Geochemistry of Arsenic and Salinity-Contaminated Groundwater and Mineralogy of Sediments in the Coastal Aquifers of Southwest Bangladesh
Abstract
:1. Introduction
2. Study Area Description: Regional Geology and Hydrostratigraphy
3. Materials and Methods
3.1. Primary Data Collection Methods
3.1.1. Sediment Samples Collection and Processing
3.1.2. Thin-Section Petrography and Mineralogical Profiling of Sediments
Quantitative Data Calculation
3.1.3. Groundwater Sample Collection and Analysis
3.2. Use of GIS Exploratory Interpolation Techniques
4. Results
4.1. Geochemical Data from Groundwater Analysis
4.1.1. Arsenic (As) Distribution in Groundwater
4.1.2. Salinity Distribution in Groundwater
4.1.3. Cross Validation (CV) of Salinity and Arsenic Distribution from Interpolation Models
4.1.4. Seasonal Variation of Salinity
4.2. Mineralogy of Sediments
4.2.1. Heavy Minerals Study
4.2.2. XRD Analysis of Sediments
4.2.3. Scanning Electron Microscope (SEM) Analysis of Sediments
5. Discussion
5.1. Hydrochemical Facies of Groundwater
5.2. Distribution Mechanism of Arsenic (As) and Iron (Fe) in Groundwater
5.3. Vertical Distribution of Arsenic (As) and Salinity Contents and Heavy Mineral wt% within Aquifer Sediments
5.4. Sediment Composition and Texture Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, M.N.; Siddique, M.A.B.; Reza, A.H.M.S.; Khan, R.; Akbor, M.A.; Elius, I.B.; Hasan, A.B.; Hasan, M. Vulnerability assessment of seawater intrusion in coastal aquifers of southern Bangladesh: Water quality appraisals. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100498. [Google Scholar] [CrossRef]
- Zahid, A.; Rahman, A.; Ali, M.M.; Zakaria, M.; Hassan, M.R. Determining Sources of Groundwater Salinity in the Multi-layered Aquifer System of the Bengal Delta, Bangladesh. BRAC Univ. J. Sci. Eng. 2016, 11, 37–51. [Google Scholar]
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A.; Akhter, S.H.; Alam, S.M.M.; Bhuyian, M.A.H.; Imam, M.B.; Khan, A.A.; Sracek, O. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- Mukherjee, A.; Fryar, A.E.; Howell, P.D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeol. J. 2007, 15, 1397–1418. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Marzen, L.J.; Uddin, A.; Lee, M.K.; Saunders, J.A. Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh. Environ. Geol. 2009, 57, 1521–1535. [Google Scholar] [CrossRef]
- Ali, A. Vulnerability of Bangladesh to Climate Change and Sea Level Rise through Tropical Cyclones and Storm Surges. J. Water Air Soil Pollut. 1996, 92, 171–191. [Google Scholar]
- Islam, S.M.D.; Uddin, M.J. Impacts, vulnerability and coping with cyclone hazard in coastal region of Bangladesh: A case study on Kalapara upazila of Patuakhali district. Jahangirnagar Univ. Environ. Bull. 2015, 4, 11–30. [Google Scholar]
- Mahmud, M.I.; Mia, A.J.; Uddin, M.R.; Rahman, M.M.; Rahman, M.H. Assessment on seasonal variations in waterlogging using remote sensing and GIS techniques in Satkhira district in Bangladesh. Barisal Univ. J. Part 1 2017, 4, 67–80. [Google Scholar]
- Ashrafuzzaman, M.D.; Artemi, C.; Santos, F.D.; Schmidt, L. Current and Future Salinity Intrusion in the South-Western Coastal Region of Bangladesh. Span. J. Soil Sci. 2022, 12, 10017. [Google Scholar] [CrossRef]
- Kabir, M.M.; Hossain, N.; Islam, A.R.M.T.; Akter, S.; Fatema, K.J.; Hilary, L.N.; Hasanuzzaman, M.; Didar-ul-Alam, M.; Choudhury, T.R. Characterization of groundwater hydrogeochemistry, quality, and associated health hazards to the residents of southwestern Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 68745–68761. [Google Scholar] [CrossRef]
