Clarifying the Role of Phosphorus Management Strategies in Enhancing the Sustainability of Wastewater Treatment Plants
Abstract
:1. Introduction
2. Mass Flow of Phosphorus in WWTPs
3. Precipitate Scaling Issue Related to Phosphorus Management
4. Phosphorus Management and WWTP’s Operation
4.1. Operation and Maintenance Costs of Phosphorus Management Schemes
4.2. Impact of Phosphorus Management Schemes on Wastewater Treatment
4.3. Impact of Phosphorus Management Scheme on Sludge Treatment
5. Phosphorus Recovery and Management
6. Influence of Phosphorus Removal on GHG Emissions
7. Conclusions
- (1)
- Prioritize phosphorus recovery in WWTPs, with phosphorus removal strategies designed to facilitate recovery.
- (2)
- The precipitate scaling issue should be noted in WWTPs and taken into consideration in the operation of WWTPs.
- (3)
- Whether implementing chemical phosphorus removal or EBPR, one should consider effluent discharge standards, other pollutant removal processes, and sludge treatment comprehensively.
- (4)
- In addition, the shortage of precipitant chemicals could become a bigger problem in the near future, which we have to consider further.
- (5)
- Phosphorus recovery technologies implemented should be integrated into the sludge disposal pathway and align them with policy directives.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Grohol, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023—Final Report. 2023. Publications Office of the European Union. Available online: https://data.europa.eu/doi/10.2873/725585 (accessed on 20 March 2024).
- Zhu, F.; Cakmak, E.K.; Cetecioglu, Z. Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe. Chem. Eng. J. 2023, 454, 140153. [Google Scholar] [CrossRef]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/W020061027518964575034.pdf (accessed on 20 March 2024).
- DB5301/T 62-2021; Dianchi Basin Rural Domestic Sewage Treatment Facilities Water Pollutant Discharge Requirements and Limits. Kunming Administration for Market Regulation: Kunming, China, 2021. Available online: https://dgj.km.gov.cn/upload/resources/file/2022/02/11/3625907.pdf (accessed on 20 March 2024).
- Department of Ecological Environment of Shandong Province. Shandong Province 2023 Water Environment Quality Consolidation and Improvement Action Plan, China. 2023. Available online: http://www.shandong.gov.cn/jpaas-jpolicy-web-server/front/info/detail?iid=fc374a5f40634465b7e83b484340ea1a (accessed on 20 March 2024).
- European Commission. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast). 2022. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:fc078ec8-55f7-11ed-92ed-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 20 March 2024).
- Fox, R. Accelerating Nutrient Pollution Reductions in the Nation’s Waters. United States Evironmental Protection Agency. 2022. Available online: https://www.epa.gov/nutrientpollution (accessed on 20 March 2024).
- Wang, D.; Tooker, N.B.; Srinivasan, V.; Li, G.; Fernandez, L.A.; Schauer, P.; Menniti, A.; Maher, C.; Bott, C.B.; Dombrowski, P.; et al. Side-stream enhanced biological phosphorus removal (S2EBPR) process improves system performance—A full-scale comparative study. Water Res. 2019, 167, 115109. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hao, X.; Chen, Q.; Li, J. Research advances of Tetrasphaera in enhanced biological phosphorus removal: A review. Water Res. 2019, 166, 115003. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.; Stephenson, T.; Pearce, P. Phosphorus removal by chemical precipitation in a biological aerated filter. Water Res. 1997, 31, 2557–2563. [Google Scholar] [CrossRef]
- Williams, M.B. Cost of Phosphorus Removal at Wisconsin Publically-Owned Treatment Works. Wisconsin Department of Natural Resources. 2012. Available online: https://dnr.wisconsin.gov/topic/environment (accessed on 20 March 2024).
- Bashar, R.; Gungor, K.; Karthikeyan, K.; Barak, P. Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere 2018, 197, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Shemmans, D.; Haigh, M. Net Zero 2030 Routemap. Water UK. 2020. Available online: https://www.water.org.uk/news-views-publications/publications/net-zero-2030-routemap (accessed on 20 March 2024).
- Blythe, G. Navigating to Net Zero: Aotearoa’s Water Sector Low-Carbon Journey. 2021. Available online: https://www.waternz.org.nz/NavigatingtoNetZero (accessed on 20 March 2024).
