Upgrading Maize Cultivation in Bosnia and Herzegovina from Rainfed to Irrigated Systems: Use of Remote Sensing Data and the Dual Crop Coefficient Approach to Estimate Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Its Pedo-Climatic Characteristics
2.2. Experimental Design and On-Field Measurements
2.3. Remote Sensing Data and the Dual Crop Coefficient Approach
- (i)
- Allen & Pereira approach (A&P)—which is the reference approach, involving the use of ground data: leaf area index (LAI) measurements, each 7 days during the maize crop season, in both years under study (2021 and 2022). This approach uses the A&P equation [16] to obtain the density coefficient (Kd) and then the basal crop coefficient (Kcb A&P) according to the methodology defined by [33].
- (ii)
- SIMDualKc approach (SD)—involving the use of the SIMDualKc model following the recommendations from the FAO56 document [35] to calculate basal crop coefficient (Kcb SD). Through calibration and validation of the soil water balance model (SWB), using a set of statistical “goodness of fit” indicators, calibrated values for all conservative parameters were determined. The year 2022 served as the calibration year, while 2021 was used for validation.
- (iii)
- Vegetation indices approach (VI)—involving the calculation of the basal crop coefficient (Kcb VI) based on the soil-adjusted vegetation index (SAVI) obtained from Sentinel-2 satellite imagery [64]. Calibration of this method was conducted using the trial-and-error method by adjusting the ƞ exponent representing the relationship between SAVI and a transpiration coefficient (Tc) within the initial Kcb formula. The observed values considered were the AP Kcb values, along with the same set of statistical indicators as in the SD approach. In this case as well, the year 2022 was used for calibration and 2021 for validation.
2.4. Basal Crop Coefficient (Kcb A&P) Calculation Based On-Ground LAI Observations—Allen & Pereira Approach (A&P)
2.5. SIMDualKc Model for Estimating Basal Crop Coefficient (Kcb SD) Using the Dual Crop Coefficient Approach (SD)
2.6. Basal Crop Coefficient Derived from Remote Sensing Data (Kcb VI)—Vegetation Indices Approach (VI)
2.7. Actual Basal Crop Coefficient (Kcb act), Crop Coefficient (Kc), and Actual Crop Evapotranspiration (ETc act) Estimation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Agroclimatic Conditions through the Crop Seasons
3.2. Leaf Area Index (LAI) and Maize Grain Yield through the Crop Seasons
3.3. Estimation of Basal Crop Coefficient with the SIMDualKc (Kcb SD) Model
3.4. Estimation of Basal Crop Coefficient with Vegetation Indices Approach (Kcb VI)
3.5. Dynamics of (Actual) Basal Crop Coefficients (Kcb act and Kcb), Crop Coefficients (Kc act and Kc), and Soil Evaporation Coefficient (Ke) over the Seasons
3.6. Estimating Actual Evapotranspiration (ETc act) for Maize
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FNC. Fourth National Communication of Bosnia and Herzegovina Under the United Nations Framework Convention on Climate Change, in Preparation of the Fourth National Communication on Climate Change and the Third Biennial Update Report on Greenhouse Gas Emissions of Bosnia and Herzegovina; UNDP: Sarajevo, Bosnia and Herzegovina, 2021; Available online: https://unfccc.int/sites/default/files/resource/FNC%20BiH_ENG%20fin.pdf (accessed on 20 December 2023).
- NAP. Bosnia and Herzegovina National Adaptation Plan—NAP with Proposed Measures; UNDP: Sarajevo, Bosnia and Herzegovina, 2021; Available online: https://unfccc.int/sites/default/files/resource/NAP-Bosnia-and-Herzegovina%20.pdf (accessed on 21 December 2023).
