Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques
Abstract
:1. Introduction
- Simulate changes in water quality parameters and the associated WQI with variations in rainfall and streamflow across three temporal scales: weekly, monthly, and seasonal.
- Propose a novel approach combining XGBoost with a Bayesian optimisation (BO) algorithm to predict the WQI, which considers the influence of streamflow based on the same three temporal scales. The XGBoost was applied to establish the relation between the streamflow and water quality data, and the BO algorithm was used to optimise the XGBoost hyperparameters to improve the accuracy of the prediction model.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Mathematical Background
2.3.1. Computation of Variation in Water Quality Parameters Using GAM
2.3.2. Prediction of WQI
Extreme Gradient Boosting
Bayesian Optimisation
Establishment of the Prediction Model
- (i)
- Data preparation and processing:
- (ii)
- Definition of the objective function for Bayesian optimisation:
- (iii)
- Specification of hyperparameter bounds:
- (iv)
- Implementation of Bayesian optimisation:
- (v)
- Training the XGBoost model and evaluation:
- (vi)
- Analysis of predicted results:
3. Results
3.1. Descriptive Statistics
3.2. Variation in Water Quality Indicators
3.3. Performance Analysis of the WQI Prediction Model
4. Discussion
5. Conclusions
- The GAM results reveal significant correlations between streamflow and several water quality parameters. Specifically, on a weekly temporal scale, turbidity, TDS, and WQI showed a significant nonlinear relationship with discharge, which indicates that short-term variations in runoff may have pronounced effect on these parameters. On the other hand, pH, PO43−, and NH3-N showed a linear relationship with discharge. The high sensitivity of turbidity and TDS to discharge suggests that managing flow rates and reducing runoff during storm events could be crucial in water quality management.
- On a monthly basis, streamflow exhibited smoother relationships for most parameters but still influenced TDS and WQI nonlinearly. These correlations highlight the sustained influence of hydrological variables over longer periods.
- Seasonal analysis provides further insights; in autumn and winter, NH3-N and PO43− displayed high edf values, respectively. However, pH showed a linear and WQI exhibited a weakly linear to linear relationship with discharge over four seasons. The seasonal interrelationship of various water quality parameters with the hydrological variables implies that management practices need to be adjusted seasonally to address the specific challenges posed in each period.
- The accuracy metrics of the WQI prediction model using XGBoost-BO, as previously discussed, are consistent with these findings. The model’s performance varies across different temporal scales, exhibiting a higher accuracy during the training phase compared to the testing phase. This variation underscores the complexity of predicting water quality, influenced by the dynamic interplay of hydrological variables.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merz, S.K. Characterising the Relationship between Water Quality and Water Quantity,Water Quality Australia; Department of Agriculture and Water Resources: Canberra, Australia, 2013. [Google Scholar]
- Alnahit, A.O.; Mishra, A.K.; Khan, A.A. Quantifying climate, streamflow, and watershed control on water quality across Southeastern US watersheds. Sci. Total Environ. 2020, 739, 139945. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, O.I.; Ahmed, S. Relative linkages of stream water quality and environmental health with the land use and hydrologic drivers in the coastal urban watersheds of southeast Florida. GeoHealth 2017, 1, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Caccia, V.G.; Boyer, J.N. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management. Mar. Pollut. Bull. 2005, 50, 1416–1429. [Google Scholar] [CrossRef] [PubMed]
- Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar]
- Hongve, D.; Riise, G.; Kristiansen, J.F. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—A result of increased precipitation? Aquat. Sci. 2004, 66, 231–238. [Google Scholar] [CrossRef]
- Delpla, I.; Baurès, E.; Jung, A.-V.; Thomas, O. Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Sci. Total Environ. 2011, 409, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Renöfält, B.M. Linking flow regime and water quality in rivers: A challenge to adaptive catchment management. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef]
- Yang, G.; Moyer, D.L. Estimation of nonlinear water-quality trends in high-frequency monitoring data. Sci. Total Environ. 2020, 715, 136686. [Google Scholar] [CrossRef] [PubMed]
- Pinay, G.; Gumiero, B.; Tabacchi, E.; Gimenez, O.; Tabacchi-Planty, A.M.; Hefting, M.M.; Burt, T.P.; Black, V.A.; Nilsson, C.; Iordache, V. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw. Biol. 2007, 52, 252–266. [Google Scholar] [CrossRef]
- Norris, R.H.; Linke, S.; Prosser, I.; Young, W.J.; Liston, P.; Bauer, N.; Sloane, N.; Dyer, F.; Thoms, M. Very-broad-scale assessment of human impacts on river condition. Freshw. Biol. 2007, 52, 959–976. [Google Scholar] [CrossRef]
