Evaluation of Water and Sediment Quality in Lake Mogan, Türkiye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water and Sediment Sampling
2.3. Collection of Water Samples from the Streams Feeding the Lake
- I.
- High-quality water (Class I water quality indicates “very good” water status (blue colour).
- II.
- Slightly polluted water (Class II water quality indicates “good” water status (green colour).
- III.
- Contaminated water (Class III water quality indicates “medium” water status (yellow colour).
- IV.
- Highly polluted water (Class IV water quality indicates “weak” water status (red colour).
3. Results
3.1. Water Quality
3.2. Surface Sediments Quality
3.3. Quality Variables of the Streams Feeding Mogan Lake
4. Discussion
4.1. Evaluation of Water Quality
4.2. Evaluation of Surface Sediments
4.3. Evaluation of the Quality Variables of the Streams Feeding Mogan Lake
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, L.; Hu, W.; Zhai, S.; Wu, H. Effects on water quality following water transfer in Lake Taihu, China. Ecol. Eng. 2010, 36, 471–481. [Google Scholar] [CrossRef]
- Haksevenler Gürsoy, B.H.; Ayaz, S. The effect of point and diffuse pollution sources on surface water quality, A case study for Alaşehir River sub-basin. Gümüşhane Univ. J. Sci. Technol. 2021, 11, 1258–1268. [Google Scholar] [CrossRef]
- Yagbasan, O.; Yazicigil, H. Sustainable management of Mogan and Eymir Lakes in central Turkey. Environ. Geol. 2009, 56, 1029–1040. [Google Scholar] [CrossRef]
- Zhou, J.; Leavitt, P.R.; Zhang, Y.; Qin, B. Anthropogenic eutrophication of shallow lakes: Is it occasional? Water Res. 2022, 221, 118728. [Google Scholar] [CrossRef]
- Beklioğlu, M.; Bucak, T.; Coppens, J.; Bezirci, G.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.İ.; Levi, E.E.; Erdoğan, Ş.; Filiz, N.; Özkan, K.; et al. Restoration of eutrophic lakes with fluctuating water levels: A 20-year monitoring study of two inter-connected lakes. Water 2017, 9, 127. [Google Scholar] [CrossRef]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Bueche, C.J. Water Quality Monitoring of Five Major Tributaries in the Otsego Lake Watershed, summer 2007. In 40th Annal Report (2007); SUNY Oneonta Biological Field Station, SUNY Oneonta: Oneonta, NY, USA, 2008. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO). Shaping the Future We Want: UN Decade of Education for Sustainable Development; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2014. [Google Scholar]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Wang, X.L.; Satoa, T.; Xing, B.S.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Farkas, A.; Salanki, J.; Specziar, A.; Varanka, I. Metal pollution as health indicator of lake ecosystems. Int. J. Occup. Med. Environ. Health 2001, 14, 163–170. [Google Scholar] [PubMed]
- Veena, B.; Radhakrishnan, C.K.; Chacko, J. Heavy metal induced biochemical effects in an estuarine teleost. Indian J. Mar. Sci. 1997, 26, 74–77. [Google Scholar]
- Zhang, G.; Pan, Z.; Hou, X.; Wang, X.; Li, X. Distribution and bioaccumulation of heavy metals in food web of Nansi Lake, China. Environ. Earth Sci. 2015, 73, 2429–2439. [Google Scholar] [CrossRef]
- Siraj, G.; Khan, H.H.; Khan, A. Dynamics of surface water and groundwater quality using water quality indices and GIS in river Tamsa (Tons), Jalalpur, India. HydroResearch 2023, 6, 89–107. [Google Scholar] [CrossRef]
- Khan, I.; Zakwan, M.; Pulikkal, A.K.; Lalthazula, R. Impact of unplanned urbanization on surface water quality of the twin cities of Telangana state, India. Mar. Pollut. Bull. 2022, 185, 114324. [Google Scholar] [CrossRef]
