Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use
Abstract
:1. Introduction
2. Methodology
2.1. VAR Model
2.1.1. The Establishment of the VAR Model
2.1.2. Time Difference Correlation Analysis (TDCA)
2.2. Water Sustainable Utilization Assessment Index System
2.2.1. Indicator Selection
2.2.2. Early Warning Indicators for Sustainable Use of Water Resources
2.2.3. Early Warning Indicator Hierarchy Model
2.3. Data Sources
3. Results and Discussion
3.1. VAR Model Establishment and Basic Test
3.1.1. Unit Root Test
3.1.2. Cointegration Test
3.1.3. Choice of Lag Period
3.1.4. The Parameters Result in VAR
3.1.5. The Test of Model Stability
3.1.6. Granger Causality Test (GCT)
3.2. Pulse Effect Analysis
3.3. Analysis of Variance Decomposition
3.3.1. Analysis of Variance Decomposition of GDP and TWC
3.3.2. Forecast the TWC and GDP Changes of 2023–2050
3.4. Water Overload Status Results
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VAR | Vector autoregressive |
GDP | Gross Domestic Product |
TDCA | Time difference correlation analysis |
TDCC | Time difference correlation coefficient |
OLS | Ordinary least square |
STFs | Sewage treatment facilities |
CSY | China Statistical Yearbook |
ADF | Augmented Dickey–Fuller |
TWC | Total water consumption |
GCT | Granger Causality Test |
References
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liu, F.; Li, Y.; Wang, D. Study on the Relationship between Water Resources Utilization and Economic Growth in Tarim River basin from the Perspective of Water Footprint. Water 2022, 14, 1655. [Google Scholar] [CrossRef]
- NBS. Statistical Communiqué of the People’s Republic of China on the 2021 National Economic and Social Development; National Bureau of Statistics: Beijing, China, 2022. [Google Scholar]
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission–a case study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Song, M.L.; Tao, W.L.; Shang, Y.P.; Zhao, X. Spatiotemporal characteristics and influencing factors of China’s urban water resource utilization efficiency from the perspective of sustainable development. J. Clean. Prod. 2022, 338, 130649. [Google Scholar] [CrossRef]
- Cai, B.; Guo, M. Exploring the drivers of quantity- and quality-related water scarcity due to trade for each province in China. J. Environ. Manag. 2023, 333, 117423. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Shang, J.; Zhang, J. Sustainable utilization of water resources in China: A system dynamics model. J. Clean. Prod. 2017, 142, 613–625. [Google Scholar] [CrossRef]
- The Ministry of Ecology and Environment, P.R.C. Annual Bulletin of China’s Ecology and Environment. 2020. Available online: http://www.cnemc.cn/jcbg/zghjzkgb/ (accessed on 31 May 2023).
- Tao, T.; Xin, K. A sustainable plan for China’s drinking water: Tackling pollution and using different grades of water for different tasks is more efficient than making all water potable. Nature 2014, 511, 527–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, R.; Li, R.R. Decoupling analysis of economic growth from water use in City: A case study of Beijing, Shanghai, and Guangzhou of China. Sustain. Cities Soc. 2018, 41, 86–94. [Google Scholar] [CrossRef]
- Cicchetti, C.J.; Smith, V.K.; Carson, J. Economic-analysis of water-resources investment and regional economic growth. Water Resour. Res. 1975, 11, 1–6. [Google Scholar] [CrossRef]
- Hayat, A.; Tahir, M. Foreign direct investment, natural resources and economic growth: A threshold model approach. J. Econ. Stud. 2021, 48, 929–944. [Google Scholar] [CrossRef]
- Howe, C.W. Water resources and regional economic growth in united-states, 1950–1960. South. Econ. J. 1968, 34, 477–489. [Google Scholar] [CrossRef]
- Rosa, L.; Rulli, M.C.; Davis, K.F.; Chiarelli, D.D.; Passera, C.; D’Odorico, P. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 2018, 13, 104002. [Google Scholar] [CrossRef]
- Montoya, M.A.; Allegretti, G.; Bertussi, L.A.S.; Talamini, E. Domestic and foreign decoupling of economic growth and water consumption and its driving factors in the Brazilian economy. Ecol. Econ. 2023, 206, 107737. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X. Moving to economic growth without water demand growth—A decomposition analysis of decoupling from economic growth and water use in 31 provinces of China. Sci. Total Environ. 2020, 726, 138362. [Google Scholar] [CrossRef] [PubMed]
