Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems
Abstract
:1. Introduction
2. Methodology
2.1. Water Distribution System Optimal Operation Problem Formulation
2.2. Modification of Tank Operation Constraint
2.3. Conceptual Definition of Water Age
3. Results
3.1. Case Study 1
3.2. Case Study 2
3.3. Case Study 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Besner, M.; Gauthier, V.; Barbeau, B.; Millette, R.; Chapleau, R.; Prévost, M. Understanding distribution system water quality. J. AWWA 2001, 93, 101–114. [Google Scholar] [CrossRef]
- Kim, J.H.; Tran, T.V.; Chung, G. Optimization of water quality sensor locations in water distribution systems considering imperfect mixing. In Water Distribution Systems Analysis; ASCE: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Boorman, G.A. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107 (Suppl. S1), 207–217. [Google Scholar] [CrossRef]
- Helbling, D.E.; VanBriesen, J.M. Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems. J. Environ. Eng. 2009, 135, 918–927. [Google Scholar] [CrossRef]
- Ostfeld, A. A review of modeling water quality in Distribution Systems. Urban Water J. 2005, 2, 107–114. [Google Scholar] [CrossRef]
- Kurek, W.; Ostfeld, A. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. J. Environ. Manag. 2013, 115, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, M.; Tabesh, M.; Nazif, S.; Dini, M. Water quality based multi-objective optimal design of Water Distribution Systems. Water Resour. Manag. 2016, 31, 93–108. [Google Scholar] [CrossRef]
- Tu, M.-Y.; Tsai, F.T.-C.; Yeh, W.W.-G. Optimization of water distribution and water quality by hybrid genetic algorithm. J. Water Resour. Plan. Manag. 2005, 131, 431–440. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.-H.; Yeh, W.W.-G. Optimization of regional water distribution system with blending requirements. J. Water Resour. Plan. Manag. 2000, 126, 229–235. [Google Scholar] [CrossRef]
- Sakarya, A.B.; Mays, L.W. Optimal operation of water distribution pumps considering water quality. J. Water Resour. Plan. Manag. 2000, 126, 210–220. [Google Scholar] [CrossRef]
- Islam, N.; Sadiq, R.; Rodriguez, M.J. Optimizing booster chlorination in water distribution networks: A water quality index approach. Environ. Monit. Assess. 2013, 185, 8035–8050. [Google Scholar] [CrossRef]
- Ostfeld, A.; Salomons, E. Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems. Eng. Optim. 2006, 38, 337–352. [Google Scholar] [CrossRef]
- Mulholland, M.; Latifi, M.A.; Purdon, A.; Buckley, C.; Brouckaert, C. Multi-objective optimisation of the operation of a water distribution network. J. Water Supply Res. Technol. -Aqua 2014, 64, 235–249. [Google Scholar] [CrossRef]
- EPA. 2023. Available online: https://www.epa.gov/sciencematters/epanet-220-epa-and-water-community-collaboration (accessed on 9 May 2024).
- EPA. Available online: https://www.epa.gov/dwreginfo/drinking-water-distribution-system-tools-and-resources (accessed on 9 May 2024).
- Caldarola, F.; Maiolo, M. A mathematical investigation on the invariance problem of some hydraulic indices. Appl. Math. Comput. 2021, 409, 125726. [Google Scholar] [CrossRef]
- Analysis Algorithms—EPANET 2.2 Documentation. Available online: https://epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#water-quality (accessed on 30 May 2024).
- Download and Install MATLAB. Available online: https://www.mathworks.com/help/install/ug/install-products-with-internet-connection.html (accessed on 1 February 2024).
- Getting Started, YALMIP. 2016. Available online: https://yalmip.github.io/tutorial/basics/ (accessed on 2 March 2024).
