Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Preparation of Catalysts
2.2.1. Preparation of Clove Extract
2.2.2. Synthesis of Ag/ATP Catalysts Using Clove Extracts
2.3. Characterization of Catalysts
2.4. Catalytic Activity Test
3. Results and Discussion
3.1. HCHO Catalytic Oxidation Reaction Activity
3.2. Structural Properties
3.2.1. ICP Results
3.2.2. XRD Results
3.2.3. FT-IR Results
3.2.4. TEM Results
3.2.5. UV–Vis Results
3.2.6. BET Results
3.2.7. XPS Results
3.2.8. H2-TPR Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, D.; Guo, B.; Zhou, J.; Cheng, H.; Chen, X. Indoor air formaldehyde (HCHO) pollution of urban coach cabins. Sci. Rep. 2020, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, D.; Mocho, P.; Desauziers VPlaisance, H. Formaldehyde emission behavior of building materials: On-site measurements and modeling approach to predict indoor air pollution. J. Hazard. Mater. 2014, 280, 164–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; He, X.; Yang, P.; Zong, T.; Sun, P.; Sun, R.C.; Yu, T.; Jiang, Z. The cellular function and molecular mechanism of formaldehyde in cardiovascular disease and heart development. J. Cell. Mol. Med. 2021, 25, 5358–5371. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ou, B.; Wang, Y.; Zhang, R. α-Ni(OH)2 Surface Hydroxyls Synergize Ni3+ Sites for Catalytic Formaldehyde Oxidation. J. Inorg. Mater. 2023, 38, 1216. [Google Scholar] [CrossRef]
- Nie, L.; Yu, J.; Jaroniec, M.; Tao, F.F. Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6, 3649–3669. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Mo, J.; Li, X. Indoor Formaldehyde Removal by Thermal Catalyst: Kinetic Characteristics, Key Parameters, and Temperature Influence. Environ. Sci. Technol. 2011, 45, 5754–5760. [Google Scholar] [CrossRef]
- Desiccant wheels as gas-phase absorption (GPA) air cleaners: Evaluation by PTR-MS and sensory assessment. Indoor Air 2008, 18, 375–385. [CrossRef]
- Obee, T.N. Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor. Environ. Sci. Technol. 1996, 30, 3578–3584. [Google Scholar] [CrossRef]
- Srisuda, S.; Virote, B. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials. J. Environ. Sci. 2008, 20, 379–384. [Google Scholar] [CrossRef]
- Park, J.H.; Byeon, J.H.; Yoon, K.Y.; Hwang, J. Lab-scale test of a ventilation system including a dielectric barrier discharger and UV-photocatalyst filters for simultaneous removal of gaseous and particulate contaminants. Indoor Air 2008, 18, 44–50. [Google Scholar] [CrossRef]
- Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H. Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B Environ. 2016, 181, 779–787. [Google Scholar] [CrossRef]
- Kim, W.-K.; Younis, S.A.; Kim, K.-H. The control on adsorption kinetics and selectivity of formaldehyde in relation to different surface-modification approaches for microporous carbon bed systems. Sep. Purif. Technol. 2022, 283, 120178. [Google Scholar] [CrossRef]
- Vikrant, K.; Kim, K.-H.; Dong, F.; Boukhvalov, D.W.; Choi, W. Deep oxidation of gaseous formaldehyde at room-temperature by a durable catalyst formed through the controlled addition of potassium to platinum supported on waste eggshell. Chem. Eng. J. 2022, 428, 131177. [Google Scholar] [CrossRef]
- Li, R.; Huang, Y.; Zhu, D.; Ho, W.; Cao, J.; Lee, S. Improved Oxygen Activation over a Carbon/Co3O4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature. Environ. Sci. Technol. 2021, 55, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Yu, H.; Liu, T.; Li, Y.; Wang, Z.; Xiao, Y.; Dong, X. Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination. Chin. Chem. Lett. 2022, 33, 2564–2568. [Google Scholar] [CrossRef]
- Ying, Z.; Fan, D.; Bang-Xin, L.I.; Zi-Yan, Z.; Fan, W.U. Interfacial Oxygen Vacancy of Bi2O2CO3/PPy and its Visible-light Photocatalytic NO Oxidation Mechanism. J. Inorg. Mater. 2019, 35, 541–548. [Google Scholar] [CrossRef]
