Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan
Abstract
:1. Introduction
- By type of drought: meteorological (atmospheric), soil (agroclimatic), and hydrological
- By duration of drought: short (duration up to 30 days) and long (more than 30 days)
- According to the temperature of the environment (air, soil, and water): high and very high. Depending on the environment are considered:
- Air temperature: high up to 30 °C and very high above 30 °C;
- Soil temperature: high up to 40 °C and very high above 40 °C;
- Water temperature: high up to 28 °C and very high above 28 °C.
- Hydrogeological: type of water supply of a river or lake, conditions of water occurrence, groundwater supply regime, conditions of underground water supply, and type of hydraulic connection with the river;
- Morphometric: depth of erosion incision of the channel and catchment area;
- Meteorological: air temperature, soil temperature, water evaporation, evaporation from soil, and transpiration by vegetation;
- Anthropogenic water withdrawal for irrigation, water withdrawal by industry, water withdrawal for municipal and domestic needs, and water withdrawal for agricultural needs.
- Water resource deficits (hydrological droughts can significantly reduce water reserves, leading to serious economic and social consequences);
- Under conditions of a changing climate, hydrological anomalies, including droughts, are becoming more pronounced;
- Threat to agriculture (hydrological droughts can lead to reduced crop yields, with negative impacts on food security and human well-being);
- Droughts can cause soil degradation and changes in ecological systems, which directly affect the sustainability of regions;
- Assessment and analysis of hydrological drought characteristics are necessary for effective water resources management and the development of drought prevention and mitigation measures.
2. Materials and Methods
2.1. Description of the Study Area
2.1.1. Zhaiyk–Caspian Water Management Basin
2.1.2. Tobyl–Torgai Water Management Basin
2.1.3. Yesil Water Management Basin
2.1.4. Nura–Sarysu Water Management Basin
2.2. Research Materials
- Seventeen hydrological posts in the Zhaiyk–Caspian WMB;
- Twelve hydrological posts in the Tobyl–Torgai WMB;
- Seven hydrological stations in the Yesil WMB;
- Nine hydrological posts in the Nura–Sarysu WMB.
- Eighteen meteorological stations in the Zhaiyk–Caspian WMB;
- Eleven meteorological stations in the Tobyl–Torgai WMB;
- Seven meteorological stations in the Yesil WMB;
- Ten meteorological stations in the Nura–Sarysu WMB.
2.3. Research Methods
- A gamma distribution function with the following form is constructed from the precipitation sums data:
- The cumulative probability function of a standard normally distributed random variable is constructed on the basis of the distribution density;
- Using the obtained normal distribution, the sums of precipitation are reduced to the form of SPI. A classification of drought conditions is shown in Table 3.
- Soil moisture changes respond to precipitation anomalies on a short-term scale;
- Groundwater and river flow conditions reflect long-term precipitation anomalies.
- One–two months for meteorological drought;
- One–six months for agricultural drought;
- Six–twenty-four months and more for hydrological drought.
3. Results
- Zhaiyk–Caspian water management basin
- b.
- Tobyl–Torgai water management basin
- c.
- Yesil water management basin
- d.
- Nura–Sarysu water management basin
4. Discussion
4.1. Zhaiyk–Caspian Water Management Basin
4.2. Tobyl–Torgai Water Management Basin
4.3. Yesil Water Management Basin
4.4. Nura–Sarysu Water Management Basin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upravlenie OON po Snizheniyu Riska Bedstvii (2021). GAR 2021—Spetsial’nyi Doklad o Zasukhe: Rezyume Dlya Direktivnykh Organov. Zheneva. Available online: https://www.undrr.org/media/72527/download?startDownload=true (accessed on 1 August 2024).
- Gringof, I.G. Zasukhi i opustynivanie—Ekologicheskie problemy sovremennosti. Tr. VNIISKhM 2000, 33, 14–40. [Google Scholar]
- Zolotokrylin, A.N. Klimaticheskoe Opustynivanie (Climatic Desertification); Krenke, A.N., Ed.; Nauka: Moscow, Russia, 2003; 245p. (In Russian) [Google Scholar]
- Loginov, V.F.; Neushkin, A.I.; Rocheva, E.V. Zasukhi, Ikh Vozmozhnye Prichiny i Predposylki Predskazaniya (Drought: Possible Reasons for Their Occurrenceand Prerequisite for Their Prediction); Obninsk, Russia, 1976; 71p. (In Russian) [Google Scholar]
- Grebenshchikov, V.; Kol’venko, V.; Gavrilenko, L.; Grebenshchikova, N.; Tyshkevich, T. Osobennosti poyavleniya gidrologicheskikh zasukh v nizhnem techenii reki Dnestr. In Proceedings of the International Conference “Hydropower Impact on River Ecosystem Functioning”, Tiraspol, Moldova, 8–9 October 2019; Eco-TIRAS International Association of River Keepers: Tiraspol, Moldova, 2019; pp. 65–69, ISBN 978-9975-56-690-2. (In Russian). [Google Scholar]
- American Meteorological Society. Meteorological drought—Policy statement. Bull. Amer. Meteorol. Soc. 1997, 78, 847–849. [Google Scholar] [CrossRef]
- Hisdal, H.; Tallaksen, L.M.; Gauster, T.; Bloomfield, J.P.; Parry, S.; Prudhomme, C.; Wanders, N. Chapter 5—Hydrological drought characteristics. In Hydrological Drought, 2nd ed.; Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2024; pp. 157–231. [Google Scholar] [CrossRef]
- Semenova, S.M. (Ed.) Metody Otsenki Posledstvii Izmeneniya Klimata dlya Fizicheskikh i Biologicheskikh Sistem: Monografiya; Federal Service for Hydrometeorology and Environmental Monitoring of the Russian Federation (Rosgidromet): Moscow, Russia, 2012; 508p. [Google Scholar]