- Ostfeld, A. Optimal design and operation of multiquality networks under unsteady conditions. J. Water Resour. Plan. Manag. 2005, 131, 116–124. [Google Scholar] [CrossRef]
Component | Attribute | Value |
---|---|---|
Source | Elevation [m] | 0 |
Pipes | Diameter [mm] | 600 |
Length [km] | 3 | |
Roughness [-] | 110 | |
Nodes | Base demand [CMH] | 475 |
Elevation [m] | 0 | |
Service pressure [m] | 30 | |
Pump | Efficiency [%] | 85 |
Curve coefficients | [1 × 10−5, 200] | |
Rotation speed range [rpm] | [0, 50] | |
Tank | Pipe length [km] | 0.5 |
Elevation [m] | 35 | |
Cross-section area [m2] | 1000 | |
Level range [m] | [0, 7] | |
Initial level [m] | 7 |
Component | Attribute | Value |
---|---|---|
Source | Elevation [m] | 0 |
Pipes | Diameter [mm] | 600 |
Roughness [-] | 120 | |
Pipes 3, 4, 5, 6, 7, 9 | Length [km] | 2 |
Pipe 8 | 4 | |
Nodes | Elevation [m] | 0 |
Service pressure [m] | 30 | |
Nodes 4, 5 | Base demand [CMH] | 150 |
Node 6 | 300 | |
Node 7 | 400 | |
Pumps | Efficiency [%] | 85 |
Curve coefficients | [1 × 10−5, 200] | |
Rotation speed range [rpm] | [0, 50] | |
Tanks | Pipe length [km] | 0.4 |
Pipe diameter [mm] | 750 | |
Elevation [m] | 30 | |
Cross-section area [m2] | 490.87 | |
Level range [m] | [0, 10] | |
Initial level [m] | 10 |
Link ID | Diameter [mm] | Length [m] | Link ID | Diameter [mm] | Length [m] |
---|---|---|---|---|---|
1 | 132.7600 | 204 | 21 | 83.9600 | 368 |
2 | 374.6800 | 80 | 22 | 49.8200 | 511 |
3 | 119.7400 | 80 | 23 | 78.5000 | 450 |
4 | 312.7200 | 80 | 24 | 99.2700 | 368 |
5 | 289.0900 | 130 | 25 | 82.2900 | 307 |
6 | 336.3300 | 80 | 26 | 147.4900 | 163 |
7 | 135.8100 | 80 | 27 | 197.3200 | 204 |
8 | 201.2600 | 80 | 28 | 83.3000 | 511 |
9 | 132.5300 | 80 | 29 | 113.8000 | 450 |
10 | 144.6600 | 80 | 30 | 80.8200 | 307 |
11 | 175.7200 | 102 | 31 | 340.9700 | 130 |
12 | 112.1700 | 163 | 32 | 77.3900 | 80 |
13 | 210.7400 | 257 | 33 | 112.3700 | 80 |
14 | 75.4100 | 102 | 34 | 37.3400 | 204 |
15 | 181.4200 | 92 | 35 | 108.8500 | 257 |
16 | 146.9600 | 736 | 36 | 182.8200 | 80 |
17 | 162.6900 | 450 | 37 | 136.0200 | 80 |
18 | 99.6400 | 368 | 38 | 56.7000 | 80 |
19 | 52.9800 | 204 | 39 | 124.0800 | 80 |
20 | 162.9700 | 204 | 40 | 234.6000 | 80 |
41 | 203.8300 | 204 | 51 | 215.0500 | 163 |
42 | 248.0500 | 80 | 52 | 144.4400 | 80 |
43 | 65.1900 | 163 | 53 | 34.7400 | 257 |
44 | 210.0900 | 163 | 54 | 59.9300 | 368 |
45 | 147.5700 | 204 | 55 | 165.6700 | 163 |
46 | 103.8000 | 80 | 56 | 119.9700 | 102 |
47 | 210.9500 | 163 | 57 | 83.1700 | 163 |
48 | 75.0800 | 257 | 59 | 100.0000 | 80 |
49 | 180.2900 | 80 | 60 | 100.0000 | 80 |
50 | 149.0500 | 80 |
Node ID | Base Demand [CMH] | Node ID | Base Demand [CMH] |
---|---|---|---|
1 | 7.055916 | 19 | 27.071680 |
2 | 14.975824 | 20 | 13.391844 |
3 | 14.687828 | 21 | 13.823836 |
4 | 11.663864 | 22 | 13.967836 |
5 | 9.071892 | 23 | 12.383856 |
6 | 11.375868 | 24 | 9.647888 |
7 | 3.743956 | 25 | 11.087868 |
8 | 8.351900 | 26 | 24.335712 |
9 | 7.775908 | 27 | 20.447760 |
10 | 15.983812 | 28 | 4.319948 |
11 | 25.199703 | 29 | 8.927896 |
12 | 13.103844 | 30 | 7.775908 |
13 | 16.703804 | 31 | 12.959848 |
14 | 7.775908 | 32 | 14.831824 |
15 | 15.839812 | 33 | 11.087868 |
16 | 17.423796 | 34 | 10.655876 |
17 | 18.287785 | 35 | 16.703804 |
18 | 29.087656 | 36 | 6.767920 |
Component | Attribute | Value |
---|---|---|
Sources | Elevation [m] | 0 |
Nodes | Elevation [m] | 0 |
Service pressure [m] | 30 | |
Pumps | Efficiency [%] | 85 |
Curve coefficients | [1 × 10−5, 200] | |
Rotation speed range [rpm] | [0, 50] | |
Elevation [m] | 40 | |
Cross-section area [m2] | 19.635 | |
Level range [m] | [0, 10] | |
Initial level [m] | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmaya, T.; Ostfeld, A. Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems. Water 2024, 16, 1637. https://doi.org/10.3390/w16121637
Shmaya T, Ostfeld A. Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems. Water. 2024; 16(12):1637. https://doi.org/10.3390/w16121637
Chicago/Turabian StyleShmaya, Tomer, and Avi Ostfeld. 2024. "Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems" Water 16, no. 12: 1637. https://doi.org/10.3390/w16121637
APA StyleShmaya, T., & Ostfeld, A. (2024). Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems. Water, 16(12), 1637. https://doi.org/10.3390/w16121637