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Abstract: Water scarcity has significantly hampered China’s economic, social, and environmental
development. Ensuring sustainable water utilization is crucial given the mounting water stress
accompanying continuous economic growth. A quantitative water resource forewarning model was
constructed using the vector autoregressive (VAR) model. By analyzing the key indicators related
to water systems and GDP data from 2001 to 2022, the VAR model revealed the long-term dynamic
correlation between water consumption and economic growth using generalized impulse response,
co-integration, and predictive variance decomposition analyses. The results revealed the presence of a
long-term equilibrium between water consumption and economic growth, with a stable co-integration
relationship and an optimal lag period of one year. The positive impact of water consumption on
economic development increased during the 2001–2022 period, indicating a rising dependence of GDP
on water resources. Water usage rose with economic development, while the water resource carrying
capacity remained high and continued to grow. Based on the generalized impulse response, co-
integration, and predictive variance decomposition analyses, this study predicted water-use-related
indicators, providing vital early warnings for China’s water environment carrying capacity from
2023 to 2050. This enabled informed decision-making and fostered sustainable water management
practices for the future.

Keywords: water consumption; water resource carrying capacity; economic growth; dynamic
relationship; VAR model

1. Introduction

With swift population increase and economic growth, the increasing water demand
placed immense pressure on the water system [1,2]. Over the last several decades, China’s
Gross Domestic Product (GDP) has experienced significant growth, with a staggering
increase of more than 330% at constant prices from 1978 (CNY 365 billion) to 2022 (CNY
1210.20 billion) [3]. This tremendous growth has led to resource security challenges, po-
sitioning China as one of the largest economies and resource consumers in the world [4].
However, this growth also exacerbates the issue of water scarcity, with total water use
surging from 103 trillion liters in 1950 to 599.82 trillion liters in 2022. Meanwhile, the total
available water resources remain relatively stable and unevenly distributed, with the south
accounting for more than 80% of the total, while the north only accounted for around 20%.
Therefore, China is classified as a ’water-scarce’ country according to the United Nations
Environment Programme [5].

Statistics reveal that China’s per capita water consumption is expected to reach only
425 m3 in 2022, less than half of the global average [6]. Moreover, an estimated 440 out
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of 669 Chinese cities experience water shortages, with 110 of them facing ‘serious’ scarcity [7].
Additionally, a nationwide survey of 1935 sampling sites at China’s rivers, lakes, and reser-
voirs in 2018 revealed that 29% of them had poor water quality [8]. And around 300 million
rural inhabitants lack access to safe drinking water [9]. These water shortages and re-
lated environmental issues are becoming a significant impediment to China’s economic
sustainable development [7,10].

Understanding the relationship between water resources and economic growth is
crucial for exploring pathways to achieve sustainable water utilization and sustainable eco-
nomic development [11–13]. Sustainable water utilization represents water consumption
practices that do not deplete water stocks and impair water ecosystems [14]. It has been dis-
covered that the interaction between water resources and economic growth is bidirectional:
On one hand, economic growth is paired with a rise in water consumption. However, when
economic growth surpasses a certain critical value, and with advancements in technology,
the optimization of industrial structure, and changes in economic growth patterns, the
speed of increase in water usage starts to decline [15,16]. On the other hand, water usage
also affects economic growth, as the limited nature of water resources inevitably impacts in-
vestment and the economic growth speed in subsequent stages [17,18]. Many scholars have
concurred that economic growth led to a rise in total water use [19–21]. Similarly, studies
have indicated that water resources played a crucial role in driving economic growth. For
instance, Alrwis et al. [22] assessed the effect of water scarcity on Saudi Arabia’s national
economic growth and concluded that water scarcity affected GDP by reducing crop areas
and agricultural output.