- Vladimirov, A.M. Klassifikatsiya Gidrologicheskikh zasukh. Uchenye zapiski (Classification of Hydrological Droughts. Scientific Notes), In Russian. RGGMU No. 23. Nauchno-Teoreticheskii Zhurnal—SPb.: RGGMU. In Klassifikatsiya Gidrologicheskikh zasukh. Uchenye zapiski (Classification of Hydrological Droughts. Scientific Notes); RGGMU No. 23. Nauchno-Teoreticheskii Zhurnal; SPb.: RGGMU: Saint Petersburg, Russia, 2012; pp. 5–12. Available online: https://www.rshu.ru/university/notes/archive/issue23/uz23-5-12.pdf (accessed on 1 July 2024). (In Russian)
- Wong, G.; van Lanen, H.; Torfs, P. Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrol. Sci. J. 2013, 58, 253–270. [Google Scholar] [CrossRef]
- Vladimirov, A.M. Faktory Formirovaniya Ekstremal’nogo Stoka v Malovodnyi Sezon; SPb. Uchenye Zapiski RGGMU. No. 7; Uchenye zapiski RGGMU: Saint Petersburg, Russia, 2008; pp. 13–22. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators, Melbourne, Commonwealth of Australia; Bureau of Meteorology Bulletin No.48; Bureau of Meteorology: Melbourne, Australia, 1967. [Google Scholar]
- Kingston, D.G.; Ionita, M.; Stahl, K.; Van Dijk, A. Chapter 2—Hydroclimatology, Hydrological Drought, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 21–47. [Google Scholar] [CrossRef]
- Ahmad, L.; Arain, N.; Akber, A.; Qayoom, S.; Bhat, O.A.; Kumar, R. Drought Concepts, Characterization, and Indicators. Integr. Drought Manag. 2024, 1, 43–62. [Google Scholar]
- Soylu Pekpostalci, D.; Tur, R.; Danandeh Mehr, A.; Vazifekhah Ghaffari, M.A.; Dąbrowska, D.; Nourani, V. Drought Monitoring and Forecasting across Turkey: A Contemporary Review. Sustainability 2023, 15, 6080. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Climatology Report No. 97-2; Colorado State University: Fort Collins, CO, USA, 1997; 155p. [Google Scholar]
- Mehr, A.D.; Sorman, A.U.; Kahya, E.; Afshar, M.H. Climate change impacts on meteorological drought using SPI and SPEI: Case study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 199–204. [Google Scholar] [CrossRef]
- Bordi, I.; Fraedrich, K.; Sutera, A. Observed drought and wetness trends in Europe: An update. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 3891–3915. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Liang, L.; Jun, H.; Yan, D.; Wang, X.; Li, C.; Sun, T. Thresholds for triggering the propagation of meteorological drought to hydrological drought in water-limited regions of China. Sci. Total. Environ. 2023, 876, 162771. [Google Scholar] [CrossRef] [PubMed]
- Selyaninov, G.T. O sel’skokhozyaistvennoi otsenke klimata. Tr. Po Sel’skokhozyaistvennoi Meteorol. 1928, 20, 165–177. [Google Scholar]
- Strashnaya, A.I.; Bogomolova, N.A. O kataloge sil’nykh pochvennykh zasukh pod rannimi yarovymi zernovymi kul’turami v Chernozemnoi zone Rossii. Tr. Gidromettsentra Ross. 2005, 340, 35–47. [Google Scholar]
- Zoidze, E.K.; Khomyakova, G.V. Modelirovanie Formirovaniya Vlagoobespechennosti Territorii Evropeiskoi Rossii v Sovremennykh Usloviyakh i Osnovy Otsenki Agroklimaticheskoi Bezopasnosti; Meteorologiya i gidrologiya: Moscow, Russia, 2006. [Google Scholar]
- Ionova, E.V.; Likhovidova, V.A.; Lobunskaya, I.A. Zasukha i gidrotermicheskii koeffitsient uvlazhneniya kak odin iz kriteriev otsenki stepeni ee intensivnosti (obzor literatury). Zernovoe Khozyaistvo Ross. 2019, 18–22. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Droughts; U.S. Department of Commerce Weather Bureau Research Paper 45; U.S. Weather Bureau: Washington, DC, USA, 1965; 58p. [Google Scholar]
- Kim, T.-W.; Valdés, J.B.; Aparicio, J. Frequency and Spatial Characteristics of Droughts in the Conchos River Basin, Mexico. Water Int. 2002, 27, 420–430. [Google Scholar] [CrossRef]
- Mika, J.; Horvth, S.; Makra, L.; Dunkel, Z. The Palmer Drought Severity Index (PDSI) as an indicator of soil moisture. Phys. Chem. Earth 2005, 30, 223–230. [Google Scholar] [CrossRef]
- Zhai, J.; Su, B.; Krysanova, V.; Vetter, T.; Gao, C.; Jiang, T. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and assumptions. J. Clim. Appl. Meteorol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2008, 23, 881–897. [Google Scholar] [CrossRef]
- Dobrovol’skii, S.G. Zasukhi mira i ikh evolyutsiya vo vremeni: Sel’skokhozyaistvennyi, meteorologicheskii i gidrologicheskii aspekty. Vodn. Resur. 2015, 42, 119. [Google Scholar]
- Kholoptsev, A.V.; Naurozbayeva, Z.K. Estimates of the Periodicity of Atmospheric Blockings Over Kazakhstan in the Spring–Summer Time According to Era 5 Reanalysis Data. In Physical and Mathematical Modeling of Earth and Environment Processes—2022; Karev, V.I., Ed.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Alimkulov, S.; Makhmudova, L.; Tursunova, A.; Talipova, E.; Birimbayeva, L. Kopzhyldyq gidrometeorologiyalyq malimetteri negizinde Zhajyq-Kaspiy su sharuashylyq alabyndagy gidrologiyalyq qurgaqshylyqty bagalau. Gidrometeorol. Zhane Ekol. 2024, 112, 26–38. [Google Scholar] [CrossRef]
- Galperin, R.I. Materialy po gidrografii Kazahstana; Part 1–3; al’-Farabi KazNU: Almaty, Kazakhstan, 1997; 90p. [Google Scholar]
- Galperin, R.I.; Davletgaliev, S.K.; Moldakhmetov, M.M.; Chigrinets, A.G.; Makhmudova, L.K.; Avezova, A. Water resources of Kazakhstan: Assessment, forecast, management. In River Runoff Resources of Kazakhstan; Book 1; Institute of Geography and Water Security: Almaty, Kazakhstan, 2012; Volume VII, 684p, ISBN 978-601-7150-32-7. [Google Scholar]
- National Drought Mitigation Center. SPI Generator [Software]. University of Nebraska–Lincoln. 2018. Available online: https://drought.unl.edu/Monitoring/SPI/SPIProgram.aspx (accessed on 1 August 2024).