- Rahman, D.M.M.; Bhattacharya, D.A.K. Saline Water Intrusion in Coastal Aquifers: A Case Study from Bangladesh. IOSR J. Eng. 2014, 4, 7–13. [Google Scholar] [CrossRef]
- Bear, J.; Alexander, H.D.; Cheng, S.S.; Driss, O.; Ismael, H. Seawater Intrusion in Coastal Aquifers, Concepts, Methods and Practices; Springer Science & Business Media: Dordrecht, The Netherlands, 1999; Volume XV, p. 627. ISBN 978-0-7923-5573-1. [Google Scholar] [CrossRef]
- Ahmed, N. Saltwater Intrusion and Trace Element Contaminations at the Coastal Aquifers of the Ganges Delta. Master’s Thesis, Auburn University, Auburn, AL, USA, 2016; p. 124. [Google Scholar]
- Toufique, K.; Yunus, M. Vulnerability of Livelihoods in the Coastal Districts of Bangladesh. Bangladesh Dev. Stud. 2013, 36, 95–120. [Google Scholar]
- BGS; DPHE. Arsenic Contamination of Groundwater in Bangladesh Final Report. BGS Technical Report. 2001; Volume 2, WC/00/19. Available online: https://www2.bgs.ac.uk/groundwater/health/arsenic/Bangladesh/home.html (accessed on 29 April 2023).
- Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M.; Burren, M.; Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeol. J. 2005, 13, 727–751. [Google Scholar] [CrossRef]
- Khalequzzaman, M.; Faruque, F.S.; Mitra, A.K. Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh. Int. J. Environ. Res. Public Health 2005, 2, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Box, J.E.; Hubbard, A.; Bahr, D.B. Greenland ice sheet climate disequilibrium and committed sea- level rise. Natl. Clim. Change 2022, 12, 808–813. [Google Scholar] [CrossRef]
- Akhter, M.N.; Chakraborty, T.K.; Ghosh, G.C.; Ghosh, P.; Jahan, S. Migration Due to Climate Change from the South-West Coastal Region of Bangladesh, A Case Study on Shymnagor Upazilla, Satkhira District. Am. J. Environ. Prot. 2016, 5, 145–151. [Google Scholar] [CrossRef]
- Ahmed, N.; Ambrogi, O.A.; Muir, J. The Impact of Climate Change on Prawn Postlarvae Fishing in Coastal Bangladesh: Socioeconomic and Ecological Perspectives. Mar. Policy 2013, 39, 224–233. [Google Scholar] [CrossRef]
- Sikder, A.M.; Khan, M.H.; Hasan, M.A.; Ahmed, K.M. Mineralogical Characteristics of the Meghna Floodplain Sediments and Arsenic Enrichment in Groundwater in Bangladesh; Taylor & Francis Group: London, UK, 2005; ISBN 041536 700 X. [Google Scholar]
- Horneman, A.; Van Geen, A.; Kent, D.; Mathe, P.E.; Zheng, Y.; Dhar, R.K.; O’Connell, S.; Hoque, M.A.; Aziz, Z.; Shamsudduha, M.; et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions, Part I, Evidence from sediment profiles. Geochim. Cosmochim. Acta 2004, 68, 3459–3473. [Google Scholar] [CrossRef]
- Anawar, H.M.; Akai, J.; Mihaljevič, M.; Sikder, A.M.; Ahmed, G.; Tareq, S.M.; Rahman, M.M. Arsenic Contamination in Groundwater of Bangladesh: Perspectives on Geochemical, Microbial and Anthropogenic Issues. Water 2011, 3, 1050–1076. [Google Scholar] [CrossRef]
- Rashid, M.; Islam, M.S. Adaptation to climate changes for sustainable development of Bangladesh agriculture. In Proceedings of the Third Session of the Technical Committee of the Asian and Pacific Center for Agriculture Engineering and Machinery, Beijing, China, 20–21 November 2007. [Google Scholar]
- BBS. Population and Housing Census Preliminary Report. 2023; ISBN 978-984-35-2977-0. Available online: http://www.bbs.gov.bd (accessed on 15 February 2023).
