid climate. The city lies at the foothills of the Alborz Mountains, which shield it from the harsher weather found in Iran’s interior. Summers in Tehran are usually hot and dry, with temperatures often exceeding 35 °C. Winters are relatively mild, although temperatures can sometimes drop below freezing. Most of Tehran’s precipitation occurs in the winter, primarily as rain, with snowfall also common. |
Mashhad | 2.31 | Mashhad, located in northeastern Iran, has a cold, semi-arid climate. Positioned on a plateau and encircled by mountains, the city’s climate is influenced by its altitude and closeness to desert regions. Summers in Mashhad are typically hot, with temperatures often surpassing 35 °C. Conversely, winters are cold, with temperatures occasionally falling below freezing and frequent snowfall during the winter season. |
Isfahan | 1.55 | Isfahan, located in central Iran, experiences a cold desert climate. The city is located on a large, dry plain encircled by mountains, resulting in extreme weather conditions. Summers in Isfahan are intensely hot, with temperatures frequently rising above 40 °C. On the other hand, winters are relatively mild, though temperatures can occasionally drop below freezing. Precipitation is scarce throughout the year, with the majority occurring during the winter months. |
Karaj | 1.45 | Situated northwest of Tehran, Karaj has a climate similar to the nearby capital. Nestled on the lower slopes of the Alborz Mountains, the city experiences a cold, semi-arid climate. Summers in Karaj are hot and dry, whereas winters are cool and wet, with occasional snowfall. The majority of the annual precipitation falls in the winter, mainly as rain. |
Tabriz | 1.42 | Located in northwestern Iran, Tabriz experiences a humid continental climate. Tabriz’s climate is heavily influenced by its position at the base of the Sahand Mountains and its closeness to the Caspian Sea. Summers in Tabriz are warm and dry, whereas winters are cold and snowy, with temperatures often falling below freezing. The majority of the city’s precipitation occurs during the winter, primarily as snow. |
Shiraz | 1.25 | Situated in southwestern Iran, Shiraz has a cold, semi-arid climate. The city’s weather is influenced by its position on a plateau encircled by the Zagros Mountains. Summers in Shiraz are typically hot and dry, with temperatures frequently exceeding 35 °C. Winters are mild, with temperatures seldom falling below freezing. Most of the city’s annual precipitation occurs during the winter months, mainly as rain. |
2.2. GCMs and Climate Change Scenarios
2.3. Dry Days and Very Heavy Precipitation Days
2.4. Statistical Methods
2.4.1. Augmented Dickey–Fuller (ADF) Test
2.4.2. Mann–Kendall (MK) Trend Analysis
2.4.3. Nash–Sutcliffe and Modified Nash–Sutcliffe Model Efficiency Coefficient
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shemsanga, C.; Muzuka, A.N.N.; Martz, L.; Komakech, H.; Omambia, A.N. Statistics in Climate Variability, Dry Spells, and Implications for Local Livelihoods in Semiarid Regions of Tanzania: The Way Forward. In Handbook of Climate Change Mitigation and Adaptation; Chen, W.Y., Suzuki, T., Lackner, M., Eds.; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef] [PubMed]
- Fekete, A.; Sandholz, S. Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- Fallah Ghalhari, G.A.; Dadashi Roudbari, A.A.; Asadi, M. Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arab. J. Geosci. 2016, 9, 595. [Google Scholar] [CrossRef]