- Wu, X.; Sun, S.; Wang, R.; Huang, Z.; Shen, H.; Zhao, H.; Jing, G. Pt single atoms and defect engineering of TiO2-nanosheet-assembled hierarchical spheres for efficient room-temperature HCHO oxidation. J. Hazard. Mater. 2023, 454, 131434. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Meng, M.; Huang, H.; Wang, H.; Ding, H.; Zhang, Q. Ag-promoted Cr/MnO2 catalyst for catalytic oxidation of low-concentration formaldehyde at room temperature. Phys. Chem. Chem. Phys. 2023, 25, 10155–10165. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Chen, Y.; Qin, Q.; Li, Y.; He, H. Formaldehyde oxidation on Pd/USY catalysts at room temperature: The effect of acid pretreatment on supports. J. Environ. Sci. 2023, 125, 811–822. [Google Scholar] [CrossRef]
- Li, H.; Fang, S.; Jiang, G.; Zhang, Z. Enhanced oxygen activation on an atomically dispersed Au catalyst with dual active sites for room-temperature formaldehyde oxidation. Environ. Sci. Nano 2023, 10, 80–91. [Google Scholar] [CrossRef]
- Soni, V.; Goel, V.; Singh, P.; Garg, A. Abatement of formaldehyde with photocatalytic and catalytic oxidation: A review. Int. J. Chem. React. Eng. 2021, 19, 1–29. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, L.; Li, C.; Zheng, Y.; Pan, L. Highly porous CuO/MnO2 catalyst prepared by gas release-assisted technology and its enhancement of formaldehyde removal efficiency. Res. Chem. Intermed. 2022, 48, 1971–1988. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Liu, L.; Chu, X.; Wang, X.; Song, S.; Zhang, H. Construction of strongly-coupled CeO2/MnO2 heterogeneous catalysts for highly-efficient removal of formaldehyde. New J. Chem. 2023, 47, 6282–6286. [Google Scholar] [CrossRef]
- Zhang, C.; He, H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007, 126, 345–350. [Google Scholar] [CrossRef]
- Li, R.; Huang, Y.; Zhu, D.; Ho, W.; Lee, S.; Cao, J. A Review of Co3O4-based Catalysts for Formaldehyde Oxidation at Low Temperature: Effect Parameters and Reaction Mechanism. Aerosol Sci. Eng. 2020, 4, 147–168. [Google Scholar] [CrossRef]
- Li, D.; Liu, P.; Zheng, Y.; Wu, Y.; Ling, L.; Chen, L.; Hao, F.; Lv, Y.; Xiong, W.; Luo, H.a. Chitosan-promoted sepiolite supported Ag as efficient catalyst for catalytic oxidative degradation of formaldehyde at low temperature. J. Environ. Chem. Eng. 2022, 10, 108510. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Zhan, J.; Zhou, H.; Niu, M.-S.; Yang, H.-H.; Zhou, X.; Yi, X.; Liu, Y. Lithium promotes Ag-CoOx composite for formaldehyde oxidation at ambient temperature: Chemically adsorbed oxidative oxygen formed by the interaction between AgCoO2 and catalyst parent. J. Environ. Chem. Eng. 2022, 10, 108844. [Google Scholar] [CrossRef]
- Chen, D.; He, X.; Chen, X.; Wang, Z.; Wang, X. Bimetallic Au-Ag catalysts in HCHO catalytic oxidation: No synergetic effect? Sep. Purif. Technol. 2022, 301, 121930. [Google Scholar] [CrossRef]
- Mu, B.; Wang, Q.; Wang, A. Preparation of magnetic attapulgite nanocomposite for the adsorption of Ag+ and application for catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 7083–7090. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Q.; Xu, D. Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. J. Power Sources 2010, 195, 2136–2142. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, K.; Li, H.; Fan, W.; Zhao, F.; Zhang, Y.; Ji, H. A highly durable catalyst based on CoxMn3–xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 2016, 9, 3881–3892. [Google Scholar] [CrossRef]
- Fan, J.; Niu, X.; Teng, W.; Zhang, P.; Zhang, W.-x.; Zhao, D. Highly dispersed Fe–Ce mixed oxide catalysts confined in mesochannels toward low-temperature oxidation of formaldehyde. J. Mater. Chem. A 2020, 8, 17174–17184. [Google Scholar] [CrossRef]