- Christensen, N.K. Guidelines for Reporting in Line with Paris Model for a Climate- and Energy-Neutral Water Sector. The Danish Environmental Protection Agency. 2021. Available online: https://www2.mst.dk/Udgiv/publications/2021/04/978-87-7038-298-4.pdf (accessed on 20 March 2024).
- Neville, L. Statement of Obligations (Emission Reduction). 2022. Available online: https://www.g-mwater.com.au/news-updates/reports-and-publications/statements-of-obligations (accessed on 20 March 2024).
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus recovery and recycling—Closing the loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef]
- Marti, N.; Bouzas, A.; Seco, A.; Ferrer, J. Struvite precipitation assessment in anaerobic digestion processes. Chem. Eng. J. 2008, 141, 67–74. [Google Scholar] [CrossRef]
- Chu, W.; Shi, Y.; Zhang, L. Recovery of Phosphorus in Wastewater in the Form of Polyphosphates: A Review. Processes 2022, 10, 144. [Google Scholar] [CrossRef]
- Fernández-Arévalo, T.; Lizarralde, I.; Fdz-Polanco, F.; Pérez-Elvira, S.; Garrido, J.; Puig, S.; Poch, M.; Grau, P.; Ayesa, E. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Res. 2017, 118, 272–288. [Google Scholar] [CrossRef]
- Solon, K.; Flores-Alsina, X.; Mbamba, C.K.; Ikumi, D.; Volcke, E.; Vaneeckhaute, C.; Ekama, G.; Vanrolleghem, P.; Batstone, D.; Gernaey, K.; et al. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies. Water Res. 2017, 113, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Lizarralde, I.; Fernandez-Arevalo, T.; Manas, A.; Ayesa, E.; Grau, R. Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Res. 2019, 153, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Gu, A.Z. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems. Sci. Total Environ. 2020, 743, 140603. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhao, X.; Zhou, Y.; Li, F.; Liu, W.; Huang, Y.; Zhang, H.; Ma, J.; Hu, G. Tri-functional lanthanum-based biochar for efficient phosphorus recovery, bacterial inhibition, and soil fertility enhancement. Biochar 2023, 5, 16. [Google Scholar] [CrossRef]
- Neethling, J.; Benisch, M. Struvite control through process and facility design as well as operation strategy. Water Sci. Technol. 2004, 49, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Marti, N.; Bouzas, A.; Seco, A. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresour. Technol. 2008, 99, 4817–4824. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, B.; Veltman, A.; van Loosdrecht, M.; van Lier, J.; Rietveld, L. Struvite formation for enhanced dewaterability of digested wastewater sludge. Environ. Technol. 2014, 35, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.K.; Hamdan, A.-H.M.; Chavez, V.M.; Brown, J.D.; Halden, R.U. Mass Balance Model for Sustainable Phosphorus Recovery in a US Wastewater Treatment Plant. J. Environ. Qual. 2016, 45, 84–89. [Google Scholar] [CrossRef]
- Schauer, P.; Baur, R.; Barnard, J.; Britton, A. Controlling Magnesium and Phosphorus to Reduce Struvite Precipitation in Plant Processes and Increase Revenue. Proc. Water Environ. Fed. 2009, 2009, 926–947. [Google Scholar] [CrossRef]
- Mamais, D.; Pitt, P.A.; Cheng, Y.W.; Loiacono, J.; Jenkins, D. Determination of ferric chloride dose to control struvite precipitation in anaerobic sludge digesters. Water Environ. Res. 1994, 66, 912–918. [Google Scholar] [CrossRef]
- Achilleos, P.; Roberts, K.R.; Williams, I.D. Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity? Heliyon 2022, 8, e09862. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, H.; Shen, N.; Yan, W.; Wang, J.; Wang, G. Phosphorus release and recovery from Fe-enhanced primary sedimentation sludge via alkaline fermentation. Bioresour. Technol. 2019, 278, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef] [PubMed]