- Wang, W.; Liu, C.; Zhang, F.; Tan, M.L.; Shi, J.; Zhang, Z.; Duan, P.; Hsiang, T.E.; Xin, H. Evaluation of impacts of environmental factors and land use on seasonal surface water quality in arid and humid regions using structural equation models. Ecol. Indic. 2022, 144, 109546. [Google Scholar] [CrossRef]
- Amarandei, C.; Negru, A.G.; Soroaga, L.V.; Cucu-Man, S.M.; Olariu, R.I.; Arsene, C. Assessment of surface water quality in the Podu Iloaiei Dam Lake (North-Eastern Romania): Potential implications for aquaculture activities in the area. Water 2021, 13, 2395. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Y. Annual dynamics of water quality in a small urban landscape lake: A case study of Lake Wuzhou, China. Desalination Water Treat. 2020, 202, 264–268. [Google Scholar] [CrossRef]
- Hussain, N.I.; Abdullah, M.H. The Assessment of Water Quality and Metals Concentration in Surface Water of Kenyir Lake. Malays. J. Appl. Sci. 2018, 3, 71–89. [Google Scholar]
- Karakoc, G.; Erkoç, F.Ü.; Katırcıoğlu, H. Water quality and impacts of pollution sources for Eymir and Mogan Lakes (Turkey). Environ. Int. 2003, 29, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Pulatsü, S.; Aydin, F. Water quality and phosphorus budget of Mogan Lake, Turkey. Acta Hydrochim. Et Hydrobiol. 1997, 25, 128–134. [Google Scholar] [CrossRef]
- Barbulescu, A.; Barbes, L. Assessment of Techirghiol lake surface water quality using statistical analysis. Rev. Chim.(Bucharest) 2013, 64, 868–874. [Google Scholar]
- Filik Iscen, C.; Emiroglu, Ö.; Ilhan, S.; Arslan, N.; Yilmaz, V.; Ahiska, S. Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environ. Monit. Assess. 2008, 144, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kükrer, S.; Mutlu, E. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess. 2019, 191, 71. [Google Scholar] [CrossRef] [PubMed]
- Apaydın, A.; Ocakoğlu, F. Response of the Mogan and Eymir lakes (Ankara, Central Anatolia) to global warming: Extreme events in the last 100 years. J. Arid. Environ. 2020, 183, 104299. [Google Scholar] [CrossRef]
- Dönmez, E.O.; Ocakoğlu, F.; Akbulut, A.; Tunoğlu, C.; Gümüş, B.A.; Tuncer, A.; Görüm, T.; Tün, M. Vegetation record of the last three millennia in central Anatolia: Archaeological and palaeoclimatic insights from Mogan Lake (Ankara, Turkey). Quat. Sci. Rev. 2021, 262, 106973. [Google Scholar] [CrossRef]
- Burnak, S.L.; Beklioğlu, M. Macrophyte-dominated Clearwater State of Lake Mogan. Turk. J. Zool. 2000, 24, 305–313. [Google Scholar]
- MEUCC (Republic of Türkiye Ministry of Environment and Urbanisation and Climate Change). Gölbaşı Özel Çevre Koruma Bölgesi Yönetim Planı (2015–2019); MEUCC (Republic of Türkiye Ministry of Environment and Urbanisation and Climate Change): Ankara, Turkey, 2019. (In Turkish)
- Toldrá, F. The Storage and Preservation of Meat. III—Meat Processing; Woodhead Publishing: Sawston, UK, 2023. [Google Scholar]
- TS EN ISO 5667-3:2024; Sampling Preservation and Handling of Water Samples. Turkish Standards European Norms International Organization for Standardization (TS EN ISO): Ankara, Turkey, 2024.
- U.S. Environmental Protection Agency (US EPA). Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; Revision 4.4; U.S. Environmental Protection Agency (US EPA): Cincinnati, OH, USA, 1994.
- Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- TS ISO 10390; Soil Quality—pH Analysis. Turkish Standards Institution (TS ISO): Ankara, Turkey, 2013.
- DIN EN 13137; Characterization of Waste-Determination of Total Organic Carbon (TOC) in Waste, Sludges and Sediments. German Institute for Standardization (DIN EN), Beuth-Verlag: Berlin, Germany, 2001.
- TS 8195 EN 1484; Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Turkish Standards Institution (TS): Ankara, Turkey, 2000.