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Code of Rules CR 33-101-2003. In Definition of the Main Calculated Hydrological Characteristics; Gosstroy of Russia: Moscow, Russia, 2004.
- Tursunova, A.; Medeu, A.; Alimkulov, S.; Saparova, A.; Baspakova, G. Water resources of Kazakhstan in conditions of uncertainty. J. Water Land Dev. 2022, 138–149. [Google Scholar] [CrossRef]
- Makhmudova, L.; Moldakhmetov, M.; Mussina, A.; Kanatuly, A. Perennial fluctuations of river runoff of the Yesil river basin. Period. Eng. Nat. Sci. 2021, 9, 149–165. [Google Scholar] [CrossRef]
- Yevjevich, V. An Objective Approach to Definition and Investigations of Continental Hydrological Droughts; Hydrology Papers; Colorado State University: Fort Collins, CO, USA, 1967; Volume 23. [Google Scholar]
- Zelenhasic, E.; Salvai, A. A method of streamflow drought analysis. Water Resour. Res. 1987, 23, 156–168. [Google Scholar] [CrossRef]
- Tate, E.L.; Freeman, S.N. The modeling approaches for seasonal streamflow droughts in southern Africa: The use of censored data. Hydrol. Sci. J. 2000, 45, 27–42. [Google Scholar] [CrossRef]
- Clausen, B.; Pearson, C.P. Regional frequency analysis of annual maximum streamflow draught. J. Hydrol. 1995, 173, 111–130. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Madsen, H.; Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Integrated Drought Management Tools and Guidelines Series 2; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP): Geneva, Switzerland, 2016. [Google Scholar]
Zhaiyk–Caspian WMB | |||||||
1 | Uralsk | 6 | Dzhambeyty | 11 | Rodnikovka | 15 | Emba |
2 | Makhambet | 7 | Shyngarlau | 12 | Aktobe | 16 | Mugodzharskaya |
3 | Kamenka | 8 | Uil | 13 | Kosistek | 17 | Shalkar |
4 | Kaztalovka | 9 | Karaulkeldy | 14 | Novorossiyskoe | 18 | Ayakkum |
5 | Zhalpaktal | 10 | Il’insky | ||||
Tobyl–Torgai WMB | |||||||
1 | Tobol | 4 | Kushmurun | 7 | Amangeldy | 10 | Karabutak |
2 | Jetygara | 5 | Arkalyk | 8 | Kulzhambay | 11 | Komsomolskoye |
3 | Arshalinsky | 6 | Ekidyn | 9 | Irgiz | ||
Yesil WMB | |||||||
1 | Arshaly | 3 | Akkol | 5 | Balkashino | 7 | Ereimentau |
2 | Astana | 4 | Atbasar | 6 | Ruzaevka | ||
Nura–Sarysu WMB | |||||||
1 | Rodnikovskiy | 4 | Bes-Oba | 7 | ZhanaArka | 9 | Zhezkazgan |
2 | Korneevka | 5 | Aksu-Ayuly | 8 | Kyzyltau | 10 | Zliha |
3 | Karagandy | 6 | Zharyk |
N° | Hydrological Station | Distance from the River Mouth (km) | Watershed Area (km2) | Average Height of the Basin, (m) | Runoff Observation Period | Number of Years of Observation |
---|---|---|---|---|---|---|
Zhaiyk–Caspian WMB | ||||||
1 | Zhaiyk-Kushum | 732 | 190,000 | 1912–1918, 1920–2021 | 109 | |
2 | Zhaiyk-Makhambet | 145 | 230,000 | 1936–1941, 1943–2021 | 85 | |
3 | Or-Bogetsay | 208 | 7480 | 350 | 1958–1997, 2000–2021 | 62 |
4 | Elek-Shelek | 112 | 37,300 | 250 | 1949–2006, 2008–2021 | 72 |
5 | Kargaly-Karagala | 7 | 5000 | 370 | 1957–2001, 2003–2021 | 64 |
6 | Kosistek-Kosistek | 24 | 281 | 430 | 1957–2021 | 65 |
7 | Ulken Kobda-Kobda | 172 | 8110 | 240 | 1961–2021 | 61 |
8 | Shyngyrlau-Kentubek | 87 | 4660 | 130 | 1954–2000, 2005–2006, 2011–2021 | 60 |
9 | Shagan-Kamenny | 116 | 4000 | 130 | 1931–1941, 1948, 1950–2010 | 73 |
10 | Derkul-Beles | 54 | 1820 | 101 | 1963–1988, 1990–1995, 1997, 1998, 2002–2007, 2009–2021 | 52 |
11 | Karaozen-Zhalpaktal | 178 | 13,200 | 1981, 1982, 1984–1991, 1994–1998, 2000–2002, 2004–2005, 2008–2015, 2017–2021 | 32 | |
12 | Saryozen-Bostandyk | 205 | 11,000 | 1975–1978, 1980–1992, 1994, 2008–2009, 2011–2021 | ||
13 | Oiyl-Oiyl | 420 | 17,100 | 1981, 1984–2021 | 39 | |