- TNC. Third National Communication and Second Biennial Update Report on Greenhouse Gas Emissions of Bosnia and Herzegovina under the United Nations Framework Convention on Climate Change; UNDP: Sarajevo, Bosnia and Herzegovina, 2016. [Google Scholar]
- Trbic, G.; Popov, T.; Djurdjevic, V.; Milunovic, I.; Dejanovic, T.; Gnjato, S.; Ivanisevic, M. Climate Change in Bosnia and Herzegovina According to Climate Scenario RCP8.5 and Possible Impact on Fruit Production. Atmosphere 2021, 13, 1. [Google Scholar] [CrossRef]
- Cadro, S.; Uzunovic, M.; Markovic, M.; Zurovec, O.; Gocic, M. Climate change impacts on water balance components in bosnia and herzegovina and croatia. J. Agric. For. 2023, 69, 101–116. [Google Scholar] [CrossRef]
- Žurovec, O.; Vedeld, P.O. Rural Livelihoods and Climate Change Adaptation in Laggard Transitional Economies: A Case from Bosnia and Herzegovina. Sustainability 2019, 11, 6079. [Google Scholar] [CrossRef]
- Smajlović, A.; Gudić, A.; Avdović, A.; Hadžić, F.; Tatarević, S.; Ibraković, V.; Kermo, Z.; Čadro, S. Impact of Climate Change on the Soil Water Balance Components in the Area of Sanski Most (Bosnia and Herzegovina). In Proceedings of the 32nd Scientific-Expert Conference of Agriculture and Food Industry, Sarajevo, Bosnia and Herzegovina, 1–2 December 2022; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Žurovec, O.; Čadro, S.; Sitaula, B.K. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina. Sustainability 2017, 9, 1208. [Google Scholar] [CrossRef]
- Zurovec, O.; Vedeld, P.O.; Sitaula, B.K. Agricultural Sector of Bosnia and Herzegovina and Climate Change—Challenges and Opportunities. Agriculture 2015, 5, 245–266. [Google Scholar] [CrossRef]
- Martinovska Stojcheska, A.; Kotevska, A.; Janeska Stamenkovska, I.; Dimitrievski, D.; Zhllima, E.; Vaško, Ž.; Bajramović, S.; Mihone Kerolli, M.; Marković, M.; Kovačević, V.; et al. Comparative Analysis of Agricultural Sectors and Rural Areas in the Pre-Accession Countries: D-3 Draft Final Report; SWG: Skoplje, Republic of Macedonia, 2022; Available online: https://seerural.org/news/comparative-analysis-of-agricultural-sectors-and-rural-areas-in-the-pre-accession-countries-agricultural-policy-developments-situation-of-the-agri-food-sector-and-economic-context/ (accessed on 15 February 2024).
- Playán, E.; Čereković, N.; Marković, M.; Vaško, Ž.; Vekić, M.; Mujčinović, A.; Čadro, S.; Hajder, Đ.; Šipka, M.; Bećirović, E.; et al. A roadmap to consolidate research and innovation in agricultural water management in Bosnia and Herzegovina. Agric. Water Manag. 2024, 293, 108699. [Google Scholar] [CrossRef]
- ASBH. Agencija za Statistiku Bosne i Hercegovine—Poljoprivreda. 2023. Available online: https://bhas.gov.ba/Calendar/Category/23?lang=bs# (accessed on 18 September 2023).
- Mitrović, I.; Todorović, M.; Marković, M.; Mehmeti, A. Eco-efficiency analysis of rainfed and irrigated maize systems in Bosnia and Herzegovina. J. Water Clim. Chang. 2023, 14, 4489–4505. [Google Scholar] [CrossRef]
- EC. Guidelines for the Implementation of the Green Agenda for the Western Balkans, in Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions An Economic and Investment Plan for the Western Balkans; European Commission: Brussels, Belgium, 2020; p. 22. Available online: https://networknature.eu/nbs-resource/25083#:~:text=It%20further%20details%20the%20five,the%20natural%20wealth%20of%20the (accessed on 15 February 2024).
- Pereira, L.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.; Allen, R. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef]
- Puig-Sirera, A.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S. Transpiration and Water Use of an Irrigated Traditional Olive Grove with Sap-Flow Observations and the FAO56 Dual Crop Coefficient Approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed]
- Vanino, S.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D′Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Johnson, L.F.; Trout, T.J. Satellite NDVI Assisted Monitoring of Vegetable Crop Evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439–455. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of Environment: An Earth Resource Perspective; Prentice Hall, Inc.: New York, NY, USA; Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Jayanthi, H.; Neale, C.M.; Wright, J.L. Development and validation of canopy reflectance-based crop coefficient for potato. Agric. Water Manag. 2007, 88, 235–246. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper; United Nations FAO: Rome, Italy, 1998; p. 326. Available online: https://appgeodb.nancy.inra.fr/biljou/pdf/Allen_FAO1998.pdf (accessed on 14 December 2023).