- ISO 10260; Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll—A Concentration. International Organization for Standardization (ISO): Geneva, Switzerland, 1992.
- U.S. Environmental Protection Agency (US EPA). Volunteer Stream Monitoring: A Methods Manual; Report 841-B-97-003; U.S. Environmental Protection Agency (US EPA): Washington, DC, USA, 1997.
- ISO 17892-4:2016; Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 4: Determination of Particle Size Distribution. International Organization for Standardization (ISO): Ankara, Turkey, 2016.
- Surface Water Quality Regulation (SWQR); Ministry of Agriculture and Forestry: Ankara, Turkey, 2015.
- Loveland, P.J.; Whalley, W.R. Particle size analysis. In Soil and Environmental Analysis; CRC Press: Boca Raton, FL, USA, 2000; pp. 293–326. [Google Scholar]
- Nielsen, D.L.; Brock, M.A.; Rees, G.N.; Baldwin, D.S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 2003, 51, 655–665. [Google Scholar] [CrossRef]
- Huang, H.; Wan, F.; Gao, Y.; Zhong, Z.; Annanurov, S.; Zeng, X. Study on measures to improve water quality in urban lakes: Casing in Lake Nanhu in Wuhan. Fresenius Environ. Bull. 2019, 28, 2625–2632. [Google Scholar]
- Roy, R.; Majumder, M. Assessment of water quality trends in Loktak Lake, Manipur, India. Environ. Earth Sci. 2019, 78, 383. [Google Scholar] [CrossRef]
- Varol, M.; Tokatlı, C. Impact of paddy fields on water quality of Gala Lake (Turkey): An important migratory bird stopover habitat. Environ. Pollut. 2021, 287, 117640. [Google Scholar] [CrossRef]
- Çelekli, A.; Kayhan, S.; Çetin, T. First assessment of lakes’ water quality in Aras River catchment (Turkey); Application of phytoplankton metrics and multivariate approach. Ecol. Indic. 2020, 117, 106706. [Google Scholar] [CrossRef]
- Lu, H.; Yang, L.; Fan, Y.; Qian, X.; Liu, T. Novel simulation of aqueous total nitrogen and phosphorus concentrations in Taihu Lake with machine learning. Environ. Res. 2022, 204, 111940. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Si, J.; Qi, Y.; Wang, Z.; Wu, X.; Hou, C. Distribution characteristics of TOC, TN and TP in the wetland sediments of Longbao Lake in the san-jiang head waters. Acta Geophys. 2016, 64, 2471–2486. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J.; Robarge, W.P.; Classen, J.J. Ammonia in animal production—A review. In Proceedings of the 2001 ASAE Annual Meeting, Sacramento, CA, USA, 30 July–1 August 2001; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1998; p. 1. [Google Scholar]
- Garg, S.; Chowdhury, Z.Z.; Faisal, A.N.M.; Rumjit, N.P.; Thomas, P. Impact of industrial wastewater on environment and human health. In Advanced Industrial Wastewater Treatment and Reclamation of Water: Comparative Study of Water Pollution Index during Pre-Industrial, Industrial Period and Prospect of Wastewater Treatment for Water Resource Conservation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 197–209. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Baran, S.; Wójcikowska-Kapusta, A.; Obroślak, R. Nitrogen and phosphorus in bottom sediments of two small dam reservoirs. Pol. J. Environ. Stud. 2013, 22, 1479–1489. [Google Scholar]
