Assessment of Rainfall and Temperature Trends in the Yellow River Basin, China from 2023 to 2100
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Climate Model Downscaling Optimization
2.3.1. Model Performance Evaluation Indicators
2.3.2. Spatial Interpolation
2.3.3. Statistical Downscaling
2.4. Space field analysis
3. Results
3.1. Downscaling Results Evaluation and Multimodal Ensemble
3.2. Precipitation and Temperature Characteristics of Future Climate Scenarios
3.2.1. Trends in Precipitation
3.2.2. Trends in Temperature
4. Discussion
4.1. Improvements in Climate Model Preference
4.2. Future Trends of Precipitation and Temperature in the YRB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kattel, G.R.; Zhang, J.; Shang, Y.; Gnyawali, K.R.; Zhang, F.; Miao, L. Slightly enhanced drought in the Yellow River Basin under future warming scenarios. Atmos. Res. 2022, 280, 106423. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Chen, X. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Progress. Inquisitiones Mutat. Clim. 2019, 15, 445–456. [Google Scholar]
- Zhou, S.; Wang, Y.; Chang, J.; Guo, A.; Li, Z. Research on spatio-temporal evolution of drought patterns in the Yellow River Basin. J. Hydraul. Eng. 2019, 50, 1231–1241. [Google Scholar]
- Fu, Y.H.; Lin, Z.D.; Wang, T. Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6. Adv. Atmos. Sci. 2021, 38, 221–236. [Google Scholar] [CrossRef]
- Peng, S.Z.; Gang, C.C.; Cao, Y.; Chen, Y.M. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, M.; Li, L.; Liu, F.; Liu, D.L.; Pulatov, B. Projection of precipitation extremes in China’s mainland based on the statistical downscaled data from 27 GCMs in CMIP6. Atmos. Res. 2022, 280, 106462. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Statistically downscaled climate dataset for East Africa. Sci. Data 2019, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, W.; Fu, G.; Ouyang, R. A discussion of some aspects of statistical downscalingin climate impacts assessment. Adv. Water Sci. 2012, 23, 427–437, (In Chinese with English Abstract). [Google Scholar]
- Storch, H.V. Inconsistencies at the interface of climate impact studies and global climate research. Meteorol. Z. 1992, 4, 72–80. [Google Scholar]
- Chen, J.; Brissette, F.P.; Leconte, R. Coupling statistical and dynamical methods for spatial downscaling of precipitation. Clim. Chang. 2012, 114, 509–526. [Google Scholar] [CrossRef]
- Yan, X.; Mohammadian, A. Estimating future daily pan evaporation for Qatar using the Hargreaves model and statistically downscaled global climate model projections under RCP climate change scenarios. Arab. J. Geosci. 2020, 13, 938. [Google Scholar] [CrossRef]
- Jian, S.; Wang, A.; Su, C. Prediction of future spatial and temporal evolution trends of reference evapotranspiration in the Yellow River Basin, China. Remote Sens. 2022, 14, 5674. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Deng, S.F.; Zhao, Q.D. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River Basin, north-eastern edge of the Tibetan Plateau. Hydrol. Process. 2019, 33, 1059–1074. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Salahi, B.; Poudineh, E. An evaluation of Delta and SDSM Downscaling Models for simulating and forecasting of average wind velocity in Sistan, Iran. Model. Earth Syst. Environ. 2022, 8, 4441–4453. [Google Scholar] [CrossRef]
- Jian, S.; Wang, A.; Hu, C. Effect of landscape restoration on evapotranspiration and water use in the Yellow River Basin, China. Acta Geophys. 2023, 46, 1542–1546. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, X.; Xu, Y.; Wang, G.; Xie, J.; Gu, H.A. Comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China. Hydrol. Res. 2022, 53, 867–891. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.A. CMIP5 multimodel projection of future temperature; precipitation; and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China; an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Sahu, N.; Duan, W.; Kumar, M.; Avtar, R.; Mishra, M.; Kumar, P.; Pandey, R.; Behera, S. Unraveling Intricacies of Monsoon Attributes in Homogenous Monsoon Regions of India. Front. Earth Sci. 2022, 10, 794634. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.D.; Wei, W.; Yu, Y.; Zhang, H.D. Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions. J. Hydrol. 2014, 513, 314–321. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, S.; Jia, S. Problems of the spatial interpolation of physical geographical elements. Geogr. Res. 2004, 23, 425–432. [Google Scholar]
