Analyzing the Mitigation Effect of Urban River Channel Flood Diversion on Waterlogging Disasters Based on Deep Learning
Highlights
- This is a novel approach to flood prediction based on a coupled deep learning algorithm.
- The approach can be used to predict the dynamic evolution of floods.
- The proposed approach is shown to be fast, efficient, and precise.
- The flood diversion pipeline has a remarkable effect in reducing urban waterlogging.
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Research Framework
3.2. Rainstorm Inundation Database
3.3. Deep-Learning Models
3.3.1. 1DCNN
3.3.2. LSTM
3.3.3. Attention
3.4. Model Construction and Evaluation
3.4.1. Construction and Evaluation of Urban Waterlogging Simulation Model
3.4.2. Construction of Urban Waterlogging Prediction Model
3.4.3. Evaluation Indicators of Urban Waterlogging Prediction Model
4. Results and Discussion
4.1. Performance Evaluation of Deep-Learning Models
4.1.1. Spatial Scale Performance Analysis
4.1.2. Temporal Scale Performance Analysis
4.1.3. Computational Time Performance Analysis
4.2. Analysis of the Impact of Urban River Flood Diversion on Pipe Network Drainage Capacity
4.2.1. Rainfall Scenario Setting
4.2.2. Drainage Capacity Evaluation Indicator
4.2.3. Analysis of Pipe Drainage Capacity
4.3. Analysis of the Impact of Urban River Flood Diversion on Inundation Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Chen, Y. Identifying and characterizing frequency and maximum durations of surface urban heat and cool island across global cities. Sci. Total Environ. 2023, 859, 160218. [Google Scholar] [CrossRef] [PubMed]
- Löwe, R.; Mair, M.; Pedersen, A.N.; Kleidorfer, M.; Rauch, W.; Arnbjerg-Nielsen, K. Impacts of urban development on urban water management–limits of predictability. Comput. Environ. Urban Syst. 2020, 84, 101546. [Google Scholar] [CrossRef]
- Prathipati, V.K.; CV, N.; Konatham, P. Inconsistency in the frequency of rainfall events in the Indian summer monsoon season. Int. J. Climatol. 2019, 39, 4907–4923. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Guo, G.; Zhang, H.; Tarolli, P. Explicit the urban waterlogging spatial variation and its driving factors: The stepwise cluster analysis model and hierarchical partitioning analysis approach. Sci. Total Environ. 2021, 763, 143041. [Google Scholar] [CrossRef] [PubMed]
- Billa, W.D.S.; Santos, L.B.L.; Negri, R.G. Analyzing the spatial interactions between rainfall levels and flooding prediction in São Paulo. Trans. GIS 2023, 27, 2159–2174. [Google Scholar] [CrossRef]
- Yan, M.; Yang, J.; Ni, X.; Liu, K.; Wang, Y.; Xu, F. Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: A case study in the metropolitan area in Beijing, China. J. Hydrol. 2024, 630, 130695. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, H.; Li, Y.; Yu, Y.; Duan, Y.; Xu, X.; Chen, L. Locally opposite responses of the 2023 Beijing–Tianjin–Hebei extreme rainfall event to global anthropogenic warming. npj Clim. Atmos. Sci. 2024, 7, 38. [Google Scholar] [CrossRef]
- Han, J.; Wang, C.; Deng, S.; Lichtfouse, E. China’s sponge cities alleviate urban flooding and water shortage: A review. Environ. Chem. Lett. 2023, 21, 1297–1314. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Y.; Zhai, M.; Gao, J.; Yao, Y.; Li, Y. Construction and application of sponge city resilience evaluation system: A case study in Xi’an, China. Environ. Sci. Pollut. Res. 2023, 30, 62051–62066. [Google Scholar] [CrossRef]