14 | Temir-Sagashili | 166 | 960 | 303 | 1968–2021 | 54 |
15 | Sagyz-Sagyz | 348 | 160 | 1954–1978, 1980–1992 | 38 | |
16 | Olenty-Zhympity | 127 | 1290 | 80 | 1964–1997, 2007, 2009–2021 | 48 |
17 | Kopyrankaty-Algabas | 5 | 723 | 80 | 1957–1998, 2000–2004, 2006–2021 | 53 |
Tobyl–Torgai WMB | ||||||
1 | Tobyl-Akkarga | 1549 | 2820 | 324 | 1959–1967, 1969, 1974–1976, 1978–1991, 2004, 2006–2008, 2010–2018 | 40 |
2 | Tobyl-Grishenka | 1399 | 13,400 | 320 | 1937–1997, 1999–2021 | 84 |
3 | Tobyl-Kostanay | 1185 | 44,800 | 268 | 1931–1997, 1999–2021 | 90 |
4 | Ayat-Varvaryinka | 85 | 10,300 | 285 | 1952–1997, 1999–2021 | 69 |
5 | Togyzak-Togyzak | 70 | 7970 | 269 | 1936, 1940–1997, 2004–2021 | 77 |
6 | Obagan-Aksuat | 102 | 22,300 | 178 | 1938–1944, 1958–1961, 2003–2005, 2007, 2012–2021 | 25 |
7 | Torgay-Tusum Sands | 474 | 56,500 | 228 | 1940–1981,1983–1995, 1999–2006, 2010–2021 | 75 |
8 | Karatorgay-Urpek | 29 | 15,000 | 366 | 1941–1944, 1947–1990, 1992, 1993, 1995, 2001–2005, 2010–2021 | 67 |
9 | Sarytorgay-Sarytorgay | 3 | 5870 | 400 | 1960–1980, 1982–1984, 1986, 1987, 2009–2021 | 39 |
10 | Yrgyz-Shenbertal | 229 | 26,800 | 270 | 1961–1996, 2005, 2006, 2009–2021 | 51 |
11 | Damdy-Damdy | 65 | 1850 | 1955, 1956, 1959–1963, 2010–2021 | 19 | |
12 | Uly Zhylanshyk-Korgantas | 397 | 170 | 645 | 1958–1986 | 29 |
Yesil WMB | ||||||
1 | Yesil-Turgen | 2367 | 3240 | 524 | 1974–2021 | 48 |
2 | Moiyldy-Nikolayevka | 22 | 472 | 530 | 1973–1995, 2001–2021 | 49 |
3 | Kalkutan-Kalkutan | 44 | 16,500 | 361 | 1937–1940, 1955, 1956, 1958–2021 | 70 |
4 | Zhabay-Atbasar | 16 | 8530 | 364 | 1936–1940, 1944, 1945, 1947–2021 | 82 |
5 | Akkanburlyk-Vozvyshenka | 12 | 6250 | 315 | 1938–40, 1951–1990, 2003–2021 | 62 |
6 | Imanburlyk-Sokolovka | 29,9 | 4070 | 282 | 1950–2021 | 72 |
7 | Silety-Izobilnoye | 134 | 14,600 | 340 | 1959–1965, 1968–2021 | 61 |
Nura–Sarysu WMB | ||||||
1 | Nura-Besoba | 894 | 1050 | 900 | 1960–2006, 2011–2021 | 58 |
2 | Nura-Sheshenkara | 785 | 13,980 | 719 | 1960–2021 | 62 |
3 | Nura-Balykty | 705 | 17,960 | 690 | 1960–2021 | 62 |
4 | Nura-Koshkarbayeva | 369 | 50,760 | 606 | 1960–2015, 2017–2021 | 62 |
5 | Sherubainura-Karamuryn | 102 | 8700 | 790 | 1960–2021 | 62 |
6 | Con-Birlik | 38 | 10,300 | 450 | 1950–1955, 1957–1966, 1968–1991, 1996, 2001–2005, 2007 | 47 |
7 | Kulanotpes-Sherbakovsky | 124 | 4530 | 493 | 1962–1965, 1967–1997 | 35 |
8 | Sarysu-189th passage | 698 | 26,900 | 635 | 1962–1997, 2000–2021 | 58 |
9 | Zhamansarysu-Atasu | 2.5 | 9200 | 711 | 1932–1997, 2009–2021 | 57 |
SPI Value Intervals | Characterization of the Dryness Category of the Territory |
---|---|
2.0+ | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1.0 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
−2 and less | Extremely dry |
Index Value | Description |
---|---|
SDI ≥ 2 | Extremely Wet |
2 ≥ SDI ≥ 1.5 | Very Wet |
1.5 ≥ SDI ≥ 1 | Moderately Wet |
1 ≥ SDI ≥ −1 | Near Normal |
−1 ≥ SDI ≥ −1.5 | Moderately Dry |
−1.5 ≥ SDI ≥ −2 | Severe Dry |
SDI ≤ −2 | Extremely Dry |
Meteorological Station | Drought Initial Date | Drought End Date | Duration of Drought, Months | SPI Minimum | SPI Accumulated | SPI Average |
---|---|---|---|---|---|---|
Zhaiyk–Caspian water management basin | ||||||
Ural’sk | July 1943 | September 1945 | 26 | −2.08 | −25.37 | −0.98 |
October 1949 | September 1956 | 83 | −3.02 | −115.71 | −1.39 | |
November 1975 | October 1976 | 11 | −2.12 | −16.34 | −1.49 | |
Makhambet | January 1977 | October 1979 | 33 | −2.08 | −25.06 | −0.76 |
Kamenka | June 1972 | August 1973 | 14 | −2.53 | −22.82 | −1.63 |