Furthermore, researchers have explored the implications of economic growth on water
resources. Zhao et al. [23] found a significant inverted U-shaped relationship between
water consumption and economic growth across different regions in China for the period
2003 to 2014. Zhang et al. [24] demonstrated a curved, inverted U-shaped correlation
between per capita industrial water usage and GDP across different regions in China using
the triple reduction model. Using a simultaneous equation model, Hao et al. [25] analyzed
the correlation between water consumption and economic growth in 29 Chinese provinces
from 1999 to 2014 and discovered an N-shaped relationship between per capita water use
and per capita GDP in China.

The vector autoregression (VAR) model, introduced by Sims [26], provides a new
macro-econometric framework to capture complex dynamic interrelationships among
macroeconomic variables over flexible time series. Traditional univariate autoregression
is characterized by a linear model with single equation and single variable, whereas the
VAR model is a linear model with multiple equations and variables. In the VAR model,
each variable is explained both by its lagged values and by the current and past values
of the other variables. This provides a methodical approach of capturing the diverse
dynamics across multiple time series. VAR models allow for the analysis of interactions
between several variables through impulse response. Scholars have utilized the VAR
model in various studies related to renewable energy consumption, greenhouse gases
emission, economic growth, and other factors influencing economies and environmental
outcomes [27–29].

The prediction and warning of the overloading status of the water environment
carrying capacity involves assessing the deviation of water quality and quantity from
the ideal state. It comprises three main components: water use assessment, water use
change prediction, and regulation. An effective approach to water use assessment is
the comprehensive warning index system [5,30]. When constructing the early warning
indicator system, it is beneficial to refer to the evaluation index system for the water
environment carrying capacity [31]. This system incorporates the general principles of
water environment assessment while considering the complex characteristics of regional
water resources systems. A comprehensive regional early warning indicator system for
sustainable water resource utilization encompasses not only indicators related to the water
resources system but also social, economic, and ecological indicators.
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In this paper, we employed water and economic data from the 2001–2022 period and
utilized the VAR model to explore the dynamic correlation of economic growth and water
consumption. Based on the relationship results, we have predicted China’s water use
changes during 2023–2050. Additionally, we proposed an early warning system to assess
water utilization sustainability for analyzing the overloading status of water resources
carrying capacity during 2023–2050. By analyzing the internal dependence and causal
relationship between water consumption and economic growth, the paper aims to offer
guidance for assessing the sustainability of water resources and early warning for potential
water overload in the future, serving as a foundation for policymaking to ensure water
sustainability.

2. Methodology
2.1. VAR Model
2.1.1. The Establishment of the VAR Model

By formulating a model where each endogenous variable (a variable explained by the
equations) is considered as a function of the lagged values of all endogenous variables, the
VAR method avoids the necessity for a structured model. The following equation shows
the VAR(p) model:

ft = α1 ft−1 + α2 ft−2 + . . . + αp ft−p + βgt + εt (1)

where the ft is an n × 1 vector of the endogenous variables; ft−1, ft−2, ft−p are the lag
periods of the ft; α1, α2, αp represent the matrices of suitable dimensions containing the
model’s unknown parameters of the ft; gt is the exogenous variable (a variable not ex-
plained within the model); β refers to the expected coefficient of the gt; and εt is an n × 1
vector of exogenous shocks.

The VAR model can be transformed into a matrix:
f1t
f2t
· · ·
fkt

 = α1


f1t−1
f2t−1
· · ·

fkt−1

+ α2


f1t−2
f2t−2
· · ·

fkt−2

+ · · ·+ αp


f1t−p
f2t−p
· · ·

fkt−p

+ β


g1t
g2t
· · ·
gkt

+


ε1t
ε2t
· · ·
εkt

 (2)

where f1t, f2t, . . . , fkt are endogenous variables, and they are associated with the same
period. They are calculated by their lagged variables, exogenous variables, and exoge-
nous shocks. We convert the equation into a matrix for the convenience of observing the
calculation results of each variable.