- Yuan, X.; Zheng, C.; Zhang, T.; Li, L.; Yang, Q.; Zhao, H. Sodium doped SrTi1-xBxO3 (BMn, Co) for formaldehyde catalytic oxidation: Flame spray pyrolysis fabrication and reaction mechanism elaboration. Fuel Process. Technol. 2023, 247, 107763. [Google Scholar] [CrossRef]
- Xu, Q.; Lei, W.; Li, X.; Qi, X.; Yu, J.; Liu, G.; Wang, J.; Zhang, P. Efficient Removal of Formaldehyde by Nanosized Gold on Well-Defined CeO2 Nanorods at Room Temperature. Environ. Sci. Technol. 2014, 48, 9702–9708. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Shixing, W.; Libo, Z.; Jinhui, P.; Gengwei, Z. The application of ultrasound technology in the field of the precious metal. Russ. J. Non-Ferr. Met. 2015, 56, 417–427. [Google Scholar] [CrossRef]
- Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: Synthesis, characterization, antimicrobial, and catalytic activity studies. Appl. Nanosci. 2015, 6, 681–689. [Google Scholar] [CrossRef]
- Su, H.; Chen, T.-H. Preparation of PtSn2–SnO2/C nanocatalyst and its high performance for methanol electro-oxidation. Chin. Chem. Lett. 2016, 27, 1083–1086. [Google Scholar] [CrossRef]
- Quinson, J. Colloidal surfactant-free syntheses of precious metal nanoparticles for electrocatalysis. Curr. Opin. Electrochem. 2022, 34, 100977. [Google Scholar] [CrossRef]
- Tian, W.; Ding, X.; Jiang, F.; Du, X.; Shi, J.; Zhang, J. Green Preparation of Cu Nanoparticles via Gallic Acid Applied to H2O2 Detection. J. Electron. Mater. 2022, 51, 1752–1758. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Guang, T.; Hu, M.; Cheng, R.; Wang, R.; Shi, C.; Chen, J.; Hou, P.; Zhu, K.; et al. Green synthesis of high-performance LiFePO4 nanocrystals in pure water. Green Chem. 2018, 20, 5215–5223. [Google Scholar] [CrossRef]
- Mahajan, A.; Arya, A.; Chundawat, T.S. Green synthesis of silver nanoparticles using green alga (Chlorella vulgaris) and its application for synthesis of quinolines derivatives. Synth. Commun. 2019, 49, 1926–1937. [Google Scholar] [CrossRef]
- Battersby, A.R.; Hall, E.S.; Southgate, R. Alkaloid biosynthesis. Part XIII. The structure, stereochemistry, and biosynthesis of loganin. J. Chem. Soc. C Org. 1969, 721–728. [Google Scholar] [CrossRef]
- Shen, S.; Chen, Y.; Zhou, J.; Zhang, H.; Xia, X.; Yang, Y.; Zhang, Y.; Noori, A.; Mousavi, M.F.; Chen, M.; et al. Microbe-Mediated Biosynthesis of Multidimensional Carbon-Based Materials for Energy Storage Applications. Adv. Energy Mater. 2023, 13, 2204259. [Google Scholar] [CrossRef]
- Magdi, H.M.; Bhushan, B. Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsyst. Technol. 2015, 21, 2279–2285. [Google Scholar] [CrossRef]
- Mukaratirwa-Muchanyereyi, N.; Gusha, C.; Mujuru, M.; Guyo, U.; Nyoni, S. Synthesis of silver nanoparticles using plant extracts from Erythrina abyssinica aerial parts and assessment of their anti-bacterial and anti-oxidant activities. Results Chem. 2022, 4, 100402. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett. 2015, 153, 10–13. [Google Scholar] [CrossRef]
- Lakhan, M.N.; Chen, R.; Shar, A.H.; Chand, K.; Shah, A.H.; Ahmed, M.; Ali, I.; Ahmed, R.; Liu, J.; Takahashi, K.; et al. Eco-friendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. J. Microbiol. Methods 2020, 173, 105934. [Google Scholar] [CrossRef]