- Wilfert, P.; Mandalidis, A.; Dugulan, A.; Goubitz, K.; Korving, L.; Temmink, H.; Witkamp, G.; Van Loosdrecht, M. Vivianite as an important iron phosphate precipitate in sewage treatment plants. Water Res. 2016, 104, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhou, Z.; Niu, T.; Wei, H.; Dou, W.; Jiang, L.-M.; Lv, Y. Co-treatment of reject water from sludge dewatering and supernatant from sludge lime stabilization process for nutrient removal: A cost-effective approach. Sep. Purif. Technol. 2017, 172, 357–365. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Z.; Jiang, L.-M.; Hu, D.; Qiu, Z.; Wei, H.; Wang, L. A cost-effective method for the treatment of reject water from sludge dewatering process using supernatant from sludge lime stabilization. Sep. Purif. Technol. 2015, 142, 123–128. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Z.; Wan, L.; Hu, D.; Jiang, L.-M.; Wang, L. Optimization of phosphorus removal from reject water of sludge thickening and dewatering process through struvite precipitation. Desalin. Water Treat. 2016, 57, 15515–15523. [Google Scholar] [CrossRef]
- Xavier, L.D.; Cammarota, M.C.; Yokoyama, L.; Volschan, I. Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Sci. Technol. 2014, 69, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, J.; Ding, L. Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. J. Clean. Prod. 2015, 102, 437–446. [Google Scholar] [CrossRef]
- Martí, N.; Pastor, L.; Bouzas, A.; Ferrer, J.; Seco, A. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Res. 2010, 44, 2371–2379. [Google Scholar] [CrossRef]
- Fattah, K.P.; Chowdhury, F.L. Early detection of struvite formation in wastewater treatment plants. J. Environ. Eng. Sci. 2015, 10, 19–25. [Google Scholar] [CrossRef]
- Buchanan, J.R.; Mote, C.R.; Robinson, R.B. Struvite Control by Chemical Treatment. Trans. ASAE 1994, 37, 1301–1308. [Google Scholar] [CrossRef]
- Wierzbicki, A.; Sallis, J.D.; Stevens, E.D.; Smith, M.; Sikes, C.S. Crystal Growth and Molecular Modeling Studies of Inhibition of Struvite by Phosphocitrate. Calcif. Tissue Int. 1997, 61, 216–222. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.-H.; Yao, Q.-Z.; Zhou, G.-T.; Fu, S.-Q. Chemical control of struvite scale by a green inhibitor polyaspartic acid. RSC Adv. 2015, 5, 91601–91608. [Google Scholar] [CrossRef]
- Deng, L.; Dhar, B.R. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere 2023, 330, 138685. [Google Scholar] [CrossRef]
- Keysar, S.; Semiat, R.; Hasson, D.; Yahalom, J. Effect of Surface Roughness on the Morphology of Calcite Crystallizing on Mild Steel. J. Colloid Interface Sci. 1994, 162, 311–319. [Google Scholar] [CrossRef]
- Parsons, S.; Doyle, J. Struvite scale formation and control. Water Sci. Technol. 2004, 49, 177–182. [Google Scholar] [CrossRef]
- Heinzmann, B. Induced Magnesium Ammonia Phosphate Precipitation to Prevent Incrustations and Measures for Phosphorus Recovery. Water Pract. Technol. 2006, 1, wpt2006051. [Google Scholar] [CrossRef]
- Hao, X.; Chen, Q.; van Loosdrecht, M.C.M.; Li, J.; Jiang, H. Sustainable disposal of excess sludge: Incineration without anaerobic digestion. Water Res. 2020, 170, 115298. [Google Scholar] [CrossRef]
- Stephens, H.M.; Neethling, J.; Benisch, M.; Gu, A.Z.; Stensel, H.D. Comprehensive analysis of full-scale enhanced biological phosphorus removal facilities. Proc. Water Environ. Fed. 2004, 2004, 89–107. [Google Scholar] [CrossRef]
- Strom, P.F. Technologies to Remove Phosphorus from Wastewater; Rutgers University: New Brunswick, NJ, USA, 2006; pp. 1–8. Available online: http://www.water.rutgers.edu/Projects/trading/p-trt-lit-rev-2a.pdf (accessed on 20 March 2024).
- Karunanithi, R.; Szogi, A.A.; Bolan, N.; Naidu, R.; Loganathan, P.; Hunt, P.G.; Vanotti, M.B.; Saint, C.P.; Ok, Y.S.; Krishnamoorthy, S. Phosphorus Recovery and Reuse from Waste Streams. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 131, pp. 173–250. [Google Scholar]
- Azam, H.M.; Alam, S.T.; Hasan, M.; Yameogo, D.D.S.; Kannan, A.D.; Rahman, A.; Kwon, M.J. Phosphorous in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ. Sci. Pollut. Res. 2019, 26, 20183–20207. [Google Scholar] [CrossRef] [PubMed]
- Drynan, W.R. Relativecosts of Achieving Various Levels of Phosphorus control at Municipal Wastewater Treatment Plants in the Great Lakes Basin. International Joint Commission. 1979. Available online: http://hdl.handle.net/10214/14456 (accessed on 20 March 2024).