- Svobodová, Z. Water Quality and Fish Health (No. 54); Food & Agriculture Organization (FAO): Rome, Italy, 1993. [Google Scholar]
- Ölmez, M.; Saraç, D. Su Ürünleri İçin Ph’nın Önemi. Ziraat Mühendisliği 2009, 353, 12–17. (In Turkish) [Google Scholar]
- Ali, E.M.; Khairy, H.M. Environmental assessment of drainage water impacts on water quality and eutrophication level of Lake Idku, Egypt. Environ. Pollut. 2016, 216, 437–449. [Google Scholar] [CrossRef] [PubMed]
Specification | Value |
---|---|
Catchment area (km2) | 925 |
Lake width (km) | 1.1 |
Lake length (km) | 6 |
Lake circumference (km) | 14 |
Water reserve (million m3) | 11.63 |
Depth (m) | 3–5 |
Lake surface (km2) | 6.35 |
Water level fluctuations (m) | 0.5–0.8 |
WQV | Pollutant Variables and Analysis Methods for Water Samples Taken from a Depth of 30 cm from the Surface (a) | Pollutant Variables and Analysis Methods for the Lake Bottom Surface Sediment (b) | ||
---|---|---|---|---|
Method | Unit | Method | Unit | |
pH | SM 4500 H+ B [33] Electrometric method | - | TS ISO 10390 [34] Electrometric method | - |
Cond. | SM 2510 B [33] Electrometric method | ms/cm | - | - |
T | SM 2550 B [33] Electrometric method | - | SM 2550 B [33] Electrometric method | - |
Colour | SM 2120 C [33] Spectrophotometric method | Pt-Co | - | - |
Turb. | SM 2130 B [33] Nephelometric method | NTU | - | - |
BOD5 | SM 5210 B [33] Standard method | mg/L | - | - |
TOC | - | EN 13137 [35] Gravimetric method | mg/kg | |
COD | SM 5220 B [33] Open reflux titrimetric method | mg/L | - | - |
DO | SM 4500 O G [33] Membrane electrode method | mg/L | - | - |
SSs | SM 2540 D [33] Gravimetric method | mg/L | - | - |
TSs | SM 2540 B [33] Gravimetric method | mg/L | SM 2540 G [33] Gravimetric method | % |
VSs | SM 2540 E [33] Gravimetric method | mg/L | SM 2540 E [33] Gravimetric method | % |
TDSs | SM 2540 C [33] Gravimetric method | mg/L | - | - |
O&G | SM 5520 B [33] Gravimetric method | mg/L | - | - |
MBASs | SM 5540 C [33] Spectrophotometric method | mg/L | - | - |
CSs | - | - | SM 2540 F [33] | mL/L |
DOC | - | - | TS 8195 EN 1484 [36] | mg/L |
P-PO4 | SM 4500 P D [33] Spectrophotometric method | mg/L | SM 4500 P D [33] Spectrophotometric method | mg/L |
TN | Calculation | mg/L | - | - |
TKN | SM 4500 Norg B [33] | mg/L | - | - |
S-H2S | SM 4500 S-2 D [33] Spectrophotometric method | mg/L | SM 4500 S-2 D [33] Spectrophotometric method | mg/L |
TP | SM 4500 P D [33] Macro-Kjeldahl Method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Chl-a | ISO 10260 [37] | µg/L | - | - |
SD | EPA 841-B-97-003 [38] | m | - | - |