- Rojluechai, S.; Chavadej, S.; Schwank, J.W.; Meeyoo, V. Catalytic activity of ethylene oxidation over Au, Ag and Au–Ag catalysts: Support effect. Catal. Commun. 2007, 8, 57–64. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Evdou, A.P.; Lemonidou, A.A.; Vasalos, I.A. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants. Appl. Catal. A Gen. 2004, 274, 179–189. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.; Shi, P.; Chen, D.; Song, L.; He, H.; Frost, R.L. CO 2 reforming of toluene as model compound of biomass tar on Ni/Palygorskite. Fuel 2013, 107, 699–705. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Chen, M.; Tang, Z.; Yang, Z.; Hu, J.; Zhang, H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part I: Effect of nickel content. Fuel Process. Technol. 2019, 192, 227–238. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, H.; Peng, F.; Yang, H.; Xiong, L.; Wang, C.; Huang, C.; Chen, X.; Ma, L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas. Appl. Catal. A Gen. 2015, 503, 51–61. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Zhang, D.; Zhang, W.; Chen, S.; Li, M.; Liang, P. Nanoconfinement of Ag nanoparticles inside mesoporous channels of MCM-41 molecule sieve as a regenerable and H2O resistance sorbent for Hg0 removal in natural gas. Chem. Eng. J. 2019, 361, 139–147. [Google Scholar] [CrossRef]
- Mandi, U.; Kundu, S.K.; Salam, N.; Bhaumik, A.; Islam, S.M. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols. J. Colloid Interface Sci. 2016, 467, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Zhang, Q.; Luo, J.; He, X. Baeyer–Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite. Tetrahedron Lett. 2005, 46, 3505–3508. [Google Scholar] [CrossRef]
- Motevalizadeh, S.F.; Alipour, M.; Ashori, F.; Samzadeh-Kermani, A.; Hamadi, H.; Ganjali, M.R.; Aghahosseini, H.; Ramazani, A.; Khoobi, M.; Gholibegloo, E. Heck and oxidative boron Heck reactions employing Pd(II) supported amphiphilized polyethyleneimine-functionalized MCM-41 (MCM-41@aPEI-Pd) as an efficient and recyclable nanocatalyst. Appl. Organomet. Chem. 2017, 32, e4123. [Google Scholar] [CrossRef]
- Kunchakara, S.; Ratan, A.; Dutt, M.; Shah, J.; Kotnala, R.K.; Singh, V. Impedimetric humidity sensing studies of Ag doped MCM-41 mesoporous silica coated on silver sputtered interdigitated electrodes. J. Phys. Chem. Solids 2020, 145, 109531. [Google Scholar] [CrossRef]
- Ding, Q.; Li, R.; Chen, M.; Sun, M. Ag nanoparticles-TiO2 film hybrid for plasmon-exciton co-driven surface catalytic reactions. Appl. Mater. Today 2017, 9, 251–258. [Google Scholar] [CrossRef]
- Encina, E.R.; Coronado, E.A. Near Field Enhancement in Ag Au Nanospheres Heterodimers. J. Phys. Chem. C 2011, 115, 15908–15914. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, J.; Gao, J.; Li, Y.; Bao, S.; Li, K.; Ning, P.; Wang, F. “Reduction-aggregation” strategy to construct a low-cost and high-efficiency Ag/Al2O3 catalyst for NH3-SCO. Sep. Purif. Technol. 2023, 317, 123881. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Doan, H.V.; Nguyen, T.T.-B.; Pham, X.N. Nanoarchitectonics of Ag-modified g-C3N4@halloysite nanotubes by a green method for enhanced photocatalytic efficiency. Adv. Powder Technol. 2022, 33, 103862. [Google Scholar] [CrossRef]
- Radoń, A.; Łukowiec, D. Silver nanoparticles synthesized by UV-irradiation method using chloramine T as modifier: Structure, formation mechanism and catalytic activity. CrystEngComm 2018, 20, 7130–7136. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 2017, 391, 476–483. [Google Scholar] [CrossRef]
- Ismail, A.; Alsouz, M.A.K.; Almashhadani, H.A.; Khan, M.F.; Zahid, M. An efficient Ag decorated CeO2 synergetic catalyst for improved catalytic reduction of lethal 4-nitrophenol. Chem. Phys. Impact 2023, 6, 100173. [Google Scholar] [CrossRef]
- Yu, W.; Chen, S.; Zhu, J.; He, Z.; Song, S. A highly dispersed and surface-active Ag-BTC catalyst with state-of-the-art selectivity in CO2 electroreduction towards CO. J. CO2 Util. 2023, 70, 102457. [Google Scholar] [CrossRef]