- Uddin, A.; Lundberg, N. Cenozoic history of the Himalayan-Bengal system, Sand composition in the Bengal basin, Bangladesh. Geol. Soc. Am. Bull. 1998, 110, 497–511. [Google Scholar] [CrossRef]
- Rahman, M.T.; Majumder, R.K.; Rahman, S.H.; Halim, M.A. Sources of deep groundwater salinity in the southwestern zone of Bangladesh. Environ. Earth Sci. 2011, 63, 363–373. [Google Scholar] [CrossRef]
- BWDB-UNDP. Groundwater Survey: The Hydrogeological Conditions of Bangladesh; UNDP Technical Report DP/UN/BGD-74-009/1; United Nation Development Programme: New York, NY, USA; Bangladesh Water Development Board: Dhaka, Bangladesh, 1982; 113p. Available online: http://ceip-bwdb.gov.bd/Tech_Report/LTM/March22.pdf (accessed on 15 April 2023).
- Hoque, M.A.; Burgess, W.G.; Ahmed, K.M. Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers a unifying concept. Hydrol. Process 2017, 31, 2095–2109. [Google Scholar] [CrossRef]
- Davies, J.; Rastall, P.; Herbert, R. Field Determination of Vertical Permeability. British Geological Survey Technical Report,1990, WD, 98, 2C. Available online: https://core.ac.uk/download/pdf/33449952.pdf (accessed on 10 April 2023).
- Jahan, K.; Zahid, A.; Bhuiyan, M.A.E.; Ali, I. A Resilient and Nature-Based Drinking Water Supply Source for Saline and Arsenic Prone Coastal Aquifers of the Bengal Delta. J. Environ. Cult. Econ. Soc. Sustain. 2022, 14, 6703. [Google Scholar] [CrossRef]
- Dowling, C.B.; Poreda, R.J.; Basu, A.R. The Groundwater Geochemistry of the Bengal: Weathering, Chemsorption and Trace Metal Flux to the Oceans. Geochim. Cosmochim. Acta 2003, 67, 2117–2136. [Google Scholar] [CrossRef]
- Uddin, A.; Shamsudduha, M.; Saunders, J.A.; Lee, M.K.; Ahmed, K.M.; Chowdhury, M.T. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Appl. Geochem. 2011, 26, 470–483. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Taylor, R.G.; Haq, M.I.; Nowreen, S.; Ahmed, K.M.U.; Sakib, N. The Bengal Water Machine: Quantified freshwater capture in Bangladesh. Science 2022, 377, 1315–1319. [Google Scholar] [CrossRef]
- Rahman, A.F.; Danilo, D.; Bassil, E. Response of the Sundarbans coastline to sea level rise and decreased sediment flow: A remote sensing assessment. Remote Sens. Environ. 2011, 115, 3121–3128. [Google Scholar] [CrossRef]
- Wentworth, K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Francus, P. An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments. Sediment. Geol. 1998, 121, 289–298. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point counting method. J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar]
- Dickinson, W.R. Interpreting Provenance Relations from Detrital Modes of Sandstones. In Provenance of Arenites; Zuffa, G.C., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1985; pp. 333–362. [Google Scholar]
- Graham, S.A.; Ingersoll, R.V.; Dickinson, W.R. Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. J. Sediment. Petrol. 1976, 46, 620–632. [Google Scholar]
- Rahman, M.M.; Lee, M.; Uddin, A. Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama. Minerals 2020, 10, 912. [Google Scholar] [CrossRef]
- Bish, D.L.; Post, J.E. Modern Powder Diffraction. Reviews in Mineralogy. Mineral. Soc. Am. 1989, 20, 220–231. Available online: http://www.minsocam.org/msa/rim/rim20.html (accessed on 29 March 2023).