- Tan, Y.; Cheng, Q.; Lyu, F.; Liu, F.; Liu, L.; Su, Y.; Yuan, S.; Xiao, W.; Liu, Z.; Chen, Y. Hydrological reduction and control effect evaluation of sponge city construction based on one-way coupling model of SWMM-FVCOM: A case in university campus. J. Environ. Manag. 2024, 349, 119599. [Google Scholar] [CrossRef]
- Zha, X.; Fang, W.; Zhu, W.; Wang, S.; Mu, Y.; Wang, X.; Luo, P.; Zainol, M.R.R.M.A.; Zawawi, M.H.; Chong, K.L.; et al. Optimizing the deployment of LID facilities on a campus-scale and assessing the benefits of comprehensive control in Sponge City. J. Hydrol. 2024, 635, 131189. [Google Scholar] [CrossRef]
- Van den Hoven, K.; Kroeze, C.; Van Loon-Steensma, J.M. Characteristics of realigned dikes in coastal Europe: Overview and opportunities for nature-based flood protection. Ocean Coast. Manag. 2022, 222, 106116. [Google Scholar] [CrossRef]
- Xia, J.; Cheng, Y.; Zhou, M.; Deng, S.; Zhang, X. Experimental and numerical model studies of dike-break induced flood processes over a typical floodplain domain. Nat. Hazards 2023, 116, 1843–1861. [Google Scholar] [CrossRef]
- Yulius, E.; Setiawan, F.; Nuryati, S.; Gunarti, A.S.S. Modeling and Simulation of Flow through The Construction of River Cover Embankment: Case Study of Sei Wampu Weir, Langkat Regency, Indonesia. E3S Web Conf. 2024, 500, 02003. [Google Scholar] [CrossRef]
- Bera, M.K. Flood emergency management in a municipality in the Czech Republic: A study of local strategies and leadership. Nat. Hazards Res. 2023, 3, 385–394. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, C.; Tian, Y.; Guo, Z. Urban Flooding Prediction Method Based on the Combination of LSTM Neural Network and Numerical Model. Int. J. Environ. Res. Public Health 2023, 20, 1043. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Lei, H.; Shah, A.A.; Khan, I.; Muhammad, I. Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ. Sci. Pollut. Res. 2021, 28, 29720–29731. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Agnihotri, J.; Seidou, O.; Djalante, R. Identifying societal challenges in flood early warning systems. Int. J. Disaster Risk Reduct. 2020, 51, 101794. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, Z.; Chen, X.; Lai, C. Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model. J. Hydrol. 2023, 624, 129945. [Google Scholar] [CrossRef]
- Luo, P.; Luo, M.; Li, F.; Qi, X.; Huo, A.; Wang, Z.; He, B.; Takara, K.; Nover, D.; Wang, Y. Urban flood numerical simulation: Research, methods and future perspectives. Environ. Model. Softw. 2022, 156, 105478. [Google Scholar] [CrossRef]
- Tang, X.; Hong, H.; Shu, Y.; Tang, H.; Li, J.; Liu, W. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. J. Hydrol. 2019, 576, 583–595. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y. Flood disaster risk assessment based on random forest algorithm. Neural Comput. Appl. 2022, 34, 3443–3455. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Wang, X.; Xu, L.; Li, Y.; Li, J.; Zhang, Y.; Xie, T. Methods for Constructing a Refined Early-Warning Model for Rainstorm-Induced Waterlogging in Historic and Cultural Districts. Water 2024, 16, 1290. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Zhang, H. Research on urban waterlogging risk prediction based on the coupling of the BP neural network and SWMM model. J. Water Clim. Chang. 2023, 14, 3417–3434. [Google Scholar] [CrossRef]
- Zhang, Z.; Jian, X.; Chen, Y.; Huang, Z.; Liu, J.; Yang, L. Urban waterlogging prediction and risk analysis based on rainfall time series features: A case study of Shenzhen. Front. Environ. Sci. 2023, 11, 1131954. [Google Scholar] [CrossRef]