- Fani, A.; Ghazi, I.; Malekian, A. Challenges of Water Resource Management in Iran. Am. J. Environ. Eng. 2016, 6, 123–128. [Google Scholar]
- Rahimzadeh, F.; Asgari, A.; Fattahi, E. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol. 2009, 29, 329–343. [Google Scholar] [CrossRef]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114, D3. [Google Scholar] [CrossRef]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Khalili, K.; Ahmadi, F.; Dinpashoh, Y.; Fakheri Fard, A. Determination of Climate Changes on Streamflow Process in the West of Lake Urmia with Used to Trend and Stationarity Analysis. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1220–1235. [Google Scholar]
- Raziei, T.; Daryabari, J.; Bordi, I. Spatial patterns and temporal trends of precipitation in Iran. Theor. Appl. Climatol. 2013, 115, 531–540. [Google Scholar] [CrossRef]
- Farajzadeh, M.; Madani, K.; Massah, A.; Davtalab, R. Climate Change Effects on Reliability of Water Delivery in Downstream of Karkheh River Basin and Its Adaptation Strategies. J. Water Soil Resour. Conserv. 2014, 3, 49–63. [Google Scholar]
- Balling, R.C., Jr.; Keikhosravi Kiany, M.S.; Sen Roy, S.; Khoshhal, J. Trends in Extreme Precipitation Indices in Iran: 1951–2007. Adv. Meteorol. 2016, 2016, 2456809. [Google Scholar] [CrossRef]
- Khosravi, I.; Jouybari-Moghaddam, Y.; Sarajian, M.R. The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran. Nat. Hazards 2017, 87, 1507–1522. [Google Scholar] [CrossRef]
- Shokouhi, M.; Sanaei-Nejad, S.H.; Bannayan Aval, M. Evaluation of Simulated Precipitation and Temperature from CMIP5 Climate Models in Regional Climate Change Studies (Case Study: Major Rainfed Wheat-Production Areas in Iran). Water Soil 2018, 32, 1013–1014. [Google Scholar] [CrossRef]
- Ghiami-Shamami, F.; Sabziparvar, A.A.; Shinoda, S. Long-term comparison of the climate extremes variability in different climate types located in coastal and inland regions of Iran. Theor. Appl. Climatol. 2019, 136, 875–897. [Google Scholar] [CrossRef]
- Aghapour Sabbaghi, M.; Nazari, M.; Araghinejad, S.; Soufizadeh, S. Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric. Water Manag. 2020, 241, 106323. [Google Scholar] [CrossRef]
- Mahbod, M.; Mashayekhi, S.; Rafiee, M.R.; Parnian, A. Spatio-temporal variations of wet and dry spells in Iran and their association with large-scale climatic indices. Int. J. Climatol. 2023, 43, 2754–2775. [Google Scholar] [CrossRef]
- Zarrin, A.; Dadashi-Roudbari, A. Assessment of mean precipitation and precipitation extremes in Iran as simulated by dynamically downscaled RegCM4. Dyn. Atmos. Oceans 2024, 106, 101452. [Google Scholar] [CrossRef]
- Afsari, R.; Nazari-Sharabian, M.; Hosseini, A.; Karakouzian, M. A CMIP6 Multi-Model Analysis of the Impact of Climate Change on Severe Meteorological Droughts through Multiple Drought Indices—Case Study of Iran’s Metropolises. Water 2024, 16, 711. [Google Scholar] [CrossRef]
- Islamic Republic of Iran Meteorological Organization. Available online: https://www.irimo.ir (accessed on 8 April 2023).
- Population of Cities in Iran 2024. World Population Review. Available online: https://worldpopulationreview.com/countries/cities/iran (accessed on 30 July 2024).
- Karmalkar, A.V.; Thibeault, J.M.; Bryan, A.M.; Seth, A. Identifying credible and diverse GCMs for regional climate change studies—Case study: Northeastern United States. Clim. Chang. 2019, 154, 367–386. [Google Scholar] [CrossRef]
- NASA. Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) Portal. Available online: https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6 (accessed on 8 April 2022).