2.1.2. Time Difference Correlation Analysis (TDCA)

The TDCA method utilizes the time difference correlation coefficient (TDCC) to de-
termine the average relationship between two or more sequences in the entire time series.
The TDCC ranges from −1 to 1, where 0 indicates no correlation, −1 indicates complete
negative correlation, and 1 indicates complete positive correlation. The correlation coef-
ficient reflects the degree of linear relationship between economic growth and water use.
By quantifying the temporal relationship, it is judged whether a sequence is preceded or
delayed relative to another sequence [32].

The process is as follows: Firstly, a warning indicator that comprehensively reflects
the current sustainable utilization of water resources is used as a benchmark indicator J,
and the benchmark indicator is fixed, and other selected indicators I are moved forward or
backward in time relative to the benchmark indicator for several years. Then, the TDCC
between the benchmark and the moved sequence is calculated. The maximum number
of years of movement corresponding to the resulting maximum correlation coefficient is
considered as the lead or delay of the indicator. At the same time, based on this, the index
of the selected indicators is divided into the leading and lag periods. The TDCA method
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has characteristics such as quantitative calculation, high precision, and low sequence length
requirement.

The specific calculation method is as follows:
Assume that the benchmark is J =

(
j1, j2, . . . , jn

)
, the selected indicator is I =

(
i1, i2, . . . , in

)
,

the TDCC is Rl:

Rl =

kt
∑

l=1

(
it+l − i

)(
jt − j

)
√

kt
∑

l=1

(
it+l − i

)2 kt
∑

l=1

(
jt − j

)2
(3)

l =

{
1 t ≥ 0
1 − t t < 0

, t = 0,±1,±2, . . . ,±MB (4)

Here, t = 0 means the indicators are synchronized. When taking a negative value, it
means moving forward or pre-emption; when it is positive, it means hysteresis, which is
called lag number or time difference number. i and j refer to the mean value of indicator
I and J. MB refers to the years of movement. kt represents the data volume after the I
and J indicators are aligned. In the calculation of the index, the TDCC under various
delay numbers is computed. Among these Rl values, the maximum value R′

l after taking
the absolute value is selected, and the corresponding delay number ′l signifies either the
leading or lagging period. During the inspection process, the closer R′

l is to 1, the more
ideal it is, and the fluctuation of I and J is closer. If Rl is the largest at t = 0, the index I is
the synchronization index of the reference index J; if it is the largest when t < 0, then I is
the hysteresis index of the reference index J.

2.2. Water Sustainable Utilization Assessment Index System
2.2.1. Indicator Selection

In this study, a representative index variable was selected for economic growth and
water resource utilization for quantitative analysis. GDP represents the production results
of all resident economic units in a country or region and covers all industries of the national
economy. It is a measure of the total economic activity between countries and regions [33].
Therefore, in this study, GDP is utilized as an economic growth indicator, measured in units
of CNY 100 million.

Based on the water usage structure, water resources are categorized into four types:
domestic water, agricultural water, industrial water, and ecological water. Considering the
ecological water consumption is small and ecological water use has been used as a separate
indicator for statistics in recent years, for the convenience of research, this paper classifies it
into domestic water. Therefore, this paper selects total water consumption (TWC), domestic
water usage, industrial water usage, and agricultural water usage as water use indicators
(unit: 100 million m3).

In addition, indicators such as the ratio of sewage treatment facilities (STFs) per
capita of GDP, the amount of STFs, and the total amount of water resources were chosen to
evaluate both water resources carrying capacity and water environmental carrying capacity.

2.2.2. Early Warning Indicators for Sustainable Use of Water Resources

In the early warning indicator system, the indicator’s impact on the sustainability of
regional water consumption is not consistent over time. Some indicators have an impact
on current water use, while others take some time to have an impact on it. Based on many
studies, this paper uses water resources status, economic, and social indicators to reflect the
characteristics, development, and consumption of regional water resources, and ultimately
the status of regional water sustainability is measured.

Therefore, based on the selected 26 indicators (Table 1), it is necessary to further
distinguish the order in which these indicators influence the sustainable utilization of water
resources. These indicators were categorized into three types: leading, synchronous, and
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lagging indicators. This paper screened the early warning indicators for the sustainable
utilization of water resources based on their categorization [34–36].