TC | SM 9222 B [33] Membrane filtration technique | EMS/100 mL | - | EMS/100 mL |
Dens. | - | - | - | g/mL |
Hg | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Zn | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Pb | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Ni | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Cu | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Cd | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
Cr | EPA 200.7 [32] ICP-OES method | mg/L | EPA 200.7 [32] ICP-OES method | mg/kg |
WQV | Unit | SP | WQVCL | |||||
---|---|---|---|---|---|---|---|---|
LN | LM | LS | I | II | III | IV | ||
T | °C | 16.8 | 16.8 | 20.3 | 25 | 25 | 30 | >30 |
Colour | Pt-Co | 10 | 11 | 11 | 5 | 50 | 300 | >300 |
Turb. | NTU | 5 | 7 | 6 | ||||
SD | m | 3.5 | 3.5 | 3.5 | >4 | 4–2 | 1.9–1.0 | <1.0 |
Chl-a | mg/L | <0.05 | <0.05 | <0.05 | <0.0035 | 0.035–0.009 | 0.0091–0.025 | >0.025 |
SSs | mg/L | <11 | <11 | 14 | ||||
TSs | mg/L | 15 | 12 | 21 | ||||
VSs | mg/L | <55 | <55 | <55 | ||||
TDSs | mg/L | <60 | <60 | <60 | 500 | 1500 | 5000 | >5000 |
DO | mg/L | 8.37 | 7.91 | 6 | 8 | 6 | 3 | <3 |
Cond. | μs/cm | 2620 | 2560 | 2610 | <400 | 1000 | 3000 | >3000 |
pH | 9.47 | 9.4 | 9.16 | 6.5–8.5 | 6.5–8.5 | 6.0–9.0 | 6.0–9.0 except | |
COD | mg/L | 66 | 85 | 86 | <25 | 50 | 70 | >70 |
BOD5 | mg/L | 15 | 21 | 20.7 | <4 | 8 | 20 | >20 |
P-PO4 | mg/L | <0.003 | 0.011 | 0.023 | <0.05 | 0.16 | 0.65 | >0.65 |
TKN | mg/L | 1.3 | 1.9 | 1.8 | 0.5 | 1.5 | 5 | >5 |
TN | mg/L | 2.1 | 2.2 | 2.3 | <3.5 | 11.5 | 25 | >25 |
TP | mg/L | 0.03 | 0.035 | 0.048 | 0.02 | 0.16 | 0.65 | >0.65 |
O&G | mg/L | <10 | <10 | <10 | 0.02 | 0.3 | 0.5 | >0.5 |
MBASs | mg/L | <0.025 | <0.025 | <0.025 | 0.05 | 0.2 | 1 | >1.5 |
S-H2S | mg/L | <0.1 | <0.1 | <0.1 | 2 | 2 | 10 | >10 |
TC | EMS/100 mL | 0 | 0 | 0 | 100 | 20,000 | 100,000 | >100,000 |
Hg | mg/L | <0.0001 | <0.0001 | <0.0001 | 0.0001 | 0.0005 | 0.002 | >0.002 |
Pb | mg/L | <0.01 | <0.01 | <0.01 | 0.01 | 0.02 | 0.05 | >0.05 |
Cu | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Zn | mg/L | <0.01 | 0.01 | 0.014 | 0.2 | 0.5 | 2 | >2 |
Ni | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cr | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cd | mg/L | <0.001 | <0.001 | <0.001 | 0.003 | 0.005 | 0.01 | >0.01 |
WQV | Unit | SP | WQVCL | |||||
---|---|---|---|---|---|---|---|---|
LN | LM | LS | I | II | III | IV | ||
COD | mg/L | 153 | 85 | 76 | <25 | 50 | 70 | >70 |
BOD5 | mg/L | 42 | 21 | 17 | <4 | 8 | 20 | >20 |
P-PO4 | 0.011 | 0.019 | 0.021 | <0.05 | 0.16 | 0.65 | >0.65 | |
TKN | mg/L | 1.7 | 1.6 | 1.9 | <0.5 | 1.5 | 5 | >5 |
TN | mg/L | 1.9 | 2.1 | 2.0 | <3.5 | 11.5 | 25 | >25 |
TP | mg/L | 0.03 | 0.032 | 0.048 | 0.02 | 0.16 | 0.65 | >0.65 |
MBASs | mg/L | <0.025 | <0.025 | <0.025 | 0.05 | 0.2 | 1 | >1.5 |
S-H2S | mg/L | <0.1 | <0.1 | <0.1 | 2 | 2 | 10 | >10 |