- Pôças, I.; Paço, T.A.; Paredes, P.; Cunha, M.; Pereira, L.S. Estimation of Actual Crop Coefficients Using Remotely Sensed Vegetation Indices and Soil Water Balance Modelled Data. Remote Sens. 2015, 7, 2373–2400. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, C.T.; Fereres, E.; Raes, D. Crop Yield Response to Water. FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 2012; p. 500. Available online: https://www.fao.org/3/i2800e/i2800e.pdf (accessed on 14 December 2023).
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; Lopez-Urrea, R.; Shad, Z.M. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Xue, Q.; Chen, J.; Han, X. Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Sci. Technol. 2013, 68, 821–828. [Google Scholar] [CrossRef]
- Martins, J.D.; Rodrigues, G.C.; Paredes, P.; Carlesso, R.; Oliveira, Z.B.; Knies, A.E.; Petry, M.T.; Pereira, L.S. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosyst. Eng. 2013, 115, 291–310. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper 46; FAO land and Water Development Division: Rome, Italy, 1992; Available online: https://books.google.ba/books/about/CROPWAT.html?id=p9tB2ht47NAC&redir_esc=y (accessed on 14 December 2023).
- Rao, A.; Saxton, K. Analysis of soil water and water stress for pearl millet in an Indian arid region using the SPAW Model. J. Arid. Environ. 1995, 29, 155–167. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Čadro, S. Razvoj i Primjena Softverskih Modela u Cilju Održivog Upravljanja Vodom i Povečanja Produktivnosti Poljoprivrednih Kultura u BiH; Faculty of Agriculture and Food Sciences University of Sarajevo: Sarajevo, Bosnia and Herzegovina, 2019. [Google Scholar] [CrossRef]
- Čadro, S.; Škaljić, S.; Rakita, N.; Žurovec, J. A Modern Hardware and Software Solutions for Corn Irrigation. In Proceedings of the 4th International Symposium Agricultural Engineering ISAE, Belgrade, Serbia, 31 October–2 November 2019; p. 18. Available online: https://www.researchgate.net/publication/339018754_A_MODERN_HARDWARE_AND_SOFTWARE_SOLUTIONS_FOR_CORN_IRRIGATION (accessed on 18 December 2023).
- Marković, M.; Čereković, N.; Hajder, Đ.; Zapata, N.; Paço, T.A.; Riezzo, E.E.; Čadro, S.; Todorović, M. Promoting the Application of Smart Technologies in Agricultural Water Management in Bosnia and Herzegovina. In Serbian Society of Soil Science Soils for Future under Global Challenges. In Proceedings of the 3rd International and 15th National Congress, Serbian Society of Soil Science, 21–24 September 2021; University of Belgrade, Faculty of Agriculture: Sokobanja, Serbia, 2021; Available online: https://cordis.europa.eu/project/id/952396 (accessed on 20 February 2024).
- Crljenković, B. Comparative Analysis of Different Software Models for Determination of Irrigation Requirements in Maize; University of Sarajevo: Sarajevo, Bosnia and Herzegovina, 2022; p. 85. [Google Scholar]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’halloran, T. Prediction Accuracy for Projectwide Evapotranspiration Using Crop Coefficients and Reference Evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Bréda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Geiger, R. KöppenGeiger/Klima der Erde. (Wandkarte 1:16 Mill.); KlettPerthes: Gotha, Germany, 1961. [Google Scholar]
- Čadro, S.; Cherni-Čadro, S.; Marković, M.; Žurovec, J. A reference evapotranspiration map for Bosnia and Herzegovina. Int. Soil Water Conserv. Res. 2018, 7, 89–101. [Google Scholar] [CrossRef]
- Resulović, H.; Čustović, H.; Čengić, I. Sistematika Tla/Zemljišta—Nastanak, Svojstva i Plodnost; Univerzitet u Sarajevu, Poljoprivredno-Prehrambeni Fakultet: Sarajevo, Bosnia and Herzegovina, 2008. [Google Scholar]
- Cerekovic, N.; Markovic, M.; Radic, V.; Cadro, S.; Crljenkovic, B.; Zapata, N.; Paço, T.A.; Almeida, W.; Stricevic, R.; Todorovic, M. Impact of different water regimes on maize grown at two distinctive pedo-climatic locations in Bosnia and Herzegovina. Span. J. Agric. Res. 2024, 22, e1201. [Google Scholar] [CrossRef]
- IUS Working Group. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Volume 4. [Google Scholar]
- Todorovic, M. An Excel-Based Tool for Real-Time Irrigation Management at Field Scale. In Proceedings of the International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Adana, Turkey, 4–8 April 2006. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Trans. ASAE 1985, 1, 96–99. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/referencespapers.aspx?referenceid=1225457 (accessed on 18 December 2023). [CrossRef]
