The Main Impact Factors for the Propagation from Meteorological Drought to Socio-Economic Drought from the Perspective of a Small Area, Based on a Practical Survey
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Drought Indices
3.2. Analysis Model
3.3. Evaluation Indicators
4. Results and Discussion
4.1. Survey of the Water Supply System in Lishui
4.2. Survey on the 2022 Drought Event in Lishui
4.3. Analysis of Main Impact Factors
4.4. Relationships between the Main Impact Factors
4.5. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Ji, Y.; Fu, J.; Lu, Y.; Liu, B. Three-dimensional-based global drought projection under global warming tendency. Atmos. Res. 2023, 291, 106812. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 2015, 526, 208–220. [Google Scholar] [CrossRef]
- Alley, W. The Palmer Drought Severity Index: Limitations and Assumptions. J. Appl. Meteorol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Nengcheng, C.; Ronghui, L.; Xiang, Z.; Chao, Y.; Xiaoping, W.; Linglin, Z.; Shengjun, T.; Wei, W.; Deren, L.; Dev, N. Drought propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2 datasets. J. Hydrol. 2020, 588, 125026. [Google Scholar]
- Meresa, H.; Murphy, C.; Donegan, S. Propagation and Characteristics of Hydrometeorological Drought Under Changing Climate in Irish Catchments. J. Geophys. Res. Atmos. 2023, 128, e2022JD038025. [Google Scholar] [CrossRef]
- Teutschbein, C.; Jonsson, E.; Todorović, A.; Tootoonchi, F.; Stenfors, E.; Grabs, T. Future drought propagation through the water-energy-food-ecosystem nexus—A Nordic perspective. J. Hydrol. 2023, 617, 128963. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, S.; Ren, L.; Xu, C.; Menzel, L.; Yuan, F.; Xu, Q.; Liu, Y.; Yang, X. Separating the effects of climate change and human activities on drought propagation via a natural and human-impacted catchment comparison method. J. Hydrol. 2021, 603, 126913. [Google Scholar] [CrossRef]
- Nigatu, Z.; You, W.; Melesse, A. Drought Dynamics in the Nile River Basin: Meteorological, Agricultural, and Groundwater Drought Propagation. Romete Sens. 2024, 16, 919. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Y.; Liu, S.; Cai, H.; Zhou, Z. A New Perspective on Drought Propagation: Causality. Geophys. Res. Lett. 2022, 49, e2021GL096758. [Google Scholar] [CrossRef]
- Liu, X.; Peng, J.; Liu, Y.; Yu, S.; Wang, Y. The Three Gorges Dam has weakened the drought propagation process in the Yangtze River Basin. J. Hydrol. 2024, 632, 130875. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, M.; Zhang, X.; Leng, G.; Su, Z.; Lv, J.; Yu, Z.; Yi, P. Altered drought propagation under the influence of reservoir regulation. J. Hydrol. 2021, 603, 127049. [Google Scholar] [CrossRef]
- Apurv, T.; Sivapalan, M.; Cai, X. Understanding the Role of Climate Characteristics in Drought Propagation. Water Resour. Res. 2017, 53, 9304–9329. [Google Scholar] [CrossRef]
- Wang, W.; Ertsen, M.; Svoboda, M.; Hafeez, M. Propagation of Drought: From Meteorological Drought to Agricultural and Hydrological Drought. Adv. Meteorol. 2016, 2016, 6547209. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, B.; Gu, Q.; He, Z.; Zheng, R. Drought propagation characteristics across China: Time, probability, and threshold. J. Hydrol. 2024, 631, 130805. [Google Scholar] [CrossRef]
- Li, L.; Peng, Q.; Wang, M.; Cao, Y.; Gu, X.; Cai, H. Quantitative analysis of vegetation drought propagation process and uncertainty in the Yellow River Basin. Agric. Water Manag. 2024, 295, 108775. [Google Scholar] [CrossRef]
- Apurv, T.; Cai, X. Drought Propagation in Contiguous U.S. Watersheds: A Process-Based Understanding of the Role of Climate and Watershed Properties. Water Resour. Res. 2020, 56, e2020WR027755. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Cai, H.; Zhou, Z.; Sun, Y.; Shi, H. Propagation of meteorological to hydrological drought for different climate regions in China. J. Environ. Manag. 2021, 283, 111980. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, C.; Gou, J.; Wu, J.; Jiao, W.; Song, Y.; Xu, D. Spatiotemporal characteristics of meteorological to hydrological drought propagation under natural conditions in China. Weather Clim. Extremes 2022, 38, 100505. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Yin, G.; Xu, Y.; Hao, F. Evaluation of Drought Propagation Characteristics and Influencing Factors in an Arid Region of Northeast Asia (ARNA). Remote Sens. 2022, 14, 3307. [Google Scholar] [CrossRef]