June 1975 | September 1976 | 15 | −3.3 | −31.62 | −2.11 | |
Zhalpaktal | August 1929 | May 1931 | 21 | −2.68 | −28.47 | −1.36 |
August 1937 | May 1941 | 45 | −2.78 | −56.87 | −1.26 | |
December 1944 | September 1945 | 9 | −2.75 | −14.43 | −1.6 | |
January 1949 | June 1952 | 41 | −2.83 | −67.92 | −1.66 | |
October 1955 | July 1956 | 9 | −2.92 | −14.93 | −1.66 | |
March 1976 | December 1977 | 21 | −2.07 | −16.79 | −0.8 | |
Kaztalovka | November 1975 | August 1976 | 9 | −2.04 | −13.04 | −1.45 |
April 1999 | September 2000 | 17 | −2.01 | −20.46 | −1.2 | |
April 2003 | July 2008 | 63 | −2.54 | −67.18 | −1.07 | |
Shyngyrlau | November 1939 | November 1940 | 12 | −2.43 | −22.29 | −1.86 |
August 1951 | August 1954 | 36 | −2.32 | −36.87 | −1.02 | |
September /2014 | April 2016 | 19 | −4.02 | −44.61 | −2.35 | |
Dzhambeity | June 1936 | November 1940 | 53 | −2.42 | −73.11 | −1.38 |
April 1950 | September 1953 | 41 | −2.83 | −41.51 | −1.01 | |
October 1955 | October 1956 | 12 | −2.78 | −20.74 | −1.73 | |
March 2015 | April 2016 | 13 | −2.5 | −22.67 | −1.74 | |
Aktobe | June 1930 | September 1932 | 27 | −2.37 | −28.5 | −1.06 |
September 1933 | July 1941 | 94 | −3.27 | −140.96 | −1.5 | |
April 1950 | September 1956 | 77 | −2.83 | −90.66 | −1.18 | |
August 1975 | October 1976 | 14 | −2.05 | −11.75 | −0.84 | |
Novorossiyskoye | June 1930 | August 1931 | 14 | −2.99 | −18.76 | −1.34 |
October 1932 | August 1941 | 106 | −3.46 | −212.42 | −2 | |
August 1944 | September 1945 | 13 | −2.71 | −25.78 | −1.98 | |
Kosistek | August 1965 | June 1966 | 9 | −2.28 | −9.34 | −1.04 |
August 1975 | December 1977 | 28 | −2.68 | −31.43 | −1.12 | |
August 2010 | August 2011 | 12 | −2.01 | −14.26 | −1.19 | |
November 2012 | September 2013 | 10 | −2.1 | −14.56 | −1.46 | |
March 2015 | February 2016 | 11 | −2.11 | −8.84 | −0.8 | |
June 2019 | July 2020 | 13 | −2.09 | −15.43 | −1.19 | |
Rodnikovka | December 1939 | April 1941 | 16 | −2.61 | −25.66 | −1.6 |
April 1944 | August 1945 | 16 | −3.71 | −41.28 | −2.58 | |
May 1950 | December 1953 | 43 | −2.72 | −48.48 | −1.13 | |
September 1975 | July 1976 | 10 | −2.3 | −8.87 | −0.89 | |
August 2010 | September 2011 | 13 | −2.03 | −15.71 | −1.21 | |
November 2012 | September 2013 | 10 | −2.25 | −15.87 | −1.59 | |
February 2015 | March 2016 | 13 | −2.48 | −18.12 | −1.39 | |
Il’insky | September 1975 | July 1976 | 10 | −2.68 | −14.92 | −1.49 |
September 2012 | September 2013 | 12 | −2.53 | −20.65 | −1.72 | |
Emba | July 1929 | July 1931 | 24 | −2.44 | −28.74 | −1.2 |
July 1933 | November 1937 | 52 | −2.59 | −78.96 | −1.52 | |
September 1944 | December 1945 | 15 | −2.49 | −22.27 | −1.48 | |
September 1951 | May 1953 | 20 | −2.15 | −18.25 | −0.91 | |
Mugodzharskaya | June 1936 | March 1940 | 45 | −2.62 | −64.81 | −1.44 |
January 1949 | September 1950 | 20 | −3.01 | −25.91 | −1.3 | |
August 1951 | October 1953 | 26 | −3.47 | −44.61 | −1.72 | |
January 2019 | January 2020 | 12 | −2.05 | −13.92 | −1.16 | |
Karaulkeldy | July 1939 | May 1941 | 22 | −2.18 | −23.49 | −1.07 |
March 1949 | May 1953 | 50 | −3.37 | −65.87 | −1.32 | |
October 1955 | October 1956 | 12 | −2.17 | −11.22 | −0.94 | |
June 1975 | July 1978 | 37 | −2.82 | −43.97 | −1.19 | |
Uil | December 1935 | August 1941 | 68 | −3.1 | −123.35 | −1.81 |
September 1951 | September 1952 | 12 | −2.16 | −9.02 | −0.75 | |
October 1955 | July 1956 | 9 | −2.17 | −9.84 | −1.09 | |
August 1975 | September 1976 | 13 | −2.66 | −17.08 | −1.31 | |
Shalkar | April 1944 | March 1946 | 23 | −3.3 | −41.34 | −1.8 |