- Čadro, S.; Uzunović, M.; Žurovec, J.; Žurovec, O. Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. Int. Soil Water Conserv. Res. 2017, 5, 309–324. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Simplified Coefficients for Estimating Monthly Solar Radiation in North America and Europe; Department of Biological and Irrigation Engineering, Utah State University: Logan, UT, USA, 1994. [Google Scholar]
- Jabloun, M.; Sahli, A. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Agric. Water Manag. 2008, 95, 707–715. [Google Scholar] [CrossRef]
- Todorovic, M.; Karic, B.; Pereira, L.S. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. J. Hydrol. 2012, 481, 166–176. [Google Scholar] [CrossRef]
- Colovic, M.; Yu, K.; Todorovic, M.; Cantore, V.; Hamze, M.; Albrizio, R.; Stellacci, A.M. Hyperspectral Vegetation Indices to Assess Water and Nitrogen Status of Sweet Maize Crop. Agronomy 2022, 12, 2181. [Google Scholar] [CrossRef]
- Piscitelli, L.; Colovic, M.; Aly, A.; Hamze, M.; Todorovic, M.; Cantore, V.; Albrizio, R. Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water 2021, 13, 3285. [Google Scholar] [CrossRef]
- Maddonni, G.; Otegui, M. Leaf area, light interception, and crop development in maize. Field Crop. Res. 1996, 48, 81–87. [Google Scholar] [CrossRef]
- Mokhtarpour, H.; Teh, C.B.S.; Saleh, G.; Selmat, A.B.; Asadi, M.E.; Kamar, B. Non-destructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Commun. Biometry Crop Sci. 2010, 5, 19–26. [Google Scholar]
- Campos, I.; Neale, C.M.; Suyker, A.E.; Arkebauer, T.J.; Gonçalves, I.Z. Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties. Agric. Water Manag. 2017, 187, 140–153. [Google Scholar] [CrossRef]
- Pôças, I.; Rodrigues, A.; Gonçalves, S.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Predicting Grapevine Water Status Based on Hyperspectral Reflectance Vegetation Indices. Remote Sens. 2015, 7, 16460–16479. [Google Scholar] [CrossRef]
- Wright, J.L. New Evapotranspiration Crop Coefficients. Proc. Am. Soc. Civ. Eng. J. Irrig. Drain. Div. 1982, 108, 54–74. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Businger, J.A.; Fritschen, L.J.; Jensen, M.E.; Quinn, F.H. Evaporation and Transpiration, in ASCE Handbook of Hydrology, 2nd ed.; American Society of Civil Engineers: New York, NY, USA, 1996; pp. 125–252. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2011, 103, 8–24. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2011, 103, 62–77. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.; Alves, I.; Pereira, L. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef]
- Giménez, L.; Paredes, P.; Pereira, L.S. Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Water 2017, 9, 393. [Google Scholar] [CrossRef]
- Cholpankulov, E.D.; Inchenkova, O.P.; Paredes, P.; Pereira, L.S. Cotton irrigation scheduling in central Asia: Model calibration and validation with consideration of groundwater contribution. Irrig. Drain. 2008, 57, 516–532. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.; Alves, I.; Pereira, L. Corrigendum to “Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies” [Agric. Water Manage. 135 (2014) 27–39]. Agric. Water Manag. 2014, 141, 84. [Google Scholar] [CrossRef]
- LeGates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Liu, H. An error and sensitivity analysis of the atmospheric- and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens. 1994, 32, 897–905. [Google Scholar] [CrossRef]
- González-Dugo, M.; Escuin, S.; Cano, F.; Cifuentes, V.; Padilla, F.; Tirado, J.; Oyonarte, N.; Fernández, P.; Mateos, L. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale. Agric. Water Manag. 2013, 125, 92–104. [Google Scholar] [CrossRef]
- Bausch, W.C. Soil Vackground Effects on Reflectance-Based Crop Coefficients for Corn. Remote Sens. Environ. 1993, 46, 213–222. [Google Scholar] [CrossRef]
- González-Dugo, M.; Mateos, L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Raes, D.; Smith, M.; Pereira, L.S. Estimating Evaporation from Bare Soil and the Crop Coefficient for the Initial Period Using Common Soils Information. J. Irrig. Drain. Eng. 2005, 131, 14–23. [Google Scholar] [CrossRef]
- Popov, T.; Gnjato, S.; Gnjato, R. Recent Climate Change in Bosnia and Herzegovina. In Proceedings of the Materials of the International Scientific and Practical Conference Geographical Science of Uzbekistan and Russia: Common Problems, Potential and Prospects for Cooperation, Tashkent, Republic of Uzbekistan, 13–19 May 2019. [Google Scholar]
- Čadro, S.; Uzunovic, M.; Cherni-Čadro, S.; Žurovec, J. Changes in the Water Balance of Bosnia and Herzegovina as a Result of Climate Change. Agric. For. 2019, 65, 19–33. Available online: http://www.agricultforest.ac.me/data/20190930-02%20Cadro%20et%20al.pdf (accessed on 15 March 2024).