Hg | mg/L | <0.0001 | <0.0001 | <0.0001 | 0.0001 | 0.0005 | 0.002 | >0.002 |
Pb | mg/L | <0.01 | <0.01 | <0.01 | 0.01 | 0.02 | 0.05 | >0.05 |
Cu | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Zn | mg/L | <0.01 | <0.01 | <0.01 | 0.2 | 0.5 | 2 | >2 |
Ni | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cr | mg/L | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cd | mg/L | <0.001 | <0.001 | <0.001 | 0.003 | 0.005 | 0.01 | >0.01 |
Variable | Unit | LN | LM | LS |
---|---|---|---|---|
T | °C | 17.2 | 17.5 | 16.7 |
SSs | % | 20 | 19 | 31 |
Dens. | g/mL | 0.98 | 1.05 | 1.1 |
pH | 7.45 | 7.12 | 7.59 | |
S-H2S | mg/L | 0.88 | 1.01 | 0.77 |
TP | mg/kg | 2056.3 | 1545.2 | 2402 |
TN | mg/kg | 945.45 | 1021.33 | 1121.57 |
P-PO4 | mg/L | 112.3 | 79.7 | 149 |
VSs | % | 10 | 17 | 22.5 |
CSs | g/L | 1000 | 960 | 960 |
DOC | g/L | 13.1 | 16.1 | 14.2 |
TOC | mg/kg | 17,550 | 23,869 | 19,202 |
Hg | mg/kg | <0.025 | <0.025 | <0.025 |
Pb | mg/kg | 28.3 | 23.6 | 38.5 |
Cu | mg/kg | <2.5 | <2.5 | <2.5 |
Zn | mg/kg | 29.4 | 29.77 | 21.6 |
Ni | mg/kg | 19.5 | 24.2 | 31.9 |
Cr | mg/kg | 4.9 | 4.8 | 9.1 |
Cd | mg/kg | 0.5 | 0.42 | 0.69 |
WQV | Unit | SP1 | SP2 | SP3 | SP4 | SP5 | WQVCL | |||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | |||||||
T | °C | 12.2 | 17.3 | 17.4 | 20.1 | 18.8 | 25 | 25 | 30 | >30 |
Colour | Pt-Co | 10 | 35 | 29 | 12 | 20 | 5 | 50 | 300 | >300 |
Turb. | NTU | 7 | 22 | 19 | 7 | 11 | ||||
Chl-a | µg/L | <50 | <50 | <50 | <50 | <50 | <3.5 | 3.5–9.0 | 9.1–25 | >25 |
SSs | mg/L | 37 | 73 | 49 | 21 | 51 | ||||
TSs | mg/L | 45 | 87 | 59 | 39 | 68 | ||||
VSs | mg/L | <55 | <55 | <55 | <55 | <55 | ||||
TDSs | mg/L | <60 | <60 | <60 | <60 | <60 | 500 | 1500 | 5000 | >5000 |
DO | mg/L | 9.55 | 6.78 | 7.33 | 13.24 | 6.21 | 8 | 6 | 3 | <3 |
Cond. | μs/cm | 4150 | 3040 | 17,550 | 5320 | 11,010 | <400 | 1000 | 3000 | >3000 |
pH | 7.67 | 9.31 | 9.03 | 9.41 | 8.48 | 6.5–8.5 | 6.5–8.5 | 6.0–9.0 | 6.0–9.0 except | |
COD | mg/L | 118 | 166 | 163 | 92 | 124 | 25 | 50 | 70 | >70 |
BOD5 | mg/L | 18 | 51 | 47 | 29 | 37 | 4 | 8 | 20 | >20 |
TKN | mg/L | 1.7 | 1.5 | 1.3 | 1.9 | 1.7 | 0.5 | 1.5 | 5 | >5 |
TN | mg/L | 2.3 | 1.9 | 1.8 | 2.4 | 2.1 | <3.5 | 11.5 | 25 | >25 |
TP | mg/L | 0.018 | 0.23 | 0.1 | 0.2 | 0.3 | 0.02 | 0.16 | 0.65 | >0.65 |
O&G | mg/L | <10 | <10 | <10 | <10 | <10 | 0.02 | 0.3 | 0.5 | >0.5 |
S-H2S | mg/L | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 2 | 2 | 10 | >10 |
TC | EMS/ 100 mL | 0 | 0 | 0 | 0 | 0 | 100 | 20,000 | 100,000 | >100,000 |
Hg | mg/L | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0001 | 0.0005 | 0.002 | >0.002 |
Pb | mg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01 | 0.02 | 0.05 | >0.05 |
Cu | mg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Zn | mg/L | 0.0241 | <0.01 | 0.0357 | 0.02844 | 0.1073 | 0.2 | 0.5 | 2 | >2 |