- Van Vuuren, D.P.; Carter, T.R. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Clim. Chang. 2014, 122, 415–429. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 2023, 9, eabo1638. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.M.; Saravanan, S.; Almohamad, H.; Al Dughairi, A.A.; Abdo, H.G. Effects of Climate Change on Streamflow in the Godavari Basin Simulated Using a Conceptual Model including CMIP6 Dataset. Water 2023, 15, 1701. [Google Scholar] [CrossRef]
- Kamal, A.S.M.M.; Hossain, F.; Shahid, S. Spatiotemporal changes in rainfall and droughts of Bangladesh for 1.5 and 2 °C temperature rise scenarios of CMIP6 models. Theor. Appl. Climatol. 2021, 146, 527–542. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Heydaripour, M.; Jamali, V.; Sabaghzadeh, M.; Niazkar, M. Investigating Uncertainty of Future Predictions of Temperature and Precipitation in The Kerman Plain under Climate Change Impacts. Hydrology 2024, 11, 2. [Google Scholar] [CrossRef]
- Wang, L.; Shu, Z.; Wang, G.; Sun, Z.; Yan, H.; Bao, Z. Analysis of Future Meteorological Drought Changes in the Yellow River Basin under Climate Change. Water 2022, 14, 1896. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.P.; Huang, G.H.; Wang, H.; Li, Y.F.; Liu, Y.R.; Shen, Z.Y. A novel statistical downscaling approach for analyzing daily precipitation and extremes under the impact of climate change: Application to an arid region. J. Hydrol. 2022, 615 Pt B, 128730. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Wahid, S.; Shahid, S.; Alam, E.; Mainuddin, M.; Islam, H.M.T.; Cho, J.; Rahman, M.M.; Biswas, J.C.; Thorp, K.R. Predicted changes in future precipitation and air temperature across Bangladesh using CMIP6 GCMs. Heliyon 2023, 9, e16274. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Wang, Y.; Chen, Y.; Zhang, Q. Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sens. 2022, 14, 115. [Google Scholar] [CrossRef]
- Jin, H.; Chen, X.; Ruida, Z.; Li, D. Spatio-temporal changes of precipitation in the Hanjiang River Basin under climate change. Theor. Appl. Climatol. 2021, 146, 1441–1458. [Google Scholar] [CrossRef]
- Reddy, N.M.; Saravanan, S. Extreme precipitation indices over India using CMIP6: A special emphasis on the SSP585 scenario. Environ. Sci. Pollut. Res. Int. 2023, 30, 47119–47143. [Google Scholar] [CrossRef]
- Bian, G.; Zhang, J.; Chen, J.; Song, M.; He, R.; Liu, C.; Liu, Y.; Bao, Z.; Lin, Q.; Wang, G. Projecting Hydrological Responses to Climate Change Using CMIP6 Climate Scenarios for the Upper Huai River Basin, China. Front. Environ. Sci. 2021, 9, 759547. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Wang, L.; Chen, S. Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models. Int. J. Climatol. 2022, 42, 1203–1219. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. ETCCDI Climate Indices for Assessment of the Recent Climate over Southeast Europe. In Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence; Dimov, I., Fidanova, S., Eds.; Springer: Cham, Switzerland, 2021; Volume 902. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Chang. 2015, 133, 681–693. [Google Scholar] [CrossRef]
- Wang, J.; Ji, T.; Li, M. A Combined Short-Term Forecast Model of Wind Power Based on Empirical Mode Decomposition and Augmented Dickey-Fuller Test. J. Phys. Conf. Ser. 2021, 2022, 012017. [Google Scholar] [CrossRef]