- Popov, T.; Gnjato, S.; Trbic, G. Changes in temperature extremes in Bosnia and Herzegovina: A fixed thresholds-based index analysis. J. Geogr. Inst. Jovan Cvijic SASA 2018, 68, 17–33. [Google Scholar] [CrossRef]
- Stewart, D.; Dwyer, L. Mathematical characterization of maize canopies. Agric. For. Meteorol. 1993, 66, 247–265. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Maas, S.J.; Tiscareno, M.L.; Macias, C.J.; Mendoza, J.L.; Richardson, C.W.; Salinas, G.J.; Manjarrez, J.R. Large-Area Maize Yield Forecasting Using Leaf Area Index Based Yield Model. Agron. J. 2005, 97, 418–425. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Bausch, W.C.; Neale, C.M.U. spectral Inputs Improve Corn Crop Coefficients and Irrigation Scheduling. Trans. ASAE 1989, 32, 1901. [Google Scholar] [CrossRef]
- D’Urso, G.; Calera, A.B. Operative Approaches to Determine Crop Water Requirements from Earth Observation Data: Methodologies and Applications. In Earth Observation for Vegetation Monitoring and Water Management; AIP Publishing: Naples, Italy, 2006. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farías, S.; Poblete-Echeverría, C.; Balbontín, C.; Calera, A. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 24, 1–14. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Quilty, J.R.; Buresh, R.J.; Wassmann, R.; Haidar, S.; Correa, T.Q.; Sandro, J.M. Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agric. Water Manag. 2014, 136, 1–12. [Google Scholar] [CrossRef]
- Pejić, B.; Rajić, M.; Bošnjak, Đ.; Mačkić, K.; Jaćimović, G.; Jug, D.; Stričević, R. Application of reference evapotranspiration in calculation water use on maize evapotranspirationin climatic conditions of Vojvodina. Letop Naučnih Rad Poljopr. Fak. 2011, 35, 32–46. [Google Scholar]
- Gregorić, E.; Počuča, V.; Vujadinović Mandić, M.; Matović, G. Prediction of Water Conditions for Maize Cultivation on the Chernozem Soil until the Year of 2100. In Proceedings of the 11th International Scientific Agriculture Symposium “AGROSYM 2020”, Jahorina, Bosnia and Herzegovina, 8–9 October 2020; pp. 611–617. [Google Scholar]
- Kresovic, B.; Matovic, G.; Gregoric, E.; Djuricin, S.; Bodroza, D. Irrigation as a climate change impact mitigation measure: An agronomic and economic assessment of maize production in Serbia. Agric. Water Manag. 2014, 139, 7–16. [Google Scholar] [CrossRef]
- Šimunić, I.; Likso, T.; Husnjak, S.; Orlović-Leko, P.; Bubalo Kovačić, M. Analysis of climate elements in the northeastern region of Croatia for the purpose of determining irrigation requirements of maize and soybean on drained soil. Agric For. 2021, 67, 7–20. [Google Scholar] [CrossRef]
- Stricevic, R.J.; Stojakovic, N.; Vujadinovic-Mandic, M.; Todorovic, M. Impact of climate change on yield, irrigation requirements and water productivity of maize cultivated under the moderate continental climate of Bosnia and Herzegovina. J. Agric. Sci. 2017, 156, 618–627. [Google Scholar] [CrossRef]