- Jiang, F.; Beck, M.B.; Cummings, R.G.; Rowles, K.; Russell, D. Estimation of costs of phosphorus removal in wastewater treatment facilities: Adaptation of existing facilities. Water Policy Work. Pap. 2005, 11, 1–45. [Google Scholar]
- Hazen and Sawyer. Treatment Strategies for Meeting Ultra-Low Total Phosphorus Limits: Performance and Pilots. 2022. Available online: https://www.hazenandsawyer.com (accessed on 20 March 2024).
- Sun, G.; Zhang, C.; Li, W.; Yuan, L.; He, S.; Wang, L. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR. Front. Environ. Sci. Eng. 2018, 13, 1. [Google Scholar] [CrossRef]
- Smith, C. Phosphorus Removal Evaluation for the Geneva Wastewater Treatment Facility. City of Geneva. 2015. Available online: https://www.geneva.il.us/301/Wastewater-Treatment-Plant (accessed on 20 March 2024).
- Battistoni, P.; De Angelis, A.; Pavan, P.; Prisciandaro, M.; Cecchi, F. Phosphorus removal from a real anaerobic supernatant by struvite crystallization. Water Res. 2001, 35, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, R.-H.; Yang, Z.-Y.; Li, X.-Y. Effect of coagulant on acidogenic fermentation of sludge from enhanced primary sedimentation for resource recovery: Comparison between FeCl3 and PACl. Chem. Eng. J. 2017, 325, 681–689. [Google Scholar] [CrossRef]
- Falk, M.W.; Reardon, D.J.; Neethling, J.; Clark, D.L.; Pramanik, A. Striking the Balance between Nutrient Removal, Greenhouse Gas Emissions, Receiving Water Quality, and Costs. Water Environ. Res. 2013, 85, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Lu, X.; Yu, R.; Zhu, W. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process. Bioresour. Technol. 2012, 121, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yun, Z. Comparison of biochemical characteristics between PAO and DPAO sludges. J. Environ. Sci. 2014, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Sun, Y.; Wan, D.; Abbasi, H.N.; Guo, Z.; Geng, H.; Wang, X.; Chen, Y. Simultaneous denitrification and phosphorus removal: A review on the functional strains and activated sludge processes. Sci. Total Environ. 2022, 835, 155409. [Google Scholar] [CrossRef] [PubMed]
- Derco, J.; Kuffa, R.; Urminská, B.; Dudáš, J.; Kušnierová, J. Influence of Phosphorus Precipitation on Wastewater Treatment Processes. In Operations Research-the Art of Making Good Decisions; Jian, K., Ed.; InTech: Houston, TX, USA, 2016. [Google Scholar] [CrossRef]
- Bliss, P.J.; Ostarcevic, E.R.; Potter, A.A. Process optimisation for simultaneous biological nitrification and chemical phosphorus removal. Water Sci. Technol. 1994, 29, 107–115. [Google Scholar] [CrossRef]
- de Haas, D.; Wentze, M.; Ekama, G. The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal—Part 1: Literature review. Water SA 2009, 26, 453–466. [Google Scholar]
- Ren, B.; Li, C.; Zhang, X.; Zhang, Z. Fe(II)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis. Sci. Total Environ. 2019, 664, 116–126. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Liu, F.; Liu, A.; Feng, Q. Comparison of ferric chloride and aluminum sulfate on phosphorus removal and membrane fouling in MBR treating BAF effluent of municipal wastewater. J. Water Reuse Desalin. 2016, 7, 442–448. [Google Scholar] [CrossRef]
- Wang, Y.; Tng, K.; Wu, H.; Zhang, Z.; Liu, X.; Leslie, G.; Waite, T.D. Effects of Ferric and Ferrous Iron Addition on Membrane Bioreactor Effluent Quality. The MBR Site. 2015. Available online: https://www.thembrsite.com/features/effects-ferric-ferrous-iron-addition-mbr-effluent-quality/ (accessed on 20 March 2024).