- Fitton, G. X-Ray fluorescence spectrometry. In Modern Analytical Geochemistry: An Introduction to Quantitative Chemical Analysis Techniques for Earth, Environmental and Materials Scientists, 1st ed.; Gill, R., Ed.; Routledge: London, UK, 1997; p. 342. ISBN 9781315844381. [Google Scholar] [CrossRef]
- Cheng, Z.; Zheng, Y.; Mortlock, R.; van Geen, A. Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2004, 379, 512–518. [Google Scholar] [CrossRef] [PubMed]
- José, A.M.; Ligbel, S.D.G.; Johan, M. Determination of chloride, sulfate and nitrate in groundwater samples by ion chromatography. J. Chromatogr. Anal. 2000, 884, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geography. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Liu, C.W.; Jang, C.S.; Liao, C.M. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Sci. Total Environ. 2004, 321, 173–188. [Google Scholar] [CrossRef] [PubMed]
- ESRI. Spatial Interpolation with ArcGIS Pro. 2023. Available online: https://www.esri.com/training/catalog/5c92b940fa73df28264fb8ed/spatial-interpolation-with-arcgis-pro/ (accessed on 22 March 2023).
- Fischer, A.; Lee, M.-K.; Ojeda, A.S.; Rogers, S.R. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination. J. Environ. Manag. 2021, 280, 111683. [Google Scholar] [CrossRef] [PubMed]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Penny, E.; Lee, M.K.; Morton, C. Groundwater and microbial processes of Alabama coastal plain aquifers. Water Resour. Res. 2003, 39, 1320. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater, and Pollution; CRC Press: London, UK, 2005; p. 683. [Google Scholar] [CrossRef]
- Sarker, M.M.R.; Hermans, T.; Van Camp, M.; Hossain, D.; Islam, M.; Ahmed, N.; Bhuiyan, M.A.Q.; Karim, M.M.; Walraevens, K. Identifying the Major Hydrogeochemical Factors Governing Groundwater Chemistry in the Coastal Aquifers of Southwest Bangladesh Using Statistical Analysis. Hydrology 2022, 9, 20. [Google Scholar] [CrossRef]
- Moorthy, P.; Sundaramoorthy, S.; Roy, P.D.; Usha, T.; Dash, S.K.; Gowrappan, M.; Chokklingam, L. Evaluation of spatial and temporal dynamics of seawater intrusion in coastal aquifers of southeast India: Insights from hydrochemical facies analysis. Environ. Monit Assess. 2024, 196, 179. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, P.; Balasubramanian, N.; Soundranayagam, J.P.; Chandrasekar, N. Hydrochemical characteristics of coastalaquifers of Kadaladi, Ramanathapuram District, Tamilnadu, India. Appl. Water Sci. 2013, 3, 603–612. [Google Scholar] [CrossRef]
- Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S. Mobilization of Arsenite by Dissimilatory Reduction of Adsorbed Arsenate. Environ. Sci. Technol. 2000, 34, 4747–4753. [Google Scholar] [CrossRef]
- Ashraf, A.S.; Harue, M.; Muneki, M.; Keiji, S.; Toshiro, Y.; Takaaki, I.; Teruyuki, M.; Kenji, U.; Ahmed, K.M.; Dipak, K.B. Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Appl. Geochem. 2008, 23, 2236–2248. [Google Scholar] [CrossRef]
- Mukherjee, A.; Verma, S.; Mahanta, C.; Choudhury, R.; Badonie, R.P.; Joshi, G. Arsenic fate in the Brahmaputra river basin aquifers: Controls of geogenic processes, provenance and water-rock interactions. Appl. Geochem. 2019, 107, 171–186. [Google Scholar] [CrossRef]
- Shamsudduha, M. Mineralogical and Geochemical Profiling of Arsenic-Contaminated Alluvial Aquifers in the Ganges Brahmaputra Floodplain Manikganj, Bangladesh. Master’s Thesis, Auburn University, Auburn, AL, USA, 2007; p. 203. [Google Scholar]
- Pal, T.; Mukherjee, P.K.; Sengupta, S. Nature of arsenic pollutants in groundwater of Bengal Basin—A case study from Baruipur area, West Bengal, India. Curr. Sci. 2002, 82, 554–561. [Google Scholar]
- Wells, H.C.; Haverkamp, R.G. Characterization of the Heavy Mineral Suite in a Holocene Beach Placer, Barrytown, New Zealand. Minerals 2020, 10, 86. [Google Scholar] [CrossRef]
- Sengupta, S.; Mukherjee, P.K.; Pal, T.; Shone, S. Nature and origin of arsenic carriers in shallow aquifer sediments of Bengal delta, India. Environ. Geol. 2004, 45, 1071–1081. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Drinking Water Requirements for States and Public Water Systems, Chemical Contaminant Rules. 2023. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 29 March 2023).