- Lingkai, S.; Jian, W.; Wangpeng, X.; Zhaobo, G.; Wei, X.; Shi, Z. Risk Assessment of Urban Flooding Using InfoWorks ICM Model: A Case Study of Tangxun Lake Watershed in Wuhan. In International Conference on Environmental Science and Technology; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 135–156. [Google Scholar] [CrossRef]
- Ma, S.; Zayed, T.; Xing, J.; Shao, Y. A state-of-the-art review for the prediction of overflow in urban sewer systems. J. Clean. Prod. 2023, 434, 139923. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Huang, Q.; Xia, J.; Li, J.; Liu, D.; Tan, Q. Performance assessment of sponge city infrastructure on stormwater outflows using isochrone and SWMM models. J. Hydrol. 2021, 597, 126151. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, H.; Liu, Y.; Xie, G.; Wan, W. Flood impacts on urban road connectivity in southern China. Sci. Rep. 2022, 12, 16866. [Google Scholar] [CrossRef]
- Kao, I.F.; Liou, J.Y.; Lee, M.H.; Chang, F.J. Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts. J. Hydrol. 2021, 598, 126371. [Google Scholar] [CrossRef]
- Xie, S.; Wu, W.; Mooser, S.; Wang, Q.J.; Nathan, R.; Huang, Y. Artificial neural network based hybrid modeling approach for flood inundation modeling. J. Hydrol. 2021, 592, 125605. [Google Scholar] [CrossRef]
- Chen, G.; Hou, J.; Liu, Y.; Xue, S.; Wu, H.; Wang, T.; Lv, J.; Jing, J.; Yang, S. Urban inundation rapid prediction method based on multi-machine learning algorithm and rain pattern analysis. J. Hydrol. 2024, 633, 131059. [Google Scholar] [CrossRef]
- Gopalan, S.P.; Champathong, A.; Sukhapunnaphan, T.; Nakamura, S.; Hanasaki, N. Potential impact of diversion canals and retention areas as climate change adaptation measures on flood risk reduction: A hydrological modelling case study from the Chao Phraya River Basin, Thailand. Sci. Total Environ. 2022, 841, 156742. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Z.; Liu, K.; Cheng, L.; Bai, Y.; Jin, G. Optimizing flood diversion siting and its control strategy of detention basins: A case study of the Yangtze River. China. J. Hydrol. 2021, 597, 126201. [Google Scholar] [CrossRef]
- Han, L.; Cao, L.; Wu, Q.; Huang, J.; Yu, B. Identification of Surface Deformation-Sensitive Features under Extreme Rainfall Conditions in Zhengzhou City Based on Multi-Source Remote Sensing Data. Appl. Sci. 2023, 13, 13063. [Google Scholar] [CrossRef]
- Ni, J.; Zhao, Y.; Li, B.; Liu, J.; Zhou, Y.; Zhang, P.; Shao, J.; Chen, Y.; Jin, J.; He, C. Investigation of the impact mechanisms and patterns of meteorological factors on air quality and atmospheric pollutant concentrations during extreme weather events in Zhengzhou city, Henan Province. Atmos. Pollut. Res. 2023, 14, 101932. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, P.; Li, Y.; Wang, L.; Chen, C.; Li, J.; Hu, T. Management of the designed risk level of urban drainage system in the future: Evidence from haining city, China. J. Environ. Manag. 2024, 351, 119846. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Q.; Zhang, M. A review of non-point source water pollution modeling for the urban–rural transitional areas of China: Research status and prospect. Sci. Total Environ. 2022, 826, 154146. [Google Scholar] [CrossRef]
- Yin, D.; Evans, B.; Wang, Q.; Chen, Z.; Jia, H.; Chen, A.S.; Fu, G.; Ahmad, S.; Leng, L. Integrated 1D and 2D model for better assessing runoff quantity control of low impact development facilities on community scale. Sci. Total Environ. 2020, 720, 137630. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wang, W. Convolutional Neural Network. In Intelligent Information Processing with Matlab; Springer Nature Singapore: Singapore, 2023; pp. 39–71. [Google Scholar] [CrossRef]