- Lee, E.-J.; An, A.K.; Kim, H.-S. Effects of Coagulant with Different Basicity on Membrane-based Biological Treatment for Removing Phosphorus. J. Coast. Res. 2017, 79, 65–69. [Google Scholar] [CrossRef]
- Manzouri, M.; Shon, H. Rectification methods for the fouling of ultrafiltration hollow-fibre membranes as a result of excessive soluble iron. Desalin. Water Treat. 2011, 32, 437–444. [Google Scholar] [CrossRef]
- Wang, Y.; Tng, K.H.; Wu, H.; Leslie, G.; Waite, T.D. Removal of phosphorus from wastewaters using ferrous salts—A pilot scale membrane bioreactor study. Water Res. 2014, 57, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-G.; Kim, Y.; Ahn, K.-H. Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor. Desalination 2008, 221, 467–474. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Leslie, G.L.; Waite, T.D. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Res. 2014, 69, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jiang, S.; Zhang, C.; Zhao, G.; Wu, M.; Xiao, N.; Su, P. Recovery of iron from iron-rich pickling sludge for preparing P-doped polyferric chloride coagulant. Chemosphere 2021, 283, 131216. [Google Scholar] [CrossRef]
- Zhuang, H.; Guan, J.; Leu, S.-Y.; Wang, Y.; Wang, H. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong. J. Clean. Prod. 2020, 272, 122630. [Google Scholar] [CrossRef]
- Capodici, M.; Mannina, G.; Torregrossa, M. Waste activated sludge dewaterability: Comparative evaluation of sludge derived from CAS and MBR systems. Desalin. Water Treat. 2016, 57, 22917–22925. [Google Scholar] [CrossRef]
- Mentzer, C.; Drinkwater, M.; Pagilla, K.R. Investigation of direct waste-activated sludge dewatering benefits and costs in a water resource recovery facility. Water Environ. Res. 2021, 93, 2998–3010. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.; Bott, C.; Schauer, P.; Beightol, S. Does Bio–P Impact Dewatering after Anaerobic Digestion? Yes, and not in a good way! In Proceedings of the Residuals and Biosolids Conference 2014, Austin, TX, USA, 18–21 May 2014; pp. 1–11. [Google Scholar]
- Mangrum, C.R.L.; Jenkins, D. The effect of divalent cation complexation on anaerobically digested enhanced biological phosphorus removal sludge dewatering performance. Water Environ. Res. 2019, 92, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, F.; Huang, X.; Geng, W.; Wen, X. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor. Desalination 2006, 197, 124–136. [Google Scholar] [CrossRef]
- Ojo, P.; Ifelebuegu, A.O. The Effects of Aluminium- and Ferric-Based Chemical Phosphorus Removal on Activated Sludge Digestibility and Dewaterability. Processes 2019, 7, 228. [Google Scholar] [CrossRef]
- Kindzierski, W.B.; Hrudey, S.E. Effects of phosphorus removal chemicals upon methane production during anaerobic sludge digestion. Can. J. Civ. Eng. 1986, 13, 33–38. [Google Scholar] [CrossRef]
- Abbott, T.L. Effects of Metal Salts on Odour, Pathogens, Dewaterability and Orthophosphate during the Anaerobic Digestion of Municipal Waste Sludge. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2014. [Google Scholar] [CrossRef]
- Luo, H.; Sun, Y.; Taylor, M.; Nguyen, C.; Strawn, M.; Broderick, T.; Wang, Z.W. Impacts of aluminum- and iron-based coagulants on municipal sludge anaerobic digestibility, dewaterability, and odor emission. Water Environ. Res. 2022, 94, e1684. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hao, X.; Gan, W.; van Loosdrecht, M.C.; Wu, Y. Recovery of extracellular biopolymers from conventional activated sludge: Potential, characteristics and limitation. Water Res. 2021, 205, 117706. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Scholz, M.; Nolasco, M.A. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. J. Environ. Manag. 2019, 248, 109268. [Google Scholar] [CrossRef]
- Law, K.P.; Pagilla, K.R. Reclaimed phosphorus commodity reserve from water resource recovery facilities—A strategic regional concept towards phosphorus recovery. Resour. Conserv. Recycl. 2019, 150, 104429. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, B.; Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 2017, 142, 1728–1740. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Zhang, Q.; Aleem, M.; Fang, F.; Xue, Z.; Cao, J. Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review. Chemosphere 2019, 226, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Kabbe, C. Inventory of Phosphorus “Recovery and/or Recycling” Facilities Operating or under Construction at or Downstream of Wastewater Treatment Installations. European Sustainable Phosphorus Platform. 2023. Available online: https://www.phosphorusplatform.eu/activities/p-recovery-technology-inventory (accessed on 20 March 2024).