- Paiva, D.A.; Sáfadi, T. Study of Tests for Trend in Time Series. Braz. J. Biom. 2021, 39, 311–333. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hipel, K.W.; McLeod, A.I. Time Series Modelling of Water Resources and Environmental Systems; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Agbo, E.P.; Nkajoe, U.; Edet, C.O. Comparison of Mann–Kendall and Şen’s innovative trend method for climatic parameters over Nigeria’s climatic zones. Clim. Dyn. 2023, 60, 3385–3401. [Google Scholar] [CrossRef]
- Helsel, D.R.; Frans, L.M. Regional Kendall Test for Trend. Environ. Sci. Technol. 2006, 40, 4066–4073. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Khanmohammadi, N.; Rezaie, H.; Behmanesh, J. Investigation of Drought Trend on the Basis of the Best Obtained Drought Index. Water Resour. Manag. 2022, 36, 1355–1375. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Base, F. Comparison of different efficiency criteria for hydrologic models. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Shojaei, S.M.; Vahabpour, A.; Saifoddin, A.A.; Ghasempour, R. Estimation of greenhouse gas emissions from Iran’s gas flaring by using satellite data and combustion equations. Integr. Environ. Assess. Manag. 2023, 19, 735–748. [Google Scholar] [CrossRef]
- Eskandari, H.; Borji, M.; Khosravi, H.; Mesbahzadeh, T. Desertification of forest, range and desert in Tehran province, affected by climate change. Solid Earth 2016, 7, 905–915. [Google Scholar] [CrossRef]
- Saberifar, R. Climate Change and Water Crisis (Case Study, Mashhad in Northeastern Iran). Pol. J. Environ. Stud. 2023, 32, 705–716. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Ghorbanizadeh Kharazi, H.; Shayannejad, M.; Zareian, M.J. Effect of Climate Change on Precipitation Patterns in an Arid Region Using GCM Models: Case Study of Isfahan-Borkhar Plain. Nat. Hazards Rev. 2021, 21, 2. [Google Scholar] [CrossRef]
- Noori Khaje Balagh, H.; Mousavi, F. Effects of Climate Change on Quantity and Quality of Urban Runoff in a Part of Karaj Watershed Based on RCP Scenarios. JWSS 2021, 25, 59–78. [Google Scholar]
- Ghazi, B.; Jeihouni, E. Projection of temperature and precipitation under climate change in Tabriz, Iran. Arab. J. Geosci. 2022, 15, 621. [Google Scholar] [CrossRef]
- Rahimi, N.; Maddah, M.A.; Akhoond-Ali, A.M. Forecasting the impact of Climate Change on the Meteorological Parameters Using GCMs Output with the Help of Artificial Neural Network (Case Study: Shiraz Synoptic Station). Iran. J. Irrig. Drain. 2023, 16, 1157–1170. [Google Scholar]
- Javanshiri, Z.; Babaeian, I.; Pakdaman, M. Influence of large-scale climate signals on the precipitation variability over Iran. Stoch. Environ. Res. Risk Assess 2023, 37, 1745–1762. [Google Scholar] [CrossRef]
- Babiker, W.; Tan, G.; Alriah, M.A.A.; Elameen, A.M. Evaluation and correction analysis of the regional rainfall simulation by CMIP6 over Sudan. Geogr. Pannonica 2024, 28, 53–70. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Soltanpour, M.; Zolfaghari, M.R. Climate change impacts on temperature and precipitation over the Caspian Sea. Int. J. Water Resour. Dev. 2024, 1–26. [Google Scholar] [CrossRef]
- Xiao, H.; Zhuo, Y.; Sun, H.; Pang, K.; An, Z. Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere 2023, 14, 1429. [Google Scholar] [CrossRef]