- de Matos Brandão Raposo, V.; Costa, V.A.F.; Rodrigues, A.F. A review of recent developments on drought characterization, propagation, and influential factors. Sci. Total Environ. 2023, 898, 165550. [Google Scholar] [CrossRef] [PubMed]
- Karavitis, C.; Alexandris, S.; Tsesmelis, D.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-based evaluation of drought events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Desai, S.; Ouarda, T. Regional hydrological frequency analysis at ungauged sites with random forest regression. J. Hydrol. 2021, 594, 125861. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.; Mao, B. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Lect. Notes Comput. Sci. 2005, 3644, 878–887. [Google Scholar]
- Yang, Q.; Shen, X.; Yang, F.; Anagnostou, E.; He, K.; Mo, C.; Seyyedi, H.; Kettner, A.; Zhang, Q. Predicting Flood Property Insurance Claims over CONUS, Fusing Big Earth Observation Data. Bull. Am. Meteorol. Soc. 2022, 103, E791–E809. [Google Scholar] [CrossRef]
- Centor, R.; Schwartz, J. An Evaluation of Methods for Estimating the Area Under the Receiver Operating Characteristic (ROC) Curve. Med. Decis. Mak. 1985, 5, 149–156. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de Las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
SPI | Level |
---|---|
Extremely wet | |
Very wet | |
Moderately wet | |
Near normal | |
Moderate drought | |
Severe drought | |
Extreme drought |
Categories | Variables | Range | Description |
---|---|---|---|
Precipitation | SPI-1 | SPI on the scale of one month | |
SPI-2 | SPI on the scale of two months | ||
SPI-3 | SPI on the scale of three months | ||
SPI-4 | SPI on the scale of four months | ||
AAP | Annual average precipitation from long-term data | ||
ND | Number of days with precipitation less than 3 mm between July and October 2022 | ||
LNP | The longest number of days with continuous precipitation of less than 3 mm between July and October 2022 | ||
Water sources | ln covered population (LCP) | Natural logarithm of population covered by water source | |
ln actual water supply volume (LAWSV) | Natural logarithm of actual daily water supply volume | ||
ln active capacity (LAC) | Natural logarithm of active capacity for water source | ||
ln drainage area (LDA) | Natural logarithm of drainage area for water source | ||
Socio-economic drought | Whether socio-economic drought occurs (O) | 0 and 1 | If socio-economic drought occurs, ; otherwise, |
Month | SPI-1 | SPI-2 | SPI-3 | SPI-4 | ||||
---|---|---|---|---|---|---|---|---|
Value | Level | Value | Level | Value | Level | Value | Level | |
Jul. | −1.0 | Moderate drought | −0.9 | Near normal | −1.4 | Moderate drought | −1.8 | Severe drought |
Aug. | −0.3 | Near normal | −1.1 | Moderate drought | −1.7 | Severe drought | / | / |
Sep. | −1.8 | Severe drought | −2.4 | Extreme drought | / | / | / | / |
Oct. | −2.4 | Extreme drought | / | / | / | / | / | / |
Indicator | Value |
---|---|
Accuracy | 0.9935 |
TPR | 0.9489 |
FPR | 0.0021 |
AUC | 0.9995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Wu, C.; Wang, J.; Wang, H.; Wang, R.; Fu, L.; Wen, J. The Main Impact Factors for the Propagation from Meteorological Drought to Socio-Economic Drought from the Perspective of a Small Area, Based on a Practical Survey. Water 2024, 16, 1426. https://doi.org/10.3390/w16101426
Cai C, Wu C, Wang J, Wang H, Wang R, Fu L, Wen J. The Main Impact Factors for the Propagation from Meteorological Drought to Socio-Economic Drought from the Perspective of a Small Area, Based on a Practical Survey. Water. 2024; 16(10):1426. https://doi.org/10.3390/w16101426
Chicago/Turabian StyleCai, Chenkai, Changhuai Wu, Jing Wang, Helong Wang, Ruotong Wang, Lei Fu, and Jinhua Wen. 2024. "The Main Impact Factors for the Propagation from Meteorological Drought to Socio-Economic Drought from the Perspective of a Small Area, Based on a Practical Survey" Water 16, no. 10: 1426. https://doi.org/10.3390/w16101426
APA StyleCai, C., Wu, C., Wang, J., Wang, H., Wang, R., Fu, L., & Wen, J. (2024). The Main Impact Factors for the Propagation from Meteorological Drought to Socio-Economic Drought from the Perspective of a Small Area, Based on a Practical Survey. Water, 16(10), 1426. https://doi.org/10.3390/w16101426