Table 1. Early warning indicator system construction.

Number Indicator Indicator
Classification Number Indicator Indicator

Classification

T1 Total water resources/
100 million m3 Internal system T14 NOx emissions/tons Internal system

T2 Total water consumption/
100 million m3 Internal system T15 Ammonia nitrogen

emissions/tons Internal system

T3
Industrial water
consumption/
100 million m3

Internal system T16 Total industrial exhaust
emissions/billion m3 Internal system

T4 Per capita GDP/
CNY 10,000 External system T17 Population/million Internal system

T5 water consumption of
CNY 10,000 GDP/m3

Internal and
external system T18 Exhaust gas treatment

facilities/Tai Internal system

T6 Per capita living water
consumption/m3 Internal system T19

CNY 10,000 industrial
output COD

emissions/tons

Internal and
external system

T7 COD emissions/tons Internal system T20 Power generation/billion
kWh External system

T8 Ammonia nitrogen
emissions/tons Internal system T21

The difference in the
number of units of STFs per

unit/Tai
Internal system

T9 Sewage discharge/tons Internal system T22 Forest cover rate/% Internal system

T10 CNY 10,000 GDP sewage
discharge/tons

Internal and
external system T23

The difference in the unit
GDP exhaust gas treatment

facilities/Tai
Internal system

T11 Sewage treatment
facilities/Tai Internal system T24 Power generation

difference/billion kwh Internal system

T12 Urban sewage
treatment rate/%

Internal and external
system T25

CNY 10,000 industrial
output value ammonia

nitrogen emissions/tons

Internal and
external system

T13 Sulfur dioxide
emissions/tons Internal system T26 Average annual

precipitation/mm External system

The early warning indicator system hierarchy structure consists of three levels (see
Figure 1): target layer (A), criterion layer (S), and indicator layer (R).

2.2.3. Early Warning Indicator Hierarchy Model

In this paper, Eviews 5.1 was utilized for calculating the TDCC between the police
index and the above-mentioned 26 warning indicators. Then, according to the calculated
TDCC, the selection of index was determined, and the finally selected indicators were
classified. The effective TDCC of each index should generally be greater than 0.5, and the
time difference between the leading and lag indicators is usually more than three years.

Classification of indicators: If the maximum correlation coefficient corresponding to
the indicator is obtained in the lead period of the indicator, then the indicator is classified
as the leading indicator. On the other hand, if the maximum correlation coefficient corre-
sponding to the indicator is obtained in the delay period of the indicator, then the indicator
is classified as the lagging indicator. From the results, the nature category of each indicator
was determined by examining both the indicator itself and the absolute value of the TDCC
of the water resource availability index.

Based on the above results, 16 indicators were classified as the leading indicators,
and there were 3 synchronous indicators (population, per capita GDP, and total water
resources), while the remaining 13 were lagging indicators.



Water 2024, 16, 1325 6 of 13Water 2024, 16, x FOR PEER REVIEW 6 of 14 
 

 

Target layer Water safety complex 
adaptation system

Social and 
economic 

development 
capability

Resource 
support 
capacity

Water 
resources and 

water use 
efficiency

Water 
pollution 
control 

capability

Terrestrial 
ecological 

environment

population

Per capita G
DP

Total w
ater resources

Per capita living water consum
ption

Industrial water consum
ption

w
ater consum

ption of 10,000 yuan G
D

P

10,000 yuan industrial output CO
D

 em
issions

10,000 yuan industrial output value am
m

onia 
nitrogen em

issions

Sewage discharge

CO
D

 em
issions

A
m

m
onia nitrogen em

issions

N
Ox em

issions

Sulfur dioxide em
issions

Forest cover rate

A
verage annual precipitation

U
rban sew

age treatm
ent rate

Criteria 
layer

Indicator 
layer

 
Figure 1. Early warning indicator hierarchy model. 