- Nazarenko, L.S.; Tausnev, N.; Russell, G.L.; Rind, D.; Miller, R.L.; Schmidt, G.A.; Bauer, S.E.; Kelley, M.; Ruedy, R.; Ackerman, A.S.; et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002871. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, L.; Liu, Y.; Wei, T.; Guo, Z. CMIP6 model simulation of concurrent continental warming holes in Eurasia and North America since 1990 and their relation to the Indo-Pacific SST warming. Glob. Planet. Chang. 2022, 213, 103824. [Google Scholar] [CrossRef]
- ItoIto, G.; Romanou, A.; Kiang, N.Y.; Faluvegi, G.; Aleinov, I.; Ruedy, R.; Russell, G.; Lerner, P.; Kelley, M.; Lo, K. Global carbon cycle and climate feedbacks in the NASA GISS ModelE2.1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002030. [Google Scholar] [CrossRef]
- Nooni, I.K.; Hagan, D.F.T.; Ullah, W.; Lu, J.; Li, S.; Prempeh, N.A.; Gnitou, G.T.; Lim Kam Sian, K.T.C. Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture 2022, 12, 495. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Shu, Z.; Wang, Y.; Bao, Z.; Liu, C.; Zhou, X.; Wang, G. Evaluation of the Ability of CMIP6 Global Climate Models to Simulate Precipitation in the Yellow River Basin, China. Front. Earth Sci. 2021, 9, 751974. [Google Scholar] [CrossRef]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth-System model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef]
- Naderi, M.; Saatsaz, M.; Behrouj Peely, A. Extreme climate events under global warming in Iran. Hydrol. Sci. J. 2024, 69, 337–364. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Dhanya, P.; Geethalakshmi, V. Reviewing the Status of Droughts, Early Warning Systems and Climate Services in South India: Experiences Learned. Climate 2023, 11, 60. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Olcina, J.; Delacámara, G.; Guirado, E.; Maestre, F.T. Complex Policy Mixes are Needed to Cope with Agricultural Water Demands Under Climate Change. Water Resour. Manag. 2023, 37, 2805–2834. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, L.; Feyen, L. Cost-effective Adaptation Strategies to Rising River Flood Risk in Europe. Nat. Clim. Chang. 2023, 13, 196–202. [Google Scholar] [CrossRef]
- Moslem Savari, H.; Eskandari Damaneh, H.; Eskandari Damaneh, H. The Effect of Social Capital in Mitigating Drought Impacts and Improving Livability of Iranian Rural Households. Int. J. Disaster Risk Reduct. 2023, 89, 103630. [Google Scholar] [CrossRef]
Scenario | Description | Example Studies | Key Findings |
---|---|---|---|
SSP126 | The SSP126 scenario aims to simulate a development compatible with the 2 °C target. It is a remake of the optimistic RCP2.6 scenario, assuming climate protection measures are taken. By the year 2100, it reaches a radiative forcing level of 2.6 W/m². |
|
|
SSP245 | The SSP245 scenario, an update to the RCP4.5 scenario, represents the medium pathway for future greenhouse gas emissions. By the year 2100, it reaches an additional radiative forcing of 4.5 W/m². This scenario assumes that climate protection measures are being taken, but it does not achieve net-zero emissions by 2100. |
|
|
SSP370 | The SSP370 scenario represents an upper-middle pathway for future greenhouse gas emissions. By the year 2100, it reaches a radiative forcing level of 7 W/m². SSP370 was introduced after the RCP scenarios, bridging the gap between RCP6.0 and RCP8.5. |
|
|