- Padilla, F.L.M.; González-Dugo, M.P.; Gavilán, P.; Domínguez, J. Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn. Hydrol. Earth Syst. Sci. 2011, 15, 1213–1225. [Google Scholar] [CrossRef]
- Payero, J.; Tarkalson, D.; Irmak, S.; Davison, D.; Petersen, J. Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass. Agric. Water Manag. 2009, 96, 1387–1397. [Google Scholar] [CrossRef]
Location | Soil Layer | Soil Texture | Soil Layer Thickness (m) | Sand 2–0.02 (%) | Silt 0.02–0.002 (%) | Clay <0.002 (%) | Bulk Density (g/cm3) | FC Vol (%) | PWP Vol (%) | TAW (mm) |
---|---|---|---|---|---|---|---|---|---|---|
Butmir | I | clay loam | 0.0–0.30 | 37.4 | 29.1 | 33.5 | 1.30 | 43.73 | 19.98 | 71.23 |
II | clay loam | 0.30–0.40 | 36.0 | 31.6 | 32.4 | 1.63 | 43.60 | 20.41 | 23.19 | |
III | clay | 0.40–0.60 | 31.1 | 25.6 | 43.3 | 1.46 | 44.60 | 28.07 | 33.05 | |
IV | clay loam | 0.60–1.20 | 42.8 | 19.2 | 38.0 | 1.46 | 39.75 | 30.66 | 54.53 |
2021 | 2022 | |||||
---|---|---|---|---|---|---|
Date (DAS) | ||||||
F | D | R | F | D | R | |
Sowing | 07.05 | 05.05 | ||||
Emergence | 17.05 (10) | 17.05 (10) | 17.05 (10) | 17.05 (12) | 17.05 (12) | 17.05 (12) |
Beg. of tasseling | 15.07 (69) | 15.07 (69) | 15.07 (69) | 18.07 (74) | 18.07 (74) | 18.07 (74) |
Full silk | 29.07 (83) | 29.07 (83) | 15.07 (69) | 25.07 (81) | 25.07 (81) | 25.07 (81) |
Milk maturity | 03.09 (119) | 03.09 (119) | 23.08 (108) | 22.08 (109) | 22.08 (109) | 15.08 (102) |
Wax maturity | 13.09 (129) | 13.09 (129) | 27.08 (112) | 05.09 (123) | 05.09 (123) | 22.08 (110) |
Full maturity | 10.10 (156) | 10.10 (156) | 30.09 (146) | 15.10 (163) | 15.10 (163) | 05.10 (153) |
Harvesting | 23.10 (169) | 22.10 (170) |
Crop Growth Stages | 2021 | 2022 | ||
---|---|---|---|---|
Date (DAS) | Length | Date (DAS) | Length | |
Planting/initiation (initial) | 07.05.2021 (1) | 30 | 05.05.2022 (1) | 25 |
Start rapid growth (development) | 06.06.2021 (30) | 40 | 30.05.2022 (25) | 45 |
Start midseason (mid-season) | 16.07.2021 (70) | 61 | 14.07.2022 (70) | 64 |
Start senescence/maturity | 15.09.2021 (131) | - | 16.09.2022 (134) | - |
End season/harvesting (end) | 23.10.2021 (170) | 40 | 22.10.2022 (172) | 39 |
Year | May | June | July | August | September | October | Total Number of Images |
---|---|---|---|---|---|---|---|
Date (DAS) | |||||||
2021 | 09.05 (2) 29.05 (22) | 03.06 (27) 08.06 (32) 18.06 (42) 23.06 (47) 28.06 (52) | 08.07 (62) 13.07 (67) 28.07 (82) | 02.08 (57) 07.08 (92) 12.08 (97) 17.08 (102) 22.08 (107) | 01.09 (117) 06.09 (122) 11.09 (127) 26.09 (142) | 01.10 (146) | 20 |
2022 | 19.05 (14) 24.05 (19) | 03.06 (29) 13.06 (39) 23.06 (49) | 03.07 (59) 13.07 (69) 18.07 (74) 23.07 (79) 28.07 (84) | 02.08 (89) 07.08 (94) 17.08 (104) 27.08 (114) | 06.09 (124) | 06.10 (154) | 16 |
Period | Parameter | May | June | July | August | September | Maize Vegetation | |
---|---|---|---|---|---|---|---|---|
Average | Sum | |||||||