2.2.3. Early Warning Indicator Hierarchy Model 
In this paper, Eviews 5.1 was utilized for calculating the TDCC between the police 

index and the above-mentioned 26 warning indicators. Then, according to the calculated 
TDCC, the selection of index was determined, and the finally selected indicators were 
classified. The effective TDCC of each index should generally be greater than 0.5, and the 
time difference between the leading and lag indicators is usually more than three years. 

Classification of indicators: If the maximum correlation coefficient corresponding to 
the indicator is obtained in the lead period of the indicator, then the indicator is classified 
as the leading indicator. On the other hand, if the maximum correlation coefficient corre-
sponding to the indicator is obtained in the delay period of the indicator, then the indica-
tor is classified as the lagging indicator. From the results, the nature category of each in-
dicator was determined by examining both the indicator itself and the absolute value of 
the TDCC of the water resource availability index. 

Based on the above results, 16 indicators were classified as the leading indicators, and 
there were 3 synchronous indicators (population, per capita GDP, and total water re-
sources), while the remaining 13 were lagging indicators. 

2.3. Data Sources 
The indicators mentioned above were obtained directly or indirectly from sources 

such as the China Water Resources Bulletin [37] and the China Statistical Yearbook (CSY) 
[3]. And the data include major provinces and cities in China. However, it is worth noting 
that the population data obtained from the CSY, including data from the past six Chinese 
population censuses, showed limited comparability across various periods and regions 
[38]. To address this issue, some scholars adjusted both the urban and the total population 
data for the period 2001 to 2022 in China [39]. Regarding the economic data, we calculated 
the growth rates in comparison to the previous year and then adjusted the China’s GDP 
figures from 2001 to 2022 into constant prices in 1997. 

3. Results and Discussion 
3.1. VAR Model Establishment and Basic Test 
3.1.1. Unit Root Test 

Aiming at avoiding spurious regression and ensuring the stability of all sequences 
[40,41], we conducted an Augmented Dickey–Fuller (ADF) test for GDP (LOGJ) and TWC 

Figure 1. Early warning indicator hierarchy model.

2.3. Data Sources

The indicators mentioned above were obtained directly or indirectly from sources such
as the China Water Resources Bulletin [37] and the China Statistical Yearbook (CSY) [3].
And the data include major provinces and cities in China. However, it is worth noting
that the population data obtained from the CSY, including data from the past six Chinese
population censuses, showed limited comparability across various periods and regions [38].
To address this issue, some scholars adjusted both the urban and the total population data
for the period 2001 to 2022 in China [39]. Regarding the economic data, we calculated the
growth rates in comparison to the previous year and then adjusted the China’s GDP figures
from 2001 to 2022 into constant prices in 1997.

3. Results and Discussion
3.1. VAR Model Establishment and Basic Test
3.1.1. Unit Root Test

Aiming at avoiding spurious regression and ensuring the stability of all sequences [40,41],
we conducted an Augmented Dickey–Fuller (ADF) test for GDP (LOGJ) and TWC (LOGI).
The findings (Table 2) indicated that both variables were second-order single-stationary
sequences (DDLOGI and DDLOGJ).

Table 2. Variable ADF test results.

Variables ADF Statistics (c, t, k) Significant Conclusions

I −1.4173 (c, 0, 0) 0.5542 unstable
LOGI −1.4190 (c, 0, 0) 0.5534 unstable

DLOGI −4.3906 (c, 0, 0) 0.0029 stable
DDLOGI −8.6653 (c, 0, 0) 0.0000 stable

J 3.6281 (c, 0, 0) 1.0000 unstable
LOGJ −3.2498 (c, 0, 0) 0.0311 stable

DLOGJ −2.4218 (c, 0, 0) 0.1486 unstable
DDLOGJ −5.7211 (c, 0, 0) 0.0002 stable

3.1.2. Cointegration Test

Given that the original variables were in an unstable state, it was essential to conduct
further cointegration tests to ascertain whether a long-term equilibrium relationship existed
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among these variables. The cointegration test results (see Table