Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan
Abstract
:1. Introduction
2. Study Area
2.1. Hydrogeology
2.2. Landslide and Turbid Water Event
3. Methods
3.1. Analysis of Relationships between River and Groundwater Levels
3.2. Measurement of River Seepage
3.3. Hydrological Model for Contribution Estimation
3.4. Contribution Estimation
4. Results
4.1. Relationship between River and Groundwater Levels
4.2. Seepage from River
4.3. Contributions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Land, Infrastructure, Transport and Tourism. Current State of Water Resources in Japan 2022. Available online: https://www.mlit.go.jp/mizukokudo/mizsei/mizukokudo_mizsei_tk2_000039.html (accessed on 9 April 2024).
- Liu, Y.; Yamanaka, T.; Zhou, X.; Tian, F.; Ma, W. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, central Japan. J. Hydrol. 2014, 519, 833–847. [Google Scholar] [CrossRef]
- Tsuchihara, T.; Shirahata, K.; Ishida, S.; Yoshimoto, S. Application of a Self-organizing map of isotopic and chemical data for the identification of groundwater recharge sources in Nasunogahara Alluvial Fan, Japan. Water 2020, 12, 278. [Google Scholar] [CrossRef]
- Yu, H.L.; Chu, H.J. Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. J. Hydrol. 2010, 381, 239–247. [Google Scholar] [CrossRef]
- Noto, F.; Maruyama, T.; Hayase, Y.; Takimoto, H.; Nakamura, K. Evaluation of water resources by snow storage using water balance and tank model method in the Tedori River basin of Japan. Paddy Water Environ. 2013, 11, 113–121. [Google Scholar] [CrossRef]
- Noto, F.; Maruyama, T.; Yoshida, M.; Hayase, Y.; Takimoto, H.; Nakamura, K. Prediction of water resources as snow storage under climate change in the Tedori River basin of Japan. Paddy Water Environ. 2013, 11, 463–471. [Google Scholar] [CrossRef]
- Maruyama, T.; Takimoto, H.; Ogura, A.; Yoshida, M. Analysis of snowpack accumulation and the melting process of wet snow using a heat balance approach that emphasizes the role of underground heat flux. J. Hydrol. 2015, 522, 369–381. [Google Scholar] [CrossRef]
- Fujihara, Y.; Takase, K.; Chono, S.; Ichion, E.; Ogura, A.; Tanaka, K. Influence of topography and forest characteristics on snow distributions in a forested catchment. J. Hydrol. 2017, 546, 289–298. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ozaki, M.; Nakamura, K.; Horino, H.; Kawashima, S. Relationship between increment of groundwater level at the beginning of irrigation period and paddy filed area in the Tedori River Alluvial Fan Area, Japan. Paddy Water Environ. 2013, 11, 551–558. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakamura, K.; Horino, H.; Nakano, T.; Shin, K.C.; Kawashima, S. Evaluation of groundwater qualities in a paddy-dominated alluvial fan. Water Supply 2015, 15, 1236–1243. [Google Scholar] [CrossRef]
- Yoshioka, I.Y.; Nakamura, K.; Nakano, T.; Horino, H.; Shin, K.C.; Hashimoto, S.; Kawashima, S. Multiple-indicator study of groundwater flow and chemistry and the impacts of river and paddy water on groundwater in the alluvial fan of the Tedori River, Japan. Hydrol. Process. 2016, 30, 2804–2816. [Google Scholar] [CrossRef]
- Maruyama, T.; Noto, F.; Yoshida, M.; Horino, H.; Nakamura, K. Analysis of water balance in the Tedori river alluvial fan areas of Japan: Focused on quantitative analysis of groundwater recharge from river and ground surface, especially paddy fields. Paddy Water Environ. 2014, 12, 163–171. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakamura, K.; Horino, H.; Kawashima, S. Numerical assessments of the impacts of climate change on regional groundwater systems in a paddy-dominated alluvial fan. Paddy Water Environ. 2016, 14, 93–103. [Google Scholar] [CrossRef]