Ni | mg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cr | mg/L | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 | 0.05 | 0.2 | >0.2 |
Cd | mg/L | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | 0.005 | 0.01 | >0.01 |
Lake | Mean DO (mg/L) | Mean pH | Mean T (°C) | Mean Cond. (μS/cm) | Mean SSs (mg/L) | Mean COD (mg/L) | Mean TN (mg/L) | Mean TP (mg/L) | Mean BOD5 (mg/L) | References |
---|---|---|---|---|---|---|---|---|---|---|
In this study | 7.43 | 9.34 | 17.97 | 2596.67 | <11 | 79 | 2.2 | 0.038 | 18.9 | |
Mogan Lake (Spring months in 2013, Türkiye) | 6.75 | 21 | 27.5 | 58 | 0.055 | 0.06 | - | [29] | ||
Saraydüzü Dam Lake (Türkiye) | 12.87 | 8.45 | 12 | 229.88 | 1.78 | 1.69 | - | - | 0.93 | [25] |
Nanhu Lake (China) | 4.95 | 8.32 | 29.55 | - | - | 33.13 | 6.34 | 0.34 | - | [43] |
Loktak Lake (India) | 7.03 | 7.26 | 24.29 | 160.74 | 51.46 | 19.48 | 0.36 | 0.54 | 4.98 | [44] |
Gala Lake (Türkiye) | 8.04 | 8.2 | 21.5 | - | - | 37 | - | - | 10.2 | [45] |
Aktaş Lake (Türkiye) | 6.86 | 9.28 | 20.3 | 893 | 30 | 115 | 1.09 | 0.35 | 28.5 | [46] |
Çıldır Lake (Türkiye) | 8.86 | 7.94 | 16.9 | 134 | 19.9 | 19.6 | 0.4 | 0.14 | 4.7 | |
Aygır Lake (Türkiye) | 7.97 | 8.58 | 16.7 | 180 | 2 | 25.2 | 0.47 | 0.13 | 7.1 | |
Deniz Lake (Türkiye) | 7.42 | 8.47 | 20.2 | 243 | 5.7 | 20.7 | 0.35 | 0.16 | 4.6 | |
Balık Lake (Türkiye) | 7.33 | 8.67 | 18 | 141 | 4.7 | 34.9 | 0.57 | 0.19 | 8 |
Feeding Stream | Reference Stations | T (°C) | Cond. (μs/cm) | DO (mg/L) | COD (mg/L) | TKN (mg/L) | TP (mg/L) | SS (mg/L) | TC (EMS/100 mL) |
---|---|---|---|---|---|---|---|---|---|
SP1 | [21] | 22.1 | 534 | 7.6 | 44 | 4.65 | 0.21 | 190 | 3334 |
This Study | 12.2 | 4150 | 9.55 | 118 | 1.7 | 0.018 | 37 | 0 | |
SP2 | [21] | 25.1 | 1600 | 8.5 | 67 | 12.95 | 0.21 | 23 | 3334 |
This Study | 17.3 | 3040 | 6.78 | 166 | 1.5 | 0.23 | 73 | 0 | |
SP4 | [21] | 24 | 763 | 10.8 | 39 | 2.96 | 0.35 | <10 | 5556 |
This Study | 20.1 | 5320 | 13.24 | 92 | 1.9 | 0.2 | 21 | 0 | |
SP5 | [21] | 19.8 | 990 | 4.7 | 36 | 2.81 | 0.22 | 108 | 8889 |
This Study | 18.8 | 11,010 | 6.21 | 124 | 1.7 | 0.3 | 51 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, K.; Ciner, M.N.; Ozcan, H.K.; Aydın, S. Evaluation of Water and Sediment Quality in Lake Mogan, Türkiye. Water 2024, 16, 1546. https://doi.org/10.3390/w16111546
Ozdemir K, Ciner MN, Ozcan HK, Aydın S. Evaluation of Water and Sediment Quality in Lake Mogan, Türkiye. Water. 2024; 16(11):1546. https://doi.org/10.3390/w16111546
Chicago/Turabian StyleOzdemir, Kagan, Mirac Nur Ciner, Huseyin Kurtulus Ozcan, and Serdar Aydın. 2024. "Evaluation of Water and Sediment Quality in Lake Mogan, Türkiye" Water 16, no. 11: 1546. https://doi.org/10.3390/w16111546
APA StyleOzdemir, K., Ciner, M. N., Ozcan, H. K., & Aydın, S. (2024). Evaluation of Water and Sediment Quality in Lake Mogan, Türkiye. Water, 16(11), 1546. https://doi.org/10.3390/w16111546