- McCluney, K.E.; Poff, N.L.; Palmer, M.A.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Williams, M.R.; Baron, J.S. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef]
- Patil, R.; Wei, Y.; Pullar, D.; Shulmeister, J. Effects of change in streamflow patterns on water quality. J. Environ. Manag. 2022, 302, 113991. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Dutta, D. Predicting climate change impact on nutrient pollution in waterways: A case study in the upper catchment of the Latrobe River, Australia. Ecohydrology 2013, 6, 73–82. [Google Scholar] [CrossRef]
- Danish Hydraulic Institute (DHI). MIKE 21, User Guide and Reference Manual; Danish Hydraulic Institute: Horsholm, Denmark, 1996. [Google Scholar]
- Danish Hydraulic Institute (DHI). MIKE 31 Eutrophication Module, User Guide and Reference Manual, Release 2.7; Danish Hydraulic Institute: Horsholm, Denmark, 1996. [Google Scholar]
- Artioli, Y.; Bendoricchio, G.; Palmeri, L. Defining and modelling the coastal zone affected by the Po river (Italy). Ecol. Model. 2005, 184, 55–68. [Google Scholar] [CrossRef]
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual; EPA: Athens, GA, USA, 1987. [Google Scholar]
- Whitehead, P.; Williams, R.; Lewis, D. Quality simulation along river systems (QUASAR): Model theory and development. Sci. Total Environ. 1997, 194, 447–456. [Google Scholar] [CrossRef]
- Sincock, A.; Lees, M. Extension of the QUASAR River-Water Quality Model to Unsteady Flow Conditions. Water Environ. J. 2002, 16, 12–17. [Google Scholar] [CrossRef]
- Grizzetti, B.; Bouraoui, F.; Granlund, K.; Rekolainen, S.; Bidoglio, G. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecol. Model. 2003, 169, 25–38. [Google Scholar] [CrossRef]
- Alam, M.J.; Dutta, D. A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications. Ecol. Model. 2012, 247, 112–124. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z.; Zhang, Z. Assessing the impacts of land use on downstream water quality using a hydrologically sensitive area concept. J. Environ. Manag. 2018, 213, 309–319. [Google Scholar] [CrossRef]
- Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Comput. Appl. 2017, 28, 893–905. [Google Scholar] [CrossRef]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. J. Hydrol. 2016, 540, 317–330. [Google Scholar]
- Salleh, M.N.M.; Talpur, N.; Talpur, K.H. A modified neuro-fuzzy system using metaheuristic approaches for data classification. In Artificial Intelligence—Emerging Trends and Applications; Aceves-Fernandez, M., Ed.; InTechOpen: Rijeka, Croatia, 2018; pp. 29–45. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Tiefenbacher, J.; Nguyen, H.; Kazakis, N. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci. Total Environ. 2020, 721, 137612. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Shi, R.; Xu, X.; Li, J.; Li, Y. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization. Appl. Soft Comput. 2021, 109, 107538. [Google Scholar] [CrossRef]
- Song, K.; Yan, F.; Ding, T.; Gao, L.; Lu, S. A steel property optimization model based on the XGBoost algorithm and improved PSO. Comput. Mater. Sci. 2020, 174, 109472. [Google Scholar] [CrossRef]
- Dong, W.; Huang, Y.; Lehane, B.; Ma, G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Autom. Constr. 2020, 114, 103155. [Google Scholar] [CrossRef]
- Raiaan, M.A.K.; Sakib, S.; Fahad, N.M.; Al Mamun, A.; Rahman, M.A.; Shatabda, S.; Mukta, M.S.H. A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks. Decis. Anal. J. 2024, 11, 100470. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.-Y.; Zhang, H.; Xiong, L.-D.; Lei, H.; Deng, S.-H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Bischl, B.; Richter, J.; Bossek, J.; Horn, D.; Thomas, J.; Lang, M. mlrMBO: A modular framework for model-based optimization of expensive black-box functions. arXiv 2017, arXiv:1703.03373. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Betrò, B. Bayesian methods in global optimization. J. Glob. Optim. 1991, 1, 1–14. [Google Scholar] [CrossRef]
- Venkatesan, E.; Mahindrakar, A.B. Forecasting floods using extreme gradient boosting–a new approach. Int. J. Civ. Eng. Technol. 2019, 10, 1336–1346. [Google Scholar]
- Jarajapu, D.C.; Rathinasamy, M.; Agarwal, A.; Bronstert, A. Design flood estimation using extreme Gradient Boosting-based on Bayesian optimization. J. Hydrol. 2022, 613, 128341. [Google Scholar] [CrossRef]
- Farzana, S.Z.; Paudyal, D.R.; Chadalavada, S.; Alam, M.J. Prediction of Water Quality in Reservoirs: A Comparative Assessment of Machine Learning and Deep Learning Approaches in the Case of Toowoomba, Queensland, Australia. Geosciences 2023, 13, 293. [Google Scholar] [CrossRef]
- Department of Resources. Survey Control Mark Report (SCR139553); Department of Resources: Brisbane, Australia, 2024. [Google Scholar]
- King, A.; Raiber, M.; Cox, M. Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer-stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia. Hydrogeol. J. 2014, 22, 481. [Google Scholar] [CrossRef]
- Department of Environment Science and Innovation. Wetland Information, Upper Brisbane Catchment Story. Available online: https://wetlandinfo.des.qld.gov.au/wetlands/ecology/processes-systems/water/catchment-stories/transcript-upper-brisbane.html (accessed on 28 May 2024).