1991–2020 | Tmax (°C) | 21.38 | 25.39 | 27.35 | 28.27 | 22.45 | 24.97 | 124.84 |
Tmin (°C) | 9.06 | 12.64 | 14.10 | 14.32 | 10.39 | 12.10 | 60.50 | |
P (mm) | 86.02 | 87.24 | 75.03 | 61.74 | 89.99 | 80.01 | 400.03 | |
ETo (mm) | 104.02 | 120.96 | 131.55 | 123.02 | 83.29 | 112.57 | 562.84 | |
2021 | Tmax (°C) | 22.55 | 29.61 | 32.57 | 30.89 | 25.61 | 28.25 | 141.23 |
Tmin (°C) | 9.92 | 11.95 | 14.34 | 12.47 | 8.16 | 11.37 | 56.83 | |
P (mm) | 25.00 | 27.40 | 62.00 | 45.40 | 35.60 | 39.08 | 195.40 | |
ETo (mm) | 113.78 | 157.42 | 170.42 | 147.62 | 100.02 | 137.85 | 689.27 | |
2022 | Tmax (°C) | 26.08 | 30.95 | 31.89 | 29.85 | 23.62 | 28.48 | 142.39 |
Tmin (°C) | 8.25 | 13.33 | 13.13 | 14.76 | 9.38 | 11.77 | 58.85 | |
P (mm) | 49.80 | 40.40 | 68.20 | 99.50 | 115.56 | 74.69 | 373.46 | |
ETo (mm) | 142.49 | 162.07 | 169.85 | 132.84 | 88.48 | 139.15 | 695.73 |
Year | Full Irrigation | Deficit Irrigation | Rainfed |
---|---|---|---|
2021 | 12.65 | 13.83 | 4.48 |
2022 | 14.20 | 12.30 | 8.75 |
Maize Basal Crop Coefficients (Kcb) | Depletion Factors for No Stress Conditions (p) | Soil Evaporation Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kcb ini | Kcb mid | Kcb end | pini | pdev | pmid | pmaturity | pend | TEW (mm) | REW (mm) | Ze (m) | |
Initial | 0.15 | 1.15 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 51 | 11 | 0.15 |
Calibrated | 0.30 | 1.15 | 0.45 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 51 | 11 | 0.15 |
n | b0 | R2 | RMSE | AAE | ARE | Emax | EF | dIA | |
---|---|---|---|---|---|---|---|---|---|
Calibration | 20 | 0.93 | 0.89 | 0.12 | 0.08 | 11.82 | 0.26 | 0.82 | 0.95 |
Validation | 19 | 0.95 | 0.91 | 0.11 | 0.07 | 15.68 | 0.34 | 0.89 | 0.97 |
Kcb max | SAVImax | SAVImin | η | Coefficient | |
---|---|---|---|---|---|
Initial values | 0.95 | 0.68 | 0.09 | 0.96 | 0.15 |
Calibrated values | 1.17 | 0.64 | 0.14 | 2.40 | 0.15 |
n | b0 | R2 | RMSE | AAE | ARE | Emax | EF | dIA | |
---|---|---|---|---|---|---|---|---|---|
Calibration | 16 | 1.00 | 0.97 | 0.05 | 0.03 | 8.19 | 0.13 | 0.97 | 0.99 |
Validation | 20 | 1.02 | 0.97 | 0.08 | 0.05 | 15.40 | 0.19 | 0.95 | 0.99 |
Irrigation Treatment | Year | Approach | Kcb | Kc | ||||
---|---|---|---|---|---|---|---|---|
No stress | Tabulated | Kcb ini | Kcb mid | Kcb end | Kc ini | Kc mid | Kc end | |
- | 0.15 | 1.15 | 0.50–0.15 * | 0.30 | 1.20 | 0.60–0.35 * | ||
Kcb ini act | Kcb mid act | Kcb end act | Kc ini act | Kc mid act | Kc end act | |||
Full irrigation | 2021 | A&P | 0.16 | 1.13 | 0.45 | 0.71 | 1.22 | 1.05 |
SD | 0.29 | 1.13 | 0.45 | 0.83 | 1.22 | 1.05 | ||
VI | 0.26 | 1.14 | 0.45 | 0.81 | 1.23 | 1.05 | ||
2022 | A&P | 0.19 | 1.13 | 0.45 | 0.77 | 1.22 | 0.80 | |
SD | 0.29 | 1.12 | 0.45 | 0.86 | 1.20 | 0.80 | ||
VI | 0.19 | 1.13 | 0.45 | 0.76 | 1.21 | 0.80 | ||
Deficit irrigation | 2021 | A&P | 0.12 | 0.56 | 0.40 | 0.68 | 0.90 | 1.01 |
SD | 0.07 | 0.32 | 0.37 | 0.63 | 0.66 | 0.98 | ||