- Distefano, T.; Kelly, S. Are we in deep water? Water scarcity and its limits to economic growth. Ecol. Econ. 2017, 142, 130–147. [Google Scholar] [CrossRef]
- Russ, J. Water runoff and economic activity: The impact of water supply shocks on growth. J. Environ. Econ. Manag. 2020, 101, 102322. [Google Scholar] [CrossRef]
- de Amorim, W.S.; Valduga, I.B.; Ribeiro, J.M.P.; Guazzelli Williamson, V.; Krauser, G.E.; Magtoto, M.K.; Guerra, J. The nexus between water, energy, and food in the context of the global risks: An analysis of the interactions between food, water, and energy security. Environ. Impact Assess. 2018, 72, 1–11. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Wada, Y.; Florke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Alrwis, K.N.; Ghanem, A.M.; Alnashwan, O.S.; Al Duwais, A.A.M.; Alaagib, S.A.B.; Aldawdahi, N.M. Measuring the impact of water scarcity on agricultural economic development in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fan, X.; Liang, J. Kuznets type relationship between water use and economic growth in China. J. Clean. Prod. 2017, 168, 1091–1100. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, A.; Pan, B.L. Relationship between industrial water consumption and economic growth in China based on environmental Kuznets curve. Energy Procedia 2017, 105, 3557–3564. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, X.L.; Chen, H.Y. On the relationship between water use and economic growth in China: New evidence from simultaneous equation model analysis. J. Clean. Prod. 2019, 235, 953–965. [Google Scholar] [CrossRef]
- Sims, C. Macroeconomics and Reality. Econometrica 1980, 48, 1–47. [Google Scholar] [CrossRef]
- Kang, S.H.; Islam, F.; Tiwari, A.K. The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model. Struct. Chang. Econ. D 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Corradini, C. Local institutional quality and economic growth: A panel-VAR analysis of Italian NUTS-3 regions. Econ. Lett. 2021, 198, 109659. [Google Scholar] [CrossRef]
- Aslan, A.; Ocal, O.; Ozsolak, B.; Ozturk, I. Renewable energy and economic growth relationship under the oil reserve ownership: Evidence from panel VAR approach. Renew. Energy 2022, 188, 402–410. [Google Scholar] [CrossRef]
- Xiang, X.J.; Li, Q.; Khan, S.; Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. 2021, 86, 106515. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colon-Gonzalez, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Goelman, G.; Dan, R.; Ruzicka, F.; Bezdicek, O.; Ruzicka, E.; Roth, J.; Vymazal, J.; Jech, R. Frequency-phase analysis of resting-state functional MRI. Sci. Rep. 2017, 7, 43743. [Google Scholar] [CrossRef] [PubMed]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Jose Moises, D.; Kunguma, O. Improving flood early warning systems in Kabbe, Namibia: A situational analysis approach. Int. J. Disaster Risk Reduct. 2023, 93, 103765. [Google Scholar] [CrossRef]
- Liu, M.; Wei, J.; Wang, G.; Wang, F. Water resources stress assessment and risk early warning–a case of Hebei Province China. Ecol. Indic. 2017, 73, 358–368. [Google Scholar] [CrossRef]
- Rød, E.G.; Gåsste, T.; Hegre, H. A review and comparison of conflict early warning systems. Int. J. Forecast. 2023, 40, 96–112. [Google Scholar] [CrossRef]
- The Ministry of Water Resources, P.R.C. China Water Resources Bulletin. 2022. Available online: http://www.mwr.gov.cn/zzsc/tjgb/szygb/2022/mobile/index.html (accessed on 15 September 2023).
- Wang, Z.; Xu, D.; Peng, D.; Zhang, X. Future climate change would intensify the water resources supply-demand pressure of afforestation in inner Mongolia, China. J. Clean. Prod. 2023, 407, 137145. [Google Scholar] [CrossRef]
- Li, D.; Zuo, Q.; Zhang, Z. A new assessment method of sustainable water resources utilization considering fairness-efficiency-security: A case study of 31 provinces and cities in China. Sustain. Cities Soc. 2022, 81, 103839. [Google Scholar] [CrossRef]
- Meo, M.S.; Sabir, S.A.; Arain, H.; Nazar, R. Water resources and tourism development in South Asia: An application of dynamic common correlated effect (DCCE) model. Environ. Sci. Pollut. Res. 2020, 27, 19678–19687. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.H.; Xin, L.; Li, J. Assessing the impact of the carbon market on the improvement of China’s energy and carbon emission performance. Energy 2022, 258, 124789. [Google Scholar] [CrossRef]