- Amann, A.; Zoboli, O.; Krampe, J.; Rechberger, H.; Zessner, M.; Egle, L. Environmental impacts of phosphorus recovery from municipal wastewater. Resour. Conserv. Recycl. 2018, 130, 127–139. [Google Scholar] [CrossRef]
- Koppes, J. The Changing Landscape of Sludge Disposal. 2022. Available online: https://www.solenis.com (accessed on 20 March 2024).
- The National Development and Reform Commission, the Ministry of Housing and Urban-Rural Development & the Ministry of Ecology and Environment. Implementation Plan for Harmless Treatment and Resource Utilization of Sludge, China. 2022. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202209/20220928_768178.html (accessed on 20 March 2024).
- Falk, M.W.; Neethling, J.; Reardon, D.J. Striking the Balance between Nutrient Removal in Wastewater Treatment and Sustainability; IWA Publishing: London, UK, 2011. [Google Scholar] [CrossRef]
Sources | P | NH4+ | Ca2+ | Mg2+ | pH | Qc1 | Qc2 | SSR1 | SSR2 | Note | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
The supernatant of thickening and dewatering without digestion | 34 | 105 | 94 | 21 | 7.4 | 7.05 × 10−9 | 1.50 × 10−14 | >1 | >1 | EBPR+chemi-cal P removal | 1 |
68 | 272 | 94 | n.f. | 7.4 | / | 5.98 × 10−14 | / | >1 | 2 | ||
94 | 272 | 94 | 19 | 7.7 | 4.57 × 10−8 | 1.14 × 10−13 | >1 | >1 | 3 | ||
The supernatant of digested sludge | 30 | 741 | 63 | 14 | 8.03 | 2.93 × 10−8 | 3.51 × 10−15 | >1 | >1 | EBPR+chemi-cal P removal | 4 |
Of digestion | 63 | 368 | 37 | 28 | 7.7 | 6.10 × 10−8 | 3.13 × 10−15 | >1 | >1 | EBPR | 5 |
The supernatant mixture of thickening and dewatering of digested sludge | 145.8 | 355.2 | 65.8 | 104.5 | 7 | 5.09 × 10−7 | 9.44 × 10−14 | >1 | >1 | Pilot plant with EBPR | 6 |
50.1 | 400.4 | 91.9 | 69.7 | 6.9 | 1.31 × 10−7 | 3.04 × 10−14 | >1 | >1 | 6 | ||
43 | 129 | 129.9 | 49.8 | 6.7 | 2.60 × 10−8 | 6.32 × 10−14 | >1 | >1 | 6 | ||
The supernatant of digested sludge | 150.6 | 541.7 | 69 | 93.2 | 7.2 | 7.15 × 10−7 | 1.16 × 10−13 | >1 | >1 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, Q.; Han, D.; Liu, R. Clarifying the Role of Phosphorus Management Strategies in Enhancing the Sustainability of Wastewater Treatment Plants. Water 2024, 16, 1539. https://doi.org/10.3390/w16111539
Zhang H, Li Q, Han D, Liu R. Clarifying the Role of Phosphorus Management Strategies in Enhancing the Sustainability of Wastewater Treatment Plants. Water. 2024; 16(11):1539. https://doi.org/10.3390/w16111539
Chicago/Turabian StyleZhang, Huanlun, Qiangqiang Li, Dingrong Han, and Ranbin Liu. 2024. "Clarifying the Role of Phosphorus Management Strategies in Enhancing the Sustainability of Wastewater Treatment Plants" Water 16, no. 11: 1539. https://doi.org/10.3390/w16111539
APA StyleZhang, H., Li, Q., Han, D., & Liu, R. (2024). Clarifying the Role of Phosphorus Management Strategies in Enhancing the Sustainability of Wastewater Treatment Plants. Water, 16(11), 1539. https://doi.org/10.3390/w16111539