VI | 0.21 | 0.55 | 0.40 | 0.77 | 0.89 | 1.01 | ||
2022 | A&P | 0.16 | 0.70 | 0.15 | 0.78 | 1.08 | 0.54 | |
SD | 0.14 | 0.46 | 0.05 | 0.76 | 0.85 | 0.44 | ||
VI | 0.17 | 0.69 | 0.15 | 0.78 | 1.08 | 0.54 | ||
Rainfed | 2021 | A&P | 0.11 | 0.26 | 0.37 | 0.59 | 0.44 | 0.99 |
SD | 0.06 | 0.13 | 0.32 | 0.54 | 0.32 | 0.94 | ||
VI | 0.26 | 0.27 | 0.37 | 0.74 | 0.45 | 0.99 | ||
2022 | A&P | 0.15 | 0.40 | 0.10 | 0.74 | 0.79 | 0.45 | |
SD | 0.04 | 0.18 | 0.03 | 0.63 | 0.58 | 0.37 | ||
VI | 0.15 | 0.40 | 0.10 | 0.74 | 0.80 | 0.50 |
Irrigation Treatment | Year | Approach | Initial | Development | Mid-Season | End | Vegetation Period |
---|---|---|---|---|---|---|---|
Full irrigation | 2021 | A&P | 81 | 202 | 355 | 104 | 742 |
SD | 95 | 194 | 355 | 90 | 734 | ||
VI | 92 | 226 | 356 | 101 | 776 | ||
2022 | A&P | 90 | 261 | 351 | 111 | 813 | |
SD | 101 | 219 | 345 | 104 | 769 | ||
VI | 90 | 263 | 351 | 103 | 807 | ||
Deficit irrigation | 2021 | A&P | 77 | 188 | 257 | 80 | 601 |
SD | 73 | 155 | 188 | 66 | 482 | ||
VI | 87 | 206 | 256 | 78 | 627 | ||
2022 | A&P | 91 | 253 | 305 | 102 | 752 | |
SD | 88 | 205 | 236 | 81 | 610 | ||
VI | 92 | 247 | 304 | 97 | 740 | ||
Rainfed | 2021 | A&P | 66 | 146 | 120 | 71 | 403 |
SD | 62 | 125 | 83 | 63 | 332 | ||
VI | 82 | 168 | 123 | 71 | 444 | ||
2022 | A&P | 85 | 224 | 212 | 94 | 616 | |
SD | 71 | 170 | 151 | 75 | 467 | ||
VI | 85 | 228 | 214 | 91 | 618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čadro, S.; Omerović, Z.; Soares, D.; Crljenković, B.; Almeida, W.S.; Šipka, M.; Makaš, M.; Todorović, M.; Paço, T.A. Upgrading Maize Cultivation in Bosnia and Herzegovina from Rainfed to Irrigated Systems: Use of Remote Sensing Data and the Dual Crop Coefficient Approach to Estimate Evapotranspiration. Water 2024, 16, 1797. https://doi.org/10.3390/w16131797
Čadro S, Omerović Z, Soares D, Crljenković B, Almeida WS, Šipka M, Makaš M, Todorović M, Paço TA. Upgrading Maize Cultivation in Bosnia and Herzegovina from Rainfed to Irrigated Systems: Use of Remote Sensing Data and the Dual Crop Coefficient Approach to Estimate Evapotranspiration. Water. 2024; 16(13):1797. https://doi.org/10.3390/w16131797
Chicago/Turabian StyleČadro, Sabrija, Zuhdija Omerović, Daniela Soares, Benjamin Crljenković, Wilk S. Almeida, Milan Šipka, Merima Makaš, Mladen Todorović, and Teresa A. Paço. 2024. "Upgrading Maize Cultivation in Bosnia and Herzegovina from Rainfed to Irrigated Systems: Use of Remote Sensing Data and the Dual Crop Coefficient Approach to Estimate Evapotranspiration" Water 16, no. 13: 1797. https://doi.org/10.3390/w16131797
APA StyleČadro, S., Omerović, Z., Soares, D., Crljenković, B., Almeida, W. S., Šipka, M., Makaš, M., Todorović, M., & Paço, T. A. (2024). Upgrading Maize Cultivation in Bosnia and Herzegovina from Rainfed to Irrigated Systems: Use of Remote Sensing Data and the Dual Crop Coefficient Approach to Estimate Evapotranspiration. Water, 16(13), 1797. https://doi.org/10.3390/w16131797