- Kong, H.; Wang, J.; Zhang, G.; Shen, F.; Li, Q.; Huang, Z. Synthesis of three-dimensional porous lanthanum modified attapulgite chitosan hydrogel bead for phosphate removal: Performance, mechanism, cost-benefit analysis. Sep. Purif. Technol. 2023, 320, 124098. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Wang, R.; Wang, Y.; Zhang, X. Microwave catalytic activities of supported perovskite catalysts MOx/LaCo0.5Cu0.5O3@CM (M = Mg, Al) for salicylic acid degradation. J. Colloid Interface Sci. 2020, 564, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, J.; Zhao, Z.; Chen, Y.; Xu, C.; Duan, A.; Jiang, G.; He, H. Highly Active Catalysts of Gold Nanoparticles Supported on Three-Dimensionally Ordered Macroporous LaFeO3 for Soot Oxidation. Angew. Chem.-Int. Ed. 2011, 50, 2326–2329. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Sheng, C.; Guo, Z.; Dai, L.; Yuan, C. A novel finding on tribological, emission, and vibration performances of diesel engines linking to graphene-attapulgite lubricants additives under hot engine tests. Renew. Sustain. Energy Rev. 2023, 182, 113366. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Zhang, J.; Myshkin, N.K.; Zhang, G. Significant friction and wear-reduction role of attapulgite nanofibers compounded in PEEK-Based materials. Compos. Sci. Technol. 2022, 230, 109449. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Song, Z.; Wu, Y.; Liu, W.; Wang, K.; Li, H. Catalytic Behavior of Ag-Mn Catalyst for Efficient Toluene Removal at Low Temperature: Effect of Redox Property. Chem. Phys. Impact 2022, 5, 100133. [Google Scholar] [CrossRef]
- Hu, Y.; Lü, W.; Liu, D.; Liu, J.; Shi, L.; Sun, Q. Effect of ZnO on the performance of Ag/SiO2 catalyst for the vapor-phase synthesis of 3-methylindole. J. Nat. Gas Chem. 2009, 18, 445–448. [Google Scholar] [CrossRef]
- Hu, W.; Guo, T.; Ma, K.; Li, X.; Luo, W.; Wu, M.; Guo, H.; Zhang, Y.; Shangguan, W. Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. J. Environ. Sci. 2024, 137, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, D.; Li, J.; Bai, B.; Fu, L.; Li, Y. Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation. Appl. Catal. B Environ. 2014, 148–149, 36–43. [Google Scholar] [CrossRef]
- Gul, A.; Fozia; Shaheen, A.; Ahmad, I.; Khattak, B.; Ahmad, M.; Ullah, R.; Bari, A.; Ali, S.S.; Alobaid, A.; et al. Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts. Biomolecules 2021, 11, 206. [Google Scholar] [CrossRef]
- Singh, D.; Tiwari, A.; Singh, R.P.; Singh, A.K. Clove bud extract mediated green synthesis of bimetallic Ag–Fe nanoparticles: Antimicrobial, antioxidant and dye adsorption behavior and mechanistic insights of metal ion reduction. Mater. Chem. Phys. 2024, 311, 128529. [Google Scholar] [CrossRef]
Sample | BET m2/g | Pore Volume cm3/g | Pore Size nm | Ag Loading wt% a |
---|---|---|---|---|
0:1 | 97.562 | 0.799782 | 32.7907 | 0.096 |
1:1 | 98.5669 | 0.719593 | 29.2022 | 0.70 |
4:1 | 88.7515 | 0.74064 | 33.3804 | 1.70 |
10:1 | 82.0696 | 0.662467 | 32.288 | 2.42 |
20:1 | 100.7746 | 0.724979 | 28.7763 | 3.02 |
Sample | Ag | O | |
---|---|---|---|
Ag+/Ag | Osurf/(Olatt + Osurf) | H2O/O | |
0:1 | 0.44 | 0.86 | 0.17 |
1:1 | 0.29 | 0.86 | 0.14 |
4:1 | 0.27 | 0.92 | 0.12 |
10:1 | 0.20 | 0.94 | 0.09 |
20:1 | 0.17 | 0.85 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Chen, X.; Miao, L.; Zhang, J.; Zhai, M.; Chen, D.; Wang, X. Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination. Water 2024, 16, 2108. https://doi.org/10.3390/w16152108
Hu Y, Chen X, Miao L, Zhang J, Zhai M, Chen D, Wang X. Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination. Water. 2024; 16(15):2108. https://doi.org/10.3390/w16152108
Chicago/Turabian StyleHu, Yuan, Xin Chen, Liqi Miao, Jing Zhang, Ming Zhai, Dan Chen, and Xiaozhi Wang. 2024. "Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination" Water 16, no. 15: 2108. https://doi.org/10.3390/w16152108
APA StyleHu, Y., Chen, X., Miao, L., Zhang, J., Zhai, M., Chen, D., & Wang, X. (2024). Green Synthesis of Ag/ATP Catalysts Using Clove Extract for Formaldehyde Elimination. Water, 16(15), 2108. https://doi.org/10.3390/w16152108