June 1951 | June 1952 | 12 | −2.75 | −19.47 | −1.62 | |
April 1955 | June 1956 | 14 | −2.87 | −30.88 | −2.21 | |
June 1957 | April 1958 | 10 | −2.17 | −11.87 | −1.19 | |
Ayakkum | December 1950 | September 1952 | 21 | −2.77 | −36.46 | −1.74 |
October 1996 | April 1997 | 6 | −2.2 | −9.18 | −1.53 | |
Tobyl–Torgai water management basin | ||||||
Dzhetygara | January 1952 | May 1956 | 52 | −2.31 | −53.73 | −1.03 |
August 1961 | September 1963 | 25 | −2.33 | −36.38 | −1.46 | |
November 1975 | November 1976 | 12 | −2.08 | −11.42 | −0.95 | |
Arshalinsky | June 1973 | July 1974 | 13 | −2.19 | −9.92 | −0.76 |
August 1975 | December 1977 | 28 | −3.04 | −40.99 | −1.46 | |
April 2009 | November 2010 | 19 | −2.16 | −19.2 | −1.01 | |
Tobol | December 1951 | June 1953 | 18 | −2.65 | −25.86 | −1.44 |
July 1955 | May 1956 | 10 | −2.52 | −21.93 | −2.19 | |
July 1995 | May 1999 | 46 | −2.86 | −80.96 | −1.76 | |
Arkalyk | September 1955 | January 1958 | 28 | −2.78 | −37.77 | −1.35 |
September 1975 | June 1976 | 9 | −2.05 | −7.23 | −0.8 | |
Amangeldy | September 1975 | October 1976 | 13 | −2.24 | −12.53 | −0.96 |
Ekidyn | August 1975 | May 1978 | 33 | −2.61 | −41 | −1.24 |
December 1993 | November 1994 | 11 | −2.28 | −11.29 | −1.03 | |
August 2006 | August 2007 | 12 | −2.71 | −15.82 | −1.32 | |
Irgiz | August 1927 | June 1928 | 10 | −2.13 | −12.1 | −1.21 |
April 1944 | December 1945 | 20 | −3.65 | −40.84 | −2.04 | |
November 1991 | October 1992 | 11 | −2.08 | −10.4 | −0.95 | |
Komsomolskoye | July 1975 | April 1978 | 33 | −3.01 | −34.91 | −1.06 |
May 1996 | November 1997 | 18 | −2.13 | −17.9 | −0.99 | |
Karabutak | September 1951 | May 1953 | 20 | −2.01 | −16.71 | −0.84 |
August 1955 | May 1956 | 9 | −2.66 | −17.3 | −1.92 | |
July 1975 | October 1979 | 51 | −2.9 | −71.37 | −1.4 | |
Kulzhambai | March 1996 | March 1997 | 12 | −2.28 | −16.74 | −1.4 |
January 2006 | January 2008 | 24 | −2.89 | −29.36 | −1.22 | |
Kushmurun | June 1945 | July 1946 | 13 | −2.58 | −16.5 | −1.27 |
March 1949 | July 1950 | 16 | −2.78 | −19.82 | −1.24 | |
September 1951 | August 1953 | 23 | −2.23 | −35.67 | −1.55 | |
July 1998 | June 1999 | 11 | −2.03 | −15.58 | −1.42 | |
Yesil water management basin | ||||||
Arshaly | June 1977 | May 1978 | 11 | −2.09 | −9.33 | −0.85 |
November 1991 | August 1992 | 9 | −2.17 | −14.05 | −1.56 | |
January 1998 | May 2000 | 28 | −2.31 | −34.77 | −1.24 | |
August 2006 | June 2007 | 10 | −2.01 | −10.73 | −1.07 | |
Astana | December 1950 | July 1953 | 31 | −3.97 | −71.65 | −2.31 |
August 1955 | April 1958 | 32 | −3.62 | −43.67 | −1.36 | |
June 1982 | May 1983 | 11 | −2.17 | −9.15 | −0.83 | |
Akkol | July 1935 | September 1939 | 50 | −3.23 | −89.9 | −1.8 |
September 1940 | October 1941 | 13 | −2.32 | −21.3 | −1.64 | |
July 1952 | May 1954 | 22 | −2.26 | −14.4 | −0.65 | |
October 1955 | March 1957 | 17 | −2.1 | −15.56 | −0.92 | |
January 1998 | February 2000 | 25 | −2.29 | −22.77 | −0.91 | |
Balkashino | September 1936 | August 1941 | 59 | −2.22 | −57.68 | −0.98 |
September 1951 | July 1953 | 22 | −2.71 | −37.11 | −1.69 | |
Atbasar | June 1937 | October 1938 | 16 | −2.24 | −24.28 | −1.52 |
May 1949 | July 1953 | 50 | −3.27 | −89.33 | −1.79 | |
June 1955 | May 1958 | 35 | −3.03 | −51.59 | −1.47 | |
October 1968 | July 1969 | 9 | −2.15 | −17.2 | −1.91 | |
Ruzayevka | April 1937 | August 1938 | 16 | −2.78 | −30.58 | −1.91 |
August 1948 | August 1950 | 24 | −2.48 | −32.51 | −1.35 | |
September 1951 | June 1953 | 21 | −2.22 | −24.85 | −1.18 | |
July 1965 | July 1966 | 12 | −2.88 | −25.85 | −2.15 | |
July 1975 | August 1977 | 25 | −2.63 | −33.04 | −1.32 | |