- Flood, R.P.; Barr, I.D.; Weltje, G.J.; Roberson, S.; Russell, M.I.; Meneely, J.; Orford, J.D. Provenance and depositional variability of the Thin Mud Facies in the lower Ganges-Brahmaputra delta, West Bengal Sundarbans, India. Mar. Geol. 2018, 395, 198–218. [Google Scholar] [CrossRef]
- Uddin, A.; Kumar, P.; Sarma, J.N.; Akhter, S.H. Heavy-mineral constraints on provenance of Cenozoic sediments from the foreland basins of Assam, India and Bangladesh: Erosional history of the eastern Himalayas and the Indo-Burman ranges. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 823–847. [Google Scholar] [CrossRef]
- Hilmar, V.E.; Reinhard, G. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 1999, 124, 81–111. [Google Scholar] [CrossRef]
- Mukherjee, A.; Alan, E.F.; William, A.T. Geologic, geomorphic, and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. J. Asian Earth Sci. 2009, 34, 227–244. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks, 2nd ed.; Hemphill Press: Austin, TX, USA, 1974; p. 182. [Google Scholar]
SL. No. | Sediment Sample ID | Sample Depth (m) | Sediments Collected (Yes/No) | This section Prepared (Yes/No) | Thin Section Type |
---|---|---|---|---|---|
1 | A-1 | 3.048 | Yes | No | |
2 | A-2 | 15.24 | Yes | Yes | Unpolished |
3 | HA-03 | 30.48 | Yes | Yes | Polished |
4 | A-4 | 60.96 | Yes | No | |
5 | A-5 | 91.44 | Yes | Yes | Unpolished |
6 | A-6 | 121.92 | Yes | No | |
7 | A-7 | 152.4 | Yes | Yes | Unpolished |
8 | A-8 | 182.88 | Yes | No | |
9 | A-9 | 213.36 | Yes | Yes | Unpolished |
10 | A-10 | 243.84 | Yes | No | |
11 | A-11 | 274.32 | Yes | Yes | Unpolished |
12 | A-12 | 304.8 | Yes | Yes | Polished |
13 | P-1 | 3.048 | Yes | No | |
14 | P-2 | 15.24 | Yes | No | |
15 | P-3 | 30.48 | Yes | Yes | Unpolished |
16 | P-4 | 60.96 | Yes | No | |
17 | P-5 | 91.44 | Yes | Yes | Unpolished |
18 | P-6 | 121.92 | Yes | No | |
19 | P-7 | 152.4 | Yes | Yes | Unpolished |
20 | P-8 | 182.88 | Yes | Yes | Polished |
21 | P-9 | 213.36 | Yes | Yes | Unpolished |
22 | P-10 | 243.84 | Yes | Yes | Unpolished |
23 | P-11 | 274.32 | Yes | No | |
24 | P-12 | 304.8 | Yes | No | |
25 | T-1 | 3.048 | Yes | No | |
26 | T-2 | 15.24 | Yes | No | |
27 | T-3 | 30.48 | Yes | Yes | Unpolished |
28 | T-4 | 60.96 | Yes | No | |
29 | T-5 | 91.44 | Yes | Yes | Unpolished |
30 | HT-06 | 121.92 | Yes | No | Polished |
31 | T-7 | 152.4 | Yes | Yes | Unpolished |
32 | T-8 | 182.88 | Yes | No | |
33 | T-9 | 213.36 | Yes | Yes | Unpolished |
34 | T-10 | 243.84 | Yes | No | |
35 | T-11 | 274.32 | Yes | Yes | Unpolished |
36 | T-12 | 304.8 | Yes | No |
Sample ID | QtFL% | QmFLt% | QmPK% | QpLvLs% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qt | F | L | Qm | F | Lt | Qm | Plag | Kspar | Qp | Lv | Ls | |