SSP585 | The SSP585 scenario, also known as “Fossil-fueled Development,” represents an upper boundary in terms of greenhouse gas emissions. By the year 2100, it reaches an additional radiative forcing of 8.5 W/m². In this scenario, global markets are highly integrated, leading to technological progress and innovation. |
|
|
City | N | ADF Test Statistic | Stationarity | MK Statistic | Standard Error | Z Value | Prob > |Z| | Alpha | Sgn | Linear Trend |
---|---|---|---|---|---|---|---|---|---|---|
Tehran | 72 | −7.22 | Stationary | 90 | 205.71 | 0.43 | 0.67 | 0.05 | 0 | - |
Mashhad | 72 | −6.78 | Stationary | −102 | 205.71 | −0.49 | 0.62 | 0.05 | 0 | - |
Isfahan | 72 | −6.23 | Stationary | 180 | 205.71 | 0.87 | 0.38 | 0.05 | 0 | - |
Karaj | 38 | −4.84 | Stationary | −5 | 79.54 | −0.05 | 0.96 | 0.05 | 0 | - |
Shiraz | 72 | −5.81 | Stationary | −272 | 205.71 | −1.32 | 0.19 | 0.05 | 0 | - |
Tabriz | 72 | −6.02 | Stationary | −544 | 205.71 | −2.64 | 0.01 | 0.05 | 1 | Downward |
GCM | Tehran | Karaj | Tabriz | Mashhad | Isfahan | Shiraz |
---|---|---|---|---|---|---|
ACCESS-CM2 | 0.18 | 0.10 | −0.11 | 0.18 | −0.09 | 0.21 |
ACCESS-ESM1-5 | 0.20 | 0.15 | −0.10 | 0.20 | 0.01 | 0.25 |
BCC-CSM2-MR | 0.18 | 0.11 | −0.10 | 0.18 | −0.06 | 0.22 |
CanESM5 | 0.19 | 0.08 | −0.06 | 0.19 | −0.05 | 0.20 |
CESM2 | −0.37 | −0.40 | −0.66 | −0.49 | −0.53 | −0.27 |
CESM2-WACCM | −0.34 | −0.42 | −0.66 | −0.46 | −0.50 | −0.26 |
CMCC-CM2-SR5 | 0.11 | 0.09 | −0.14 | 0.14 | −0.15 | 0.12 |
CMCC-ESM2 | 0.16 | 0.12 | −0.14 | 0.08 | −0.07 | 0.13 |
CNRM-CM6-1 | 0.20 | 0.13 | 0 | 0.21 | 0.01 | 0.26 |
CNRM-ESM2-1 | 0.24 | 0.12 | −0.10 | 0.21 | −0.06 | 0.21 |
EC-Earth3 | 0.13 | 0.03 | −0.15 | 0.12 | −0.02 | 0.19 |
EC-Earth3-Veg-LR | 0.13 | 0.09 | −0.15 | 0.14 | −0.06 | 0.18 |
FGOALS-g3 | 0.15 | 0.13 | −0.06 | 0.17 | −0.02 | 0.15 |
GFDL-CM4 | 0.12 | 0.04 | −0.18 | 0.11 | −0.06 | 0.20 |
GFDL-CM4_gr2 | 0.14 | 0.07 | −0.13 | 0.14 | −0.04 | 0.20 |
GFDL-ESM4 | 0.14 | 0.07 | −0.16 | 0.16 | −0.07 | 0.21 |
GISS-E2-1-G | 0.21 | 0.16 | −0.07 | 0.23 | 0.00 | 0.21 |
HadGEM3-GC31-LL | −0.37 | −0.54 | −0.53 | −0.42 | −0.57 | −0.24 |
HadGEM3-GC31-MM | −0.33 | −0.51 | −0.52 | −0.38 | −0.53 | −0.21 |
IITM-ESM | 0.17 | 0.06 | −0.11 | 0.20 | −0.04 | 0.22 |
INM-CM4-8 | 0.10 | 0.00 | −0.15 | 0.16 | −0.06 | 0.15 |
INM-CM5-0 | 0.15 | 0.11 | −0.14 | 0.17 | 0.01 | 0.15 |
IPSL-CM6A-LR | 0.20 | 0.16 | −0.08 | 0.23 | −0.01 | 0.19 |
KACE-1-0-G | −0.18 | −0.36 | −0.39 | −0.31 | −0.82 | −0.26 |
KIOST-ESM | 0.20 | 0.14 | −0.08 | 0.19 | −0.07 | 0.22 |
MIROC6 | 0.18 | 0.08 | −0.10 | 0.18 | −0.06 | 0.17 |
MIROC-ES2L | 0.25 | 0.12 | −0.07 | 0.28 | 0.02 | 0.21 |
MPI-ESM1-2-HR | 0.11 | 0.04 | −0.18 | 0.14 | −0.03 | 0.17 |
MPI-ESM1-2-LR | 0.16 | 0.07 | −0.14 | 0.12 | −0.12 | 0.14 |
MRI-ESM2-0 | 0.19 | 0.07 | −0.07 | 0.18 | −0.01 | 0.25 |
NESM3 | 0.17 | 0.07 | −0.15 | 0.10 | −0.15 | 0.12 |
NorESM2-LM | −0.33 | −0.42 | −0.61 | −0.44 | −0.55 | −0.30 |
NorESM2-MM | −0.36 | −0.36 | −0.61 | −0.46 | −0.52 | −0.27 |
TaiESM1 | −0.37 | −0.47 | −0.62 | −0.50 | −0.57 | −0.29 |
UKESM1-0-LL | −0.35 | −0.53 | −0.51 | −0.39 | −0.58 | −0.24 |
City | Scenario | N | ADF Test Statistic | Stationarity | M–K Statistic | Standard Error | Z Value | Prob > |Z| | Alpha | Sgn | Trend |
---|---|---|---|---|---|---|---|---|---|---|---|
Tehran | SSP126 | 76 | −8.89 | Stationary | 8 | 222.97235 | 0.03139 | 0.97496 | 0.05 | 0 | - |
SSP245 | 76 | −7.66 | Stationary | −314 | 222.97235 | −1.40376 | 0.16039 | 0.05 | 0 | - | |