Ereimentau | December 1955 | July 1958 | 31 | −2.7 | −38.63 | −1.25 |
August 1965 | June 1966 | 10 | −2.11 | −10.54 | −1.05 | |
May 1998 | June 1999 | 13 | −2.64 | −18.79 | −1.45 | |
November 2010 | October 2011 | 11 | −2.64 | −17.68 | −1.61 | |
Nura–Sarysu water management basin | ||||||
Bes-Oba | August 1944 | August 1946 | 24 | −2.03 | −27 | −1.12 |
April 2012 | July 2016 | 51 | −2.03 | −41.93 | −0.82 | |
Karagandy | August 1944 | August 1946 | 24 | −2.29 | −43.39 | −1.81 |
October 1950 | February 1954 | 40 | −3.52 | −62.49 | −1.56 | |
October 1955 | December 1957 | 26 | −2.17 | −31.04 | −1.19 | |
Aksu-Ayuly | January 1951 | December 1953 | 35 | −2.61 | −44.07 | −1.26 |
August 1955 | May 1958 | 33 | −2.5 | −42.32 | −1.28 | |
Korneevka | August 1974 | June 1978 | 46 | −2.7 | −56.49 | −1.23 |
September 1997 | July 1998 | 10 | −2.41 | −16.72 | −1.67 | |
May 1999 | May 2000 | 12 | −2.73 | −8.53 | −0.71 | |
July 2003 | April 2004 | 9 | −2 | −8.82 | −0.98 | |
Rodnikovsky | July 1997 | June 1999 | 23 | −3.54 | −46.9 | −2.04 |
Zharyk | December 1936 | March 1938 | 15 | −2.82 | −33 | −2.2 |
March 1939 | June 1947 | 99 | −3.47 | −153.35 | −1.55 | |
November 1950 | January 1954 | 38 | −2.87 | −51.47 | −1.35 | |
August 1955 | March 1958 | 31 | −2.39 | −49.51 | −1.6 | |
Zhana Arka | July 1940 | February 1942 | 19 | −2.16 | −25.71 | −1.35 |
January 1945 | May 1947 | 28 | −2.52 | −25.69 | −0.92 | |
May 1951 | September 1952 | 16 | −3.39 | −35.26 | −2.2 | |
September 1955 | April 1958 | 31 | −2.45 | −44.53 | −1.44 | |
December 1991 | September 1992 | 9 | −2.18 | −10.61 | −1.18 | |
Zhezkazgan | March 1939 | February 1940 | 11 | −2.13 | −7.78 | −0.71 |
April 1944 | January 1946 | 21 | −3.32 | −54.53 | −2.6 | |
January 1951 | June 1953 | 29 | −2.92 | −49.64 | −1.71 | |
Zlikha | May 1957 | April 1958 | 11 | −2.21 | −12.89 | −1.17 |
November 1995 | April 1999 | 41 | −3.28 | −65.94 | −1.61 | |
Kyzyltau | July 1950 | June 1952 | 23 | −3.02 | −49.91 | −2.17 |
December 1998 | September 2001 | 33 | −3 | −60.2 | −1.82 |
Hydrological Post | Observation Period | Whole Observation Period | Conditionally Natural Period up to 1973 | Current Period after 1974 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of Cases | SDImin | Number of Cases | SDImax | Number of Cases | SDImin | Number of Cases | SDImax | Number of Cases | SDImin | Number of Cases | SDImax | ||
Zhaiyk–Caspian water management basin | |||||||||||||
Zhaiyk-Kushum | 1912–2021 | 64 | −1.61 | 45 | 3.10 | 35 | −1.61 | 27 | 3.10 | 29 | −1.41 | 18 | 1.43 |
Zhaiyk-Makhambet | 1932–2021 | 46 | −1.66 | 43 | 2.66 | 22 | −1.63 | 20 | 2.66 | 24 | −1.66 | 23 | 1.75 |
Shagan-Kamenny | 1932–2010 | 40 | −2.17 | 38 | 2.14 | 24 | −1.95 | 18 | 2.14 | 16 | −2.17 | 20 | 1.39 |
Elek-Shelek | 1949–2021 | 40 | −2.48 | 32 | 3.06 | 14 | −2.48 | 11 | 3.06 | 26 | −2.10 | 21 | 1.93 |
Kosistek-Kosistek | 1957–2021 | 32 | −1.94 | 32 | 3.82 | 6 | −1.61 | 11 | 2.30 | 26 | −1.94 | 21 | 3.82 |
Or-Bogetsay | 1932–2021 | 44 | −2.11 | 44 | 2.65 | 20 | −2.11 | 21 | 2.65 | 24 | −2.10 | 23 | 1.33 |
Shyngyrlau-Kentubek | 1954–2021 | 35 | −2.00 | 32 | 2.49 | 7 | −1.21 | 13 | 2.49 | 28 | −2.00 | 19 | 1.45 |
Kopirankaty-Algabas | 1957–2021 | 28 | −2.53 | 36 | 1.91 | 8 | −1.99 | 9 | 1.05 | 20 | −2.53 | 27 | 1.91 |
Oiyl-Oiyl | 1935–2021 | 47 | −2.36 | 39 | 3.66 | 17 | −1.49 | 22 | 3.66 | 30 | −2.36 | 17 | 1.78 |
Sagyz-Sagyz | 1950–1998 | 22 | −2.32 | 26 | 1.99 | 9 | −2.32 | 15 | 1.99 | 13 | −2.25 | 11 | 1.32 |
Tobyl–Torgai water management basin | |||||||||||||