Number | Indicator | Indicator Classification | Number | Indicator | Indicator Classification |
---|---|---|---|---|---|
T1 | Total water resources/100 million m3 | Internal system | T14 | NOx emissions/tons | Internal system |
T2 | Total water consumption/100 million m3 | Internal system | T15 | Ammonia nitrogen emissions/tons | Internal system |
T3 | Industrial water consumption/100 million m3 | Internal system | T16 | Total industrial exhaust emissions/billion m3 | Internal system |
T4 | Per capita GDP/CNY 10,000 | External system | T17 | Population/million | Internal system |
T5 | water consumption of CNY 10,000 GDP/m3 | Internal and external system | T18 | Exhaust gas treatment facilities/Tai | Internal system |
T6 | Per capita living water consumption/m3 | Internal system | T19 | CNY 10,000 industrial output COD emissions/tons | Internal and external system |
T7 | COD emissions/tons | Internal system | T20 | Power generation/billion kWh | External system |
T8 | Ammonia nitrogen emissions/tons | Internal system | T21 | The difference in the number of units of STFs per unit/Tai | Internal system |
T9 | Sewage discharge/tons | Internal system | T22 | Forest cover rate/% | Internal system |
T10 | CNY 10,000 GDP sewage discharge/tons | Internal and external system | T23 | The difference in the unit GDP exhaust gas treatment facilities/Tai | Internal system |
T11 | Sewage treatment facilities/Tai | Internal system | T24 | Power generation difference/billion kwh | Internal system |
T12 | Urban sewage treatment rate/% | Internal and external system | T25 | CNY 10,000 industrial output value ammonia nitrogen emissions/tons | Internal and external system |
T13 | Sulfur dioxide emissions/tons | Internal system | T26 | Average annual precipitation/mm | External system |
Variables | ADF Statistics | (c, t, k) | Significant | Conclusions |
---|---|---|---|---|
I | −1.4173 | (c, 0, 0) | 0.5542 | unstable |
LOGI | −1.4190 | (c, 0, 0) | 0.5534 | unstable |
DLOGI | −4.3906 | (c, 0, 0) | 0.0029 | stable |
DDLOGI | −8.6653 | (c, 0, 0) | 0.0000 | stable |
J | 3.6281 | (c, 0, 0) | 1.0000 | unstable |
LOGJ | −3.2498 | (c, 0, 0) | 0.0311 | stable |
DLOGJ | −2.4218 | (c, 0, 0) | 0.1486 | unstable |
DDLOGJ | −5.7211 | (c, 0, 0) | 0.0002 | stable |
Rank | Params | LL | Eigenvalue | Trace Statistic | Critical Value |
---|---|---|---|---|---|
0 | 2 | −370.9920 | 18.9219 | 15.4100 | |
1 | 5 | −361.8070 | 0.5830 | 0.5510 * | 3.7600 |
2 | 6 | −361.5310 | 0.0259 |
Categories | Lag Phase | LogL | HQ | SC | FPE | LR | AIC |
---|---|---|---|---|---|---|---|
GDP and TWC | 0 | 31.7167 | −3.4863 | −3.3980 | 0.0001 | NA | −3.496090 |
1 | 89.9609 | −9.8485 * | −9.5836 * | 1.77 × 10−7 * | 95.9316 * | −9.877761 * | |
2 | 91.9565 | −9.5932 | −9.1518 | 2.31 × 10−7 | 2.8173 | −9.6419 | |
3 | 94.5015 | −9.4025 | −8.7846 | 2.93 × 10−7 | 2.9941 | −9.4707 | |
4 | 99.2552 | −9.4717 | −8.6772 | 3.07 × 10−7 | 4.4740 | −9.5594 | |
5 | 99.9781 | −9.0667 | −8.0956 | 5.82 × 10−7 | 0.5102 | −9.1738 |
Statistics Value | Equation (5) Results |
---|---|
Residual Covariance (+degrees of freedom) | 3.14 × 10−7 |
Residual Covariance | 2.30 × 10−7 |
Log—Likelihood Estimation | 100.8821 |
Akaike Information Criterion | −9.0363 |
Schwarz Criterion | −8.7379 |
Equation (5) | |
---|---|
Root | Module |
0.9631 | 0.9631 |
0.8017 | 0.8017 |
Null Hypothesis | Samples | F Statistic | p Values | Yes/No |
---|---|---|---|---|
LNJ does not Granger Cause LNI | 16 | 0.45248 | 0.8123 | No |
LNI does not Granger Cause LNJ | 16 | 5.33224 | 0.0989 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Sun, Z.; Liu, J.; Zhou, A. Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use. Water 2024, 16, 1325. https://doi.org/10.3390/w16101325
Wang S, Sun Z, Liu J, Zhou A. Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use. Water. 2024; 16(10):1325. https://doi.org/10.3390/w16101325
Chicago/Turabian StyleWang, Saige, Ziyuan Sun, Jing Liu, and Anhua Zhou. 2024. "Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use" Water 16, no. 10: 1325. https://doi.org/10.3390/w16101325
APA StyleWang, S., Sun, Z., Liu, J., & Zhou, A. (2024). Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use. Water, 16(10), 1325. https://doi.org/10.3390/w16101325