SSP370 | 76 | −8.01 | Stationary | 320 | 222.97235 | 1.43067 | 0.15252 | 0.05 | 0 | - | |
SSP585 | 76 | −8.04 | Stationary | 12 | 222.97235 | 0.04933 | 0.96065 | 0.05 | 0 | - | |
Mashhad | SSP126 | 76 | −8.68 | Stationary | −190 | 222.97235 | −0.84764 | 0.39664 | 0.05 | 0 | - |
SSP245 | 76 | −8.60 | Stationary | 74 | 222.97235 | 0.32739 | 0.74337 | 0.05 | 0 | - | |
SSP370 | 76 | −3.49 | Stationary | 452 | 222.97235 | 2.02267 | 0.04311 | 0.05 | 1 | Upward | |
SSP585 | 76 | −7.82 | Stationary | 60 | 222.97235 | 0.26461 | 0.79131 | 0.05 | 0 | - | |
Isfahan | SSP126 | 76 | −9.00 | Stationary | −56 | 222.97235 | −0.24667 | 0.80517 | 0.05 | 0 | - |
SSP245 | 76 | −8.59 | Stationary | 0 | 222.97235 | 0 | 1 | 0.05 | 0 | - | |
SSP370 | 76 | −8.32 | Stationary | 204 | 222.97235 | 0.91043 | 0.3626 | 0.05 | 0 | - | |
SSP585 | 76 | −7.45 | Stationary | 0 | 222.97235 | 0 | 1 | 0.05 | 0 | - | |
Karaj | SSP126 | 76 | −7.35 | Stationary | −38 | 222.97235 | −0.16594 | 0.8682 | 0.05 | 0 | - |
SSP245 | 76 | −8.58 | Stationary | 84 | 222.97235 | 0.37224 | 0.70971 | 0.05 | 0 | - | |
SSP370 | 76 | −9.25 | Stationary | 518 | 222.97235 | 2.31867 | 0.02041 | 0.05 | 1 | Upward | |
SSP585 | 76 | −9.18 | Stationary | 292 | 222.97235 | 1.30509 | 0.19186 | 0.05 | 0 | - | |
Shiraz | SSP126 | 76 | −3.61 | Stationary | −58 | 222.97235 | −0.25564 | 0.79823 | 0.05 | 0 | - |
SSP245 | 76 | −8.29 | Stationary | −54 | 222.97235 | −0.2377 | 0.81212 | 0.05 | 0 | - | |
SSP370 | 76 | −9.13 | Stationary | −132 | 222.97235 | −0.58752 | 0.55686 | 0.05 | 0 | - | |
SSP585 | 76 | −8.30 | Stationary | 40 | 222.97235 | 0.17491 | 0.86115 | 0.05 | 0 | - | |
Tabriz | SSP126 | 76 | −6.62 | Stationary | 84 | 222.97235 | 0.37224 | 0.70971 | 0.05 | 0 | - |
SSP245 | 76 | −7.80 | Stationary | 400 | 222.97235 | 1.78946 | 0.07354 | 0.05 | 0 | - | |
SSP370 | 76 | −7.66 | Stationary | 8 | 222.97235 | 0.03139 | 0.97496 | 0.05 | 0 | - | |
SSP585 | 76 | −4.22 | Stationary | −24 | 222.97235 | −0.10315 | 0.91784 | 0.05 | 0 | - |
City | Number of Dry Days | Number of Very Heavy Precipitation Days | ||||||
---|---|---|---|---|---|---|---|---|
SSP126 | SSP245 | SSP370 | SSP585 | SSP126 | SSP245 | SSP370 | SSP585 | |
Tehran | 23,577 | 23,310 | 23,388 | 23,609 | 203 | 302 | 257 | 258 |
Mashhad | 23,946 | 23,705 | 23,512 | 23,813 | 408 | 494 | 550 | 529 |
Isfahan | 24,530 | 24,064 | 24,107 | 24,315 | 190 | 240 | 245 | 232 |
Karaj | 22,255 | 22,372 | 22,119 | 22,091 | 376 | 376 | 401 | 419 |
Shiraz | 25,062 | 25,040 | 25,069 | 25,138 | 728 | 698 | 778 | 740 |
Tabriz | 20,831 | 20,952 | 21,336 | 21,375 | 403 | 413 | 438 | 485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afsari, R.; Nazari-Sharabian, M.; Hosseini, A.; Karakouzian, M. Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises. Water 2024, 16, 2226. https://doi.org/10.3390/w16162226
Afsari R, Nazari-Sharabian M, Hosseini A, Karakouzian M. Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises. Water. 2024; 16(16):2226. https://doi.org/10.3390/w16162226
Chicago/Turabian StyleAfsari, Rasoul, Mohammad Nazari-Sharabian, Ali Hosseini, and Moses Karakouzian. 2024. "Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises" Water 16, no. 16: 2226. https://doi.org/10.3390/w16162226
APA StyleAfsari, R., Nazari-Sharabian, M., Hosseini, A., & Karakouzian, M. (2024). Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises. Water, 16(16), 2226. https://doi.org/10.3390/w16162226