Tobyl-Grishenka | 1937–2021 | 46 | −2.07 | 38 | 2.48 | 20 | −1.68 | 38 | 2.48 | 26 | −2.07 | 21 | 2.05 |
Tobyl-Kostanay | 1931–2021 | 56 | −1.50 | 34 | 2.67 | 25 | −1.40 | 34 | 2.67 | 31 | −1.50 | 16 | 2.25 |
Ayat-Varvaryinka | 1952–2021 | 37 | −1.70 | 32 | 2.41 | 12 | −1.12 | 32 | 2.41 | 25 | −1.70 | 22 | 2.37 |
Togyzak-Togyzak | 1936–2021 | 49 | −1.79 | 36 | 2.36 | 22 | −1.42 | 36 | 2.36 | 27 | −1.79 | 20 | 2.34 |
Obagan-Aksuat | 1938–2021 | 40 | −2.75 | 43 | 2.32 | 16 | −2.08 | 43 | 1.92 | 24 | −2.75 | 23 | 2.32 |
Torgay-Tusum Sands | 1940–2021 | 42 | −2.31 | 39 | 2.56 | 18 | −2.31 | 39 | 2.56 | 24 | −2.15 | 23 | 1.57 |
Karatorgay-Urpek | 1941–2021 | 34 | −4.94 | 46 | 3.18 | 14 | −2.01 | 46 | 3.18 | 20 | −4.94 | 27 | 1.41 |
Sarytorgay-Sarytorgay | 1960–2021 | 28 | −3.09 | 33 | 2.46 | 6 | −2.05 | 33 | 2.46 | 22 | −3.09 | 25 | 1.31 |
Uly Zhylanshyk-Korgantas | 1958–1987 | 16 | −2.08 | 13 | 2.05 | 10 | −2.08 | 13 | 1.53 | 6 | −1.27 | 7 | 2.05 |
Damdy-Damdy | 1955–2021 | 34 | −3.84 | 32 | 2.38 | 9 | −2.72 | 32 | 1.93 | 25 | −3.84 | 22 | 2.38 |
Yesil water management basin | |||||||||||||
Kalkutan-Kalkutan | 1937–2021 | 46 | −2.45 | 38 | 2.68 | 25 | −1.89 | 12 | 1.88 | 21 | −2.45 | 26 | 2.68 |
Zhabay-Atbasar | 1937–2021 | 49 | −1.86 | 36 | 3.94 | 24 | −1.86 | 14 | 1.89 | 25 | −1.49 | 22 | 3.94 |
Akkanburlyk-Vozvyshenka | 1938–2021 | 37 | −2.87 | 46 | 2.19 | 20 | −2.87 | 16 | 1.49 | 17 | −2.05 | 30 | 2.19 |
Imanburlyk-Sokolovka | 1950–2021 | 34 | −2.01 | 37 | 2.55 | 15 | −2.01 | 9 | 0.60 | 19 | −1.72 | 28 | 2.55 |
Silety-Izobilnoye | 1957–2021 | 36 | −1.77 | 28 | 2.36 | 6 | −0.95 | 11 | 1.77 | 30 | −1.77 | 17 | 2.36 |
Nura–Sarysu water management basin | |||||||||||||
Nura-Besoba | 1960–2021 | 31 | −2.05 | 30 | 2.95 | 7 | −1.58 | 7 | 0.85 | 24 | −2.05 | 23 | 2.95 |
Nura-Sheshenkara | 1960–2021 | 35 | −1.84 | 26 | 3.03 | 8 | −1.67 | 6 | 0.89 | 27 | −1.84 | 20 | 3.03 |
Nura-Balykty | 1960–2021 | 28 | −2.57 | 33 | 2.99 | 11 | −2.57 | 3 | 0.42 | 17 | −1.63 | 30 | 2.99 |
Nura-Koshkarbayeva | 1960–2021 | 32 | −1.87 | 29 | 2.86 | 9 | −1.87 | 5 | 1.05 | 23 | −1.40 | 24 | 2.86 |
Sherubainura-Karamuryn | 1960–2021 | 33 | −1.96 | 28 | 2.44 | 7 | −1.58 | 7 | 0.87 | 26 | −1.96 | 21 | 2.44 |
Sarysu-189th passage | 1962–2021 | 35 | −1.73 | 24 | 3.61 | 7 | −1.45 | 5 | 1.22 | 28 | −1.73 | 19 | 3.61 |
Zhamansarysu-Atasu | 1960–2021 | 44 | −1.08 | 17 | 3.43 | 9 | −0.74 | 5 | 1.46 | 35 | −1.08 | 12 | 3.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birimbayeva, L.; Makhmudova, L.; Alimkulov, S.; Tursunova, A.; Mussina, A.; Tigkas, D.; Beksultanova, Z.; Rodrigo-Clavero, M.-E.; Rodrigo-Ilarri, J. Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan. Water 2024, 16, 2316. https://doi.org/10.3390/w16162316
Birimbayeva L, Makhmudova L, Alimkulov S, Tursunova A, Mussina A, Tigkas D, Beksultanova Z, Rodrigo-Clavero M-E, Rodrigo-Ilarri J. Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan. Water. 2024; 16(16):2316. https://doi.org/10.3390/w16162316
Chicago/Turabian StyleBirimbayeva, Lyazzat, Lyazzat Makhmudova, Sayat Alimkulov, Aisulu Tursunova, Ainur Mussina, Dimitris Tigkas, Zhansaya Beksultanova, María-Elena Rodrigo-Clavero, and Javier Rodrigo-Ilarri. 2024. "Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan" Water 16, no. 16: 2316. https://doi.org/10.3390/w16162316
APA StyleBirimbayeva, L., Makhmudova, L., Alimkulov, S., Tursunova, A., Mussina, A., Tigkas, D., Beksultanova, Z., Rodrigo-Clavero, M.-E., & Rodrigo-Ilarri, J. (2024). Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan. Water, 16(16), 2316. https://doi.org/10.3390/w16162316