- Li, B.; Li, R.; Sun, T.; Gong, A.; Tian, F.; Khan, M.Y.A.; Ni, G. Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau. J. Hydrol. 2023, 620, 129401. [Google Scholar] [CrossRef]
- Tang, A.; Jiang, Y.; Yu, Q.; Zhang, Z. A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries. J. Energy Storage 2023, 68, 107734. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Architectural Water Supply and Drainage Design Standard (GB 50015-2019); China Planning Press: Beijing, China, 2019. [Google Scholar]
- Zhengzhou Municipal Bureau of Natural Resources and Planning. Technical Regulations for Urban Planning and Management in Zhengzhou City; Zhengzhou Municipal Bureau of Natural Resources and Planning: Zhengzhou, China, 2019. [Google Scholar]
Rainfall ID | Rainfall Duration/h | Rainfall/mm | Average Rainfall Intensity/mm·h−1 | Rain Peak Coefficient |
---|---|---|---|---|
20180515 | 0.67 | 22.1 | 32.84 | 0.125 |
20180801 | 0.83 | 45.1 | 54.22 | 0.115 |
20210920 | 2.00 | 52.7 | 26.35 | 0.385 |
20210720 | 13 | 518.4 | 39.88 | 0.381 |
ID | Location of Water Accumulation Points | Simulated Water Depth/m | Actual Measured Water Depth/m | Error/m |
---|---|---|---|---|
1 | Eastern half of Tongbai Road (from Ruhe Road to Huaihe Road) | 0.20 | 0.15 | 0.05 |
2 | Intersection of Gongren Road and Ruhe Road | 0.33 | 0.30 | 0.03 |
3 | Intersection of Longhai Road and Gonggong Road | 0.25–0.40 | 0.30–0.40 | −0.05 |
4 | Yihe Road (Songshan Road to Gonggong Road) | 0.30–0.60 | 0.30–0.50 | 0.10 |
5 | Intersection of Longhai Road and Tongbai Road | 0.60 | 0.55 | 0.05 |
6 | Intersection of Yihe Road and Qinling Road | 0.57 | 0.50 | 0.07 |
7 | Western side of Jinshui River Bridge on Ruhe Road | 0.18–0.51 | 0.20–0.50 | −0.02 |
Grid ID | Simulate Water Depth/m | Predict Water Depth/m | AE/m | MAE/m |
---|---|---|---|---|
1 | 0.17 | 0.16 | 0.01 | 0.026 |
2 | 0.31 | 0.28 | 0.03 | |
3 | 0.35 | 0.38 | 0.03 | |
4 | 0.47 | 0.45 | 0.02 | |
5 | 0.53 | 0.48 | 0.05 | |
6 | 0.49 | 0.50 | 0.01 | |
7 | 0.39 | 0.36 | 0.03 |
Rainfall Scenario | Evaluation Index | 1DCNN–LSTM–Attention | 1DCNN | LSTM |
---|---|---|---|---|
Heavy rain | RMSE/m | 0.028 | 0.112 | 0.053 |
PCC | 0.961 | 0.924 | 0.941 | |
Torrential rain | RMSE/m | 0.019 | 0.095 | 0.044 |
PCC | 0.980 | 0.933 | 0.949 | |
Heavy rainstorm | RMSE/m | 0.024 | 0.101 | 0.048 |
PCC | 0.973 | 0.932 | 0.944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Zhu, D.; Zhang, Z.; Xu, J. Analyzing the Mitigation Effect of Urban River Channel Flood Diversion on Waterlogging Disasters Based on Deep Learning. Water 2024, 16, 1771. https://doi.org/10.3390/w16131771
Sun Q, Zhu D, Zhang Z, Xu J. Analyzing the Mitigation Effect of Urban River Channel Flood Diversion on Waterlogging Disasters Based on Deep Learning. Water. 2024; 16(13):1771. https://doi.org/10.3390/w16131771
Chicago/Turabian StyleSun, Qingzhen, Dehua Zhu, Zhaoyang Zhang, and Jingbo Xu. 2024. "Analyzing the Mitigation Effect of Urban River Channel Flood Diversion on Waterlogging Disasters Based on Deep Learning" Water 16, no. 13: 1771. https://doi.org/10.3390/w16131771
APA StyleSun, Q., Zhu, D., Zhang, Z., & Xu, J. (2024). Analyzing the Mitigation Effect of Urban River Channel Flood Diversion on Waterlogging Disasters Based on Deep Learning. Water, 16(13), 1771. https://doi.org/10.3390/w16131771