- Yanai, S. Characteristics of a landslide occurred in May 2015 in Mt. Hakusan and its influence on downstream system. In Proceedings of the Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim, Toyama, Japan, 1–4 October 2018; pp. 124–131. [Google Scholar]
- Tanaka, K.; Segawa, M.; Fujihara, Y.; Takase, K.; Maruyama, T.; Chono, S. High-turbidity water from landslides affects groundwater recharge of paddy fields in the Tedori River alluvial fan. J. Jpn. Soc. Hydrol. Water Resour. 2017, 30, 173–180, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Tanaka, K.; Segawa, M.; Fujihara, Y.; Takase, K.; Maruyama, T.; Chono, S. Influence of high-turbidity water on paddy percolation and riverbed seepage in an alluvial fan. Trans. Jpn. Soc. Irrig. Drain. Rural. Eng. 2018, 306, I_47–I_54, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Nishizono, Y.; Ichion, E.; Ueda, T.; Kitamura, K.; Yamabuki, H. Evaluation of canal rehabilitation works executed with attention to a habitat of the freshwater type of nine-spined stickleback. In Proceedings of the 21st annual congress of Japan Rainwater Catchment Systems Association, Matsue, Japan, 2–3 November 2013; pp. 49–54. [Google Scholar]
- Yoshioka, Y.; Ito, M.; Nakamura, K.; Takimoto, H.; Tsuchihara, T. Assessing the river water–Groundwater interaction and sources of groundwater recharge based on oxygen and hydrogen isotope analyses in the Tedori River Alluvial Fan. J. Groundw. Hydrol. 2018, 60, 205–221, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakamura, K.; Takimoto, H.; Sakurai, S.; Nakagiri, T.; Horino, H.; Tsuchihara, T. Multiple-indicator study of the response of groundwater recharge sources to highly turbid river water after a landslide in the Tedori River alluvial fan, Japan. Hydrol. Process. 2020, 34, 3539–3554. [Google Scholar] [CrossRef]
- Hokuriku Regional Agricultural Administration Office. Hydraulic Geology and Groundwater in Ishikawa Prefecture; Hokuriku Regional Agricultural Administration Office: Kanazawa, Japan, 1977. (In Japanese)
- Goldschneider, A.A.; Haralampides, K.A.; MacQuarrie, K.T.B. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging. J. Hydrol. 2007, 344, 55–69. [Google Scholar] [CrossRef]
- Lamontagne, S.; Taylor, A.R.; Cook, P.G.; Crosbie, R.S.; Brownbill, R.; Williams, R.M.; Brunner, P. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia). Hydrol. Process. 2014, 28, 1561–1572. [Google Scholar] [CrossRef]
- Dubuis, R.; De Cesare, G. The clogging of riverbeds: A review of the physical processes. Earth-Sci. Rev. 2023, 239, 104374. [Google Scholar] [CrossRef]
- Harte, P.T.; Kiah, R.G. Measured river leakages using conventional streamflow techniques: The case of Souhegan River, New Hampshire, USA. Hydrogeol. J. 2009, 17, 409–424. [Google Scholar] [CrossRef]
- Kinzli, K.D.; Martinez, M.; Oad, R.; Prior, A.; Gensler, D. Using an ADCP to determine canal seepage loss in an irrigation district. Agric. Water Manag. 2010, 97, 801–810. [Google Scholar] [CrossRef]
- Martin, C.A.; Gates, T.K. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices. J. Hydrol. 2014, 517, 746–761. [Google Scholar] [CrossRef]
- Abdu, H.; Robinson, D.A.; Seyfried, M.; Jones, S.B. Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity. Water Resour. Res. 2008, 44, W00D18. [Google Scholar] [CrossRef]
- Thakur, J.K. Hydrogeological modeling for improving groundwater monitoring network and strategies. Appl. Water Sci. 2017, 7, 3223–3240. [Google Scholar] [CrossRef]
- Siena, M.; Riva, M. Impact of geostatistical reconstruction approaches on model calibration for flow in highly heterogeneous aquifers. Stoch. Environ. Res. Risk Assess. 2020, 34, 1591–1606. [Google Scholar] [CrossRef]
- Takase, K.; Fujihara, Y. Evaluation of the effects of irrigation water on groundwater budget by a hydrologic model. Paddy Water Environ. 2019, 17, 439–446. [Google Scholar] [CrossRef]