- Toowoomba Regional Council. Cooby, Perseverance and Cressbrook Dams, Drinking Water Catchment Management Review, 7640-29; Toowoomba Regional Council: Toowoomba, Australia, 2016. [Google Scholar]
- Department of Regional Development Manufacturing and Water. Water Monitoring Information Portal. Available online: https://water-monitoring.information.qld.gov.au/ (accessed on 10 June 2024).
- Bureau of Metrology. Weather Station Directory. Available online: http://www.bom.gov.au/climate/data/stations/ (accessed on 10 June 2024).
- Talmoudi, K.; Bellali, H.; Ben-Alaya, N.; Saez, M.; Malouche, D.; Chahed, M.K. Modeling zoonotic cutaneous leishmaniasis incidence in central Tunisia from 2009-2015: Forecasting models using climate variables as predictors. PLOS Neglected Trop. Dis. 2017, 11, e0005844. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N.; Goude, Y.; Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C Appl. Stat. 2015, 64, 139–155. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; Volume 25. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater suitability for drinking and irrigation using water quality indices and multivariate modeling in makkah Al-Mukarramah province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Cotruvo, J.A. 2017 WHO guidelines for drinking water quality: First addendum to the Fourth edition. Am. Water Work. Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef]
- Singh, A.K.; Sathya, M.; Verma, S.; Jayakumar, S. Spatiotemporal variation of water quality index in Kanwar wetland, Begusarai, India. Sustain. Water Resour. Manag. 2020, 6, 44. [Google Scholar] [CrossRef]
- Wood, S.N. Generalised Additive Models: An Introduction with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Makineci, E.; Demir, M.; Kartaloglu, M. Acidity (pH) and electrical conductivity changes in runoff water from ditches of paved and unpaved forest roads. Balt. For. 2015, 21, 170–175. [Google Scholar]
- Zhou, Z.-z.; Huang, T.-l.; Ma, W.-x.; Li, Y.; Zeng, K. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China. Water Sci. Eng. 2015, 8, 301–308. [Google Scholar] [CrossRef]
- Wei, Z.; Simin, L.; Fengbing, T. Characterisation of urban runoff pollution between dissolved and particulate phases. Sci. World J. 2013, 2013, 964737. [Google Scholar] [CrossRef]
- Roșca, O.M.; Dippong, T.; Marian, M.; Mihali, C.; Mihalescu, L.; Hoaghia, M.-A.; Jelea, M. Impact of anthropogenic activities on water quality parameters of glacial lakes from Rodnei mountains, Romania. Environ. Res. 2020, 182, 109136. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, N. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping. Ore Geol. Rev. 2022, 145, 104916. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Beevers, S.D.; Tate, J.E. Modelling and assessing trends in traffic-related emissions using a generalised additive modelling approach. Atmos. Environ. 2007, 41, 5289–5299. [Google Scholar] [CrossRef]