A-2 | 65.68 | 24.75 | 9.57 | 59.74 | 24.75 | 15.51 | 70.70 | 4.69 | 24.61 | 43.90 | 0.00 | 56.10 |
A-5 | 66.56 | 24.50 | 8.94 | 57.95 | 24.50 | 17.55 | 70.28 | 6.43 | 23.29 | 57.78 | 0.00 | 42.22 |
A-7 | 68.52 | 21.64 | 9.84 | 60.66 | 21.64 | 17.70 | 73.71 | 9.16 | 17.13 | 53.33 | 0.00 | 46.67 |
A-9 | 66.34 | 21.57 | 12.09 | 55.88 | 21.57 | 22.55 | 72.15 | 10.55 | 17.30 | 56.14 | 0.00 | 43.86 |
A-11 | 62.17 | 28.29 | 9.54 | 52.63 | 28.29 | 19.08 | 65.04 | 11.38 | 23.58 | 56.86 | 0.00 | 43.14 |
P-3 | 65.68 | 25.74 | 8.58 | 60.07 | 25.74 | 14.19 | 70.00 | 8.46 | 21.54 | 45.95 | 0.00 | 54.05 |
P-5 | 65.46 | 22.70 | 11.84 | 57.89 | 22.70 | 19.41 | 71.84 | 8.16 | 20.00 | 44.23 | 0.00 | 55.77 |
P-7 | 60.26 | 25.50 | 14.24 | 52.98 | 25.50 | 21.52 | 67.51 | 13.92 | 18.57 | 40.74 | 0.00 | 59.26 |
P-9 | 67.00 | 23.43 | 9.57 | 61.72 | 23.43 | 14.85 | 72.48 | 11.24 | 16.28 | 41.03 | 0.00 | 58.97 |
P-10 | 65.12 | 26.25 | 8.64 | 58.14 | 26.25 | 15.61 | 68.90 | 12.20 | 18.90 | 53.85 | 0.00 | 46.15 |
T-3 | 73.27 | 19.47 | 7.26 | 64.03 | 19.47 | 16.50 | 76.68 | 9.49 | 13.83 | 62.22 | 0.00 | 37.78 |
T-5 | 72.52 | 17.55 | 9.93 | 65.23 | 17.55 | 17.22 | 78.80 | 8.40 | 12.80 | 50.00 | 6.82 | 43.18 |
T-7 | 63.82 | 24.34 | 11.84 | 53.29 | 24.34 | 22.37 | 68.64 | 8.05 | 23.31 | 55.17 | 3.45 | 41.38 |
T-9 | 65.67 | 25.00 | 9.33 | 59.33 | 25.00 | 15.67 | 70.36 | 5.53 | 24.11 | 46.34 | 0.00 | 53.66 |
T-11 | 60.00 | 26.00 | 14.00 | 51.67 | 26.00 | 22.33 | 66.52 | 8.58 | 24.89 | 41.67 | 0.00 | 58.33 |
Mean | 65.87 | 23.78 | 10.35 | 58.08 | 23.78 | 18.14 | 70.91 | 9.08 | 20.01 | 49.95 | 0.68 | 49.37 |
Standard Deviation | 3.71 | 2.80 | 2.02 | 4.13 | 2.80 | 2.91 | 3.63 | 2.50 | 3.98 | 6.99 | 1.92 | 7.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, M.R.; Uddin, A.; Lee, M.-K.; Nelson, J.; Zahid, A.; Haque, M.M.; Sakib, N. Geochemistry of Arsenic and Salinity-Contaminated Groundwater and Mineralogy of Sediments in the Coastal Aquifers of Southwest Bangladesh. Water 2024, 16, 1442. https://doi.org/10.3390/w16101442
Uddin MR, Uddin A, Lee M-K, Nelson J, Zahid A, Haque MM, Sakib N. Geochemistry of Arsenic and Salinity-Contaminated Groundwater and Mineralogy of Sediments in the Coastal Aquifers of Southwest Bangladesh. Water. 2024; 16(10):1442. https://doi.org/10.3390/w16101442
Chicago/Turabian StyleUddin, Md Riaz, Ashraf Uddin, Ming-Kuo Lee, Jake Nelson, Anwar Zahid, Md Maruful Haque, and Nazmus Sakib. 2024. "Geochemistry of Arsenic and Salinity-Contaminated Groundwater and Mineralogy of Sediments in the Coastal Aquifers of Southwest Bangladesh" Water 16, no. 10: 1442. https://doi.org/10.3390/w16101442