- Takase, K.; Fujihara, Y. Analysis of influences of high-turbidity river water on groundwater level in the Tedori River alluvial fan using a lumped hydrologic model. Trans. Jpn. Soc. Irrig. Drain. Rural. Eng. 2022, 314, I_167–I_173, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Fujihara, Y.; Oda, M.; Horikawa, N.; Ogura, C. Hydrologic analysis of rainfed rice areas using a simple semi-distributed water balance model. Water Resour. Manag. 2011, 25, 2061–2080. [Google Scholar] [CrossRef]
- Hang, N.T.T.; Chikamori, H. Comparison of efficiency between differential evolution and evolution strategy: Application of the LST model to the Be River catchment in Vietnam. Paddy Water Environ. 2017, 15, 797–808. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- De Vos, N.J.; Rientjes, T.H.M. Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour. Res. 2008, 44, W08434. [Google Scholar] [CrossRef]
- Shi, P.; Chen, C.; Srinivasan, R.; Zhang, X.; Cai, T.; Fang, X.; Qu, S.; Chen, X.; Li, Q. Evaluating the SWAT Model for hydrological modeling in the Xixian watershed and a comparison with the XAJ Model. Water Resour. Manag. 2011, 25, 2595–2612. [Google Scholar] [CrossRef]
- Schiavo, M. The role of different sources of uncertainty on the stochastic quantification of subsurface discharges in heterogeneous aquifers. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
- Trásy, B.; Kovács, J.; Hatvani, I.G.; Havril, T.; Németh, T.; Scharek, P.; Szabó, C. Assessment of the interaction between surface- and groundwater after the diversion of the inner delta of the River Danube (Hungary) using multivariate statistics. Anthropocene 2018, 22, 51–65. [Google Scholar] [CrossRef]
Before the occurrence of turbidity | ||
Observation year | Month-day | Observer |
2003 | August-7, October-7 | MLIT |
2004 | August-22, August-29 | MLIT |
2005 | February-13, October-2 | MLIT |
2009 | June-4, December-2 October-22 | ISPU MLIT |
2010 | August-29 | MLIT |
2013 | January-13 | MLIT |
2014 | October-10 | MLIT |
After the occurrence of turbidity | ||
Observation year | Month-day | Observer |
2015 | June-25, August-15 | MLIT |
2016 | June-8, December-12 | ISPU |
2017 | June-23 | ISPU |
2018 | June-19 | ISPU |
Year | Komatsu | Kanazawa | Kawachi | Shiramine |
---|---|---|---|---|
2013 | 3009 mm | 3318 mm | 3316 mm | 3381 mm |
2014 | 2430 mm | 2635 mm | 3351 mm | 2943 mm |
2015 | 2034 mm | 2165 mm | 2870 mm | 2674 mm |
2016 | 2127 mm | 2391 mm | 2759 mm | 2512 mm |
2017 | 2253 mm | 2703 mm | 3780 mm | 3400 mm |
2018 | 2694 mm | 2766 mm | 3548 mm | 3257 mm |
Year | Average of Komatsu and Kanazawa | Average of Kawachi and Shiramine |
---|---|---|
2-year mean (2013 and 2014) | 2848 mm (100%) | 3248 mm (100%) |
2015 | 2099 mm (74%) | 2772 mm (85%) |
2016 | 2259 mm (79%) | 2635 mm (81%) |
2017 | 2478 mm (87%) | 3590 mm (111%) |
2018 | 2730 mm (96%) | 3402 mm (105%) |
Year | Turbidity | Precipitation |
---|---|---|
2015 | 76.0% | 24.0% |
2016 | 67.2% | 32.8% |
2017 | 81.8% | 18.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujihara, Y.; Otani, K.; Takase, K.; Chono, S.; Ichion, E. Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan. Water 2024, 16, 1326. https://doi.org/10.3390/w16101326
Fujihara Y, Otani K, Takase K, Chono S, Ichion E. Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan. Water. 2024; 16(10):1326. https://doi.org/10.3390/w16101326
Chicago/Turabian StyleFujihara, Yoichi, Kento Otani, Keiji Takase, Shunsuke Chono, and Eiji Ichion. 2024. "Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan" Water 16, no. 10: 1326. https://doi.org/10.3390/w16101326
APA StyleFujihara, Y., Otani, K., Takase, K., Chono, S., & Ichion, E. (2024). Impacts of High-Concentration Turbid Water on the Groundwater Environment of the Tedori River Alluvial Fan in Japan. Water, 16(10), 1326. https://doi.org/10.3390/w16101326