- Alobaidy, A.H.M.J.; Abid, H.S.; Maulood, B.K. Application of water quality index for assessment of Dokan lake ecosystem, Kurdistan region, Iraq. J. Water Resour. Prot. 2010, 2, 792–798. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Chen, Q.; Li, Y.; Chen, J.; Gao, Y.; Lin, P. Spatio-temporal dynamics of water quality and eutrophication in Lake Taihu, China. Ecohydrology 2021, 14, e2291. [Google Scholar] [CrossRef]
- National Research Council. A Review of the Draft 2013 National Climate Assessment; National Research Council: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Michalak, A.M. Study role of climate change in extreme threats to water quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.K.; Marshall Shepherd, J. Floods in a changing climate. Geogr. Compass 2013, 7, 95–115. [Google Scholar] [CrossRef]
Time Period | Statistics | Variable | |||||||
---|---|---|---|---|---|---|---|---|---|
Rainfall (mm) | Streamflow (m3/sec) | PO43− (mg/L) | NH3-N (mg/L) | pH | Turbidity (NTU) | TDS (mg/L) | WQI | ||
Weekly | Min | 0.00 | 0.00 | 0.00 | 0.00 | 6.00 | 0.47 | 106.00 | 4.03 |
Mean | 14.41 | 1.08 | 0.01 | 0.03 | 7.86 | 2.28 | 210.70 | 8.09 | |
Median | 4.60 | 0.03 | 0.00 | 0.00 | 7.94 | 2.10 | 203.50 | 8.11 | |
Max | 457.00 | 270.98 | 0.95 | 0.77 | 8.90 | 12.30 | 325.00 | 12.38 | |
Monthly | Min | 0.00 | 0.00 | 0.00 | 0.00 | 6.83 | 0.60 | 141.50 | 5.49 |
Mean | 64.22 | 1.08 | 0.01 | 0.03 | 7.86 | 2.28 | 210.70 | 8.09 | |
Median | 43.70 | 0.04 | 0.01 | 0.002 | 7.88 | 2.11 | 202.90 | 8.12 | |
Max | 477.60 | 68.90 | 0.21 | 0.67 | 8.55 | 10.45 | 297.00 | 11.17 | |
Autumn | Min | 43.30 | 0.00 | 0.00 | 0.00 | 7.19 | 0.66 | 153.60 | 5.99 |
Mean | 161.40 | 1.11 | 0.02 | 0.03 | 7.81 | 2.56 | 214.30 | 8.16 | |
Median | 127.60 | 0.11 | 0.01 | 0.01 | 7.79 | 2.31 | 214.20 | 8.36 | |
Max | 381.60 | 11.11 | 0.09 | 0.22 | 8.25 | 7.03 | 290.40 | 10.58 | |
Winter | Min | 33.20 | 0.00 | 0.00 | 0.00 | 7.15 | 0.75 | 154.40 | 6.46 |
Mean | 89.17 | 0.19 | 0.01 | 0.04 | 7.76 | 3.37 | 208.90 | 8.04 | |
Median | 85.00 | 0.05 | 0.01 | 0.02 | 7.80 | 3.30 | 212.80 | 7.73 | |
Max | 164.60 | 1.66 | 0.04 | 0.35 | 8.15 | 36.36 | 267.00 | 10.34 | |
Spring | Min | 47.00 | 0.00 | 0.00 | 0.00 | 7.27 | 0.96 | 161.20 | 5.96 |
Mean | 175.50 | 0.24 | 0.01 | 0.02 | 7.95 | 2.94 | 209.50 | 7.95 | |
Median | 169.20 | 0.08 | 0.01 | 0.004 | 7.98 | 2.21 | 211.70 | 7.48 | |
Max | 373.30 | 2.42 | 0.03 | 0.18 | 8.55 | 4.75 | 273.30 | 10.58 | |
Summer | Min | 65.40 | 0.00 | 0.00 | 0.00 | 7.36 | 1.56 | 171.70 | 5.86 |
Mean | 338.80 | 2.81 | 0.01 | 0.02 | 7.99 | 2.49 | 210.80 | 8.25 | |
Median | 304.00 | 0.18 | 0.01 | 0.004 | 8.06 | 2.33 | 217.50 | 8.07 | |
Max | 640.40 | 23.54 | 0.03 | 0.10 | 8.36 | 4.54 | 277.70 | 10.39 |
Time Scale | WQ Parameter | Model Intercept | GCV | edf (Streamflow) | edf (Rainfall) |