- Habib, M. Evaluation of DEM interpolation techniques for characterizing terrain roughness. Catena 2021, 198, 105072. [Google Scholar] [CrossRef]
- Meng, Y.; Duan, K.; Shang, W.; Li, S.; Xing, L.; Shi, P. Analysis on spatiotemporal variations of near-surface air temperature over the Tibetan Plateau from 1961 to 2100 based on CMIP6 models’data. J. Glaciol. Geocryol. 2022, 44, 24–33. [Google Scholar]
- Sang, Y.; Ren, H.; Shi, X.; Xu, X.; Chen, H. Improvement of Soil Moisture Simulation in Eurasia by the Beijing Climate Center Climate System Model from CMIP5 to CMIP6. Adv. Atmos. Sci. 2021, 38, 237–252. [Google Scholar] [CrossRef]
- Shiru, M.S.; Chung, E.S.; Shahid, S.; Wang, X.J. Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin, China. Theor. Appl. Climatol. 2022, 147, 535–548. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Wang, H.; Sun, B.; Chen, H. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5. Acta Meteorol. Sin. 2021, 79, 369–386. [Google Scholar]
- Zhu, H.H.; Jiang, Z.H.; Li, J.; Li, W.; Sun, C.X.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of Climate Changes on Water Resources in Yellow River Basin; China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef]
- Bagcaci, S.C.; Yucel, I.; Duzenli, E.; Yilmaz, M.T. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmos. Res. 2021, 256, 105576. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shahid, S.; Islam, A.T.; Hwang, S.; Cho, J.; Zaman, M.A.U.; Ahmed, M.; Rahman, M.M.; Hossain, M.B. Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: A preliminary study. Theor. Appl. Climatol. 2021, 145, 1385–1406. [Google Scholar] [CrossRef]
Numbers | Climate Model | Resolution | Publishing Country |
---|---|---|---|
1 | ACCESS-CM2 | 1.9° × 1.3° | Australia |
2 | ACCESS-ESM1-5 | 1.9° × 1.3° | Australia |
3 | AWI-CM-1-1-MR | 0.9° × 0.9° | Germany |
4 | AWI-ESM-1-1-LR | 1.9° × 1.9° | Germany |
5 | BCC-CSM2-HR | 1.125° × 1.125° | China |
6 | BCC-CSM2-MR | 1.112° × 1.125° | China |
7 | BCC-ESM1 | 2.8° × 2.8° | China |
8 | CAMS-CSM1-0 | 1.112° × 1.125° | China |
9 | CanESM5 | 2.8125° × 2.8125° | Canada |
10 | CAS-ESM2-0 | 1.40625° × 1.40625° | China |
11 | CESM2 | 1.25° × 0.9375° | USA |
12 | CESM2-FV2 | 2.5° × 1.875° | USA |
13 | CESM2-WACCM | 1.25° × 0.9375° | USA |
14 | CMCC-CM2-HR4 | 1.25° × 0.9375° | Italy |
15 | CMCC-ESM2 | 1.25° × 0.9375° | Italy |
16 | CNRM-CM6-1 | 1.4063° × 1.4063° | France |
17 | CNRM-ESM2-1 | 1.4063° × 1.4063° | France |
18 | E3SM-1-0 | 1° × 1° | USA |
19 | EC-Earth3 | 0.7° × 0.7° | UK |
20 | EC-Earth3-Veg | 0.703° × 0.703° | Sweden |
21 | FGOALS-f3-L | 1° × 1.25° | China |
22 | FIO-ESM-2-0 | 0.9424° × 1.25° | China |
23 | GFDL-ESM4 | 1° × 1.25° | USA |
24 | GISS-E2-1-G | 1° × 1.25° | USA |
25 | HadGEM3-GC31-LL | 1.875° × 2.5° | UK |
26 | HadGEM3-GC31-MM | 0.833° × 0.833° | UK |
27 | INM-CM5-0 | 2° × 1.5° | Russia |
28 | IPSL-CM6A-LR | 1.2676° × 2.5° | France |
29 | KACE-1-0-G | 1.25° × 1.875° | Republic of Korea |
30 | MIROC6 | 1.389° × 1.406° | Japan |
31 | MIROC-ES2L | 2.8125° × 2.8125° | Japan |
32 | MPI-ESM1-2-HR | 0.9375° × 0.9375° | Germany |
33 | MPI-ESM1-2-LR | 1.875° × 1.875° | Germany |
34 | MRI-ESM2-0 | 1.124° × 1.125° | Japan |
35 | NESM3 | 1.865° × 1.875° | China |
36 | NorCPM1 | 2.5° × 1.875° | Norway |
37 | NorESM2-LM | 2.5° × 1.875° | Norway |
38 | TaiESM1 | 1.25° × 0.9375° | China |
39 | UKESM1-0-LL | 1.875° × 1.25° | UK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Mu, H.; Jian, S.; Li, X. Assessment of Rainfall and Temperature Trends in the Yellow River Basin, China from 2023 to 2100. Water 2024, 16, 1441. https://doi.org/10.3390/w16101441
Li H, Mu H, Jian S, Li X. Assessment of Rainfall and Temperature Trends in the Yellow River Basin, China from 2023 to 2100. Water. 2024; 16(10):1441. https://doi.org/10.3390/w16101441
Chicago/Turabian StyleLi, Hui, Hongxu Mu, Shengqi Jian, and Xinan Li. 2024. "Assessment of Rainfall and Temperature Trends in the Yellow River Basin, China from 2023 to 2100" Water 16, no. 10: 1441. https://doi.org/10.3390/w16101441
APA StyleLi, H., Mu, H., Jian, S., & Li, X. (2024). Assessment of Rainfall and Temperature Trends in the Yellow River Basin, China from 2023 to 2100. Water, 16(10), 1441. https://doi.org/10.3390/w16101441