---|---|---|---|---|---|
Weekly | PO43− | 0.01 | 0.00 | 1.00 | 1.00 |
NH3-N | 0.03 | 0.01 | 1.00 | 1.00 | |
pH | 7.86 | 0.16 | 1.00 *** | 7.06 ** | |
Turbidity | 2.28 | 1.94 | 8.58 ** | 5.46 | |
TDS | 210.65 | 0.13 | 9.00 *** | 7.83 *** | |
WQI | 8.09 | 1.77 | 8.73 *** | 1.58 | |
Monthly | PO43− | 0.01 | 0.00 | 1.00 | 1.00 |
NH3-N | 0.03 | 0.00 | 1.00 | 1.57 | |
pH | 7.56 | 0.12 | 2.22 * | 1.00 | |
Turbidity | 2.29 | 1.65 | 6.36 | 2.05 | |
TDS | 210.73 | 0.12 | 8.49 *** | 1.65 | |
WQI | 8.09 | 1.68 | 8.17 ** | 1.64 | |
Autumn | PO43− | 0.02 | 0.01 | 1.00 | 1.00 |
NH3-N | 0.02 | 0.00 | 8.79 ** | 5.81 *** | |
pH | 7.81 | 0.08 | 1.00 * | 1.00 | |
Turbidity | 2.55 | 0.78 | 8.49 ** | 2.73 | |
TDS | 214.32 | 0.13 | 1.00 * | 2.37 | |
WQI | 8.16 | 1.87 | 1.00 | 2.53 | |
Winter | PO43− | 0.01 | 0.01 | 5.28 * | 5.18 ** |
NH3-N | 0.04 | 0.00 | 1.00 | 1.00 | |
pH | 7.76 | 0.05 | 2.86 * | 1.00 | |
Turbidity | 2.24 | 0.14 | 2.87 * | 1.00 | |
TDS | 208.93 | 0.12 | 1.86 * | 1.00 | |
WQI | 8.04 | 1.46 | 1.75 | 1.35 | |
Spring | PO43− | 0.01 | 0.01 | 1.00 | 1.00 |
NH3-N | 0.03 | 0.00 | 1.00 | 1.00 | |
pH | 7.94 | 0.11 | 1.00 * | 1.00 | |
Turbidity | 2.21 | 1.04 | 2.23 | 1.11 | |
TDS | 209.45 | 0.11 | 3.93 * | 1.00 | |
WQI | 7.94 | 1.72 | 1.00 | 1.00 | |
Summer | PO43− | 0.01 | 0.00 | 1.00 | 6.51 ** |
NH3-N | 0.03 | 0.00 | 5.15 ** | 2.08 | |
pH | 7.99 | 0.08 | 1.00 | 1.00 | |
Turbidity | 2.49 | 0.25 | 7.52 *** | 1.00 | |
TDS | 219.81 | 0.16 | 1.00 | 1.00 | |
WQI | 8.25 | 1.81 | 1.00 | 1.00 |
Performance Metrics | Phase | Time Period | |||||
---|---|---|---|---|---|---|---|
Week | Month | Autumn | Winter | Spring | Summer | ||
R2 | Training | 0.75 | 0.91 | 0.92 | 0.86 | 0.75 | 0.96 |
Testing | 0.67 | 0.70 | 0.66 | 0.52 | 0.68 | 0.62 | |
MAE | Training | 0.58 | 0.20 | 0.14 | 0.15 | 0.23 | 0.08 |
Testing | 0.55 | 1.44 | 0.24 | 0.64 | 0.35 | 0.63 | |
RMSE | Training | 0.48 | 0.42 | 0.35 | 0.38 | 0.61 | 0.22 |
Testing | 0.79 | 1.69 | 1.62 | 1.86 | 1.20 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzana, S.Z.; Paudyal, D.R.; Chadalavada, S.; Alam, M.J. Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques. Water 2024, 16, 2107. https://doi.org/10.3390/w16152107
Farzana SZ, Paudyal DR, Chadalavada S, Alam MJ. Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques. Water. 2024; 16(15):2107. https://doi.org/10.3390/w16152107
Chicago/Turabian StyleFarzana, Syeda Zehan, Dev Raj Paudyal, Sreeni Chadalavada, and Md Jahangir Alam. 2024. "Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques" Water 16, no. 15: 2107. https://doi.org/10.3390/w16152107
APA StyleFarzana, S. Z., Paudyal, D. R., Chadalavada, S., & Alam, M. J. (2024). Temporal Dynamics and Predictive Modelling of Streamflow and Water Quality Using Advanced Statistical and Ensemble Machine Learning Techniques. Water, 16(15), 2107. https://doi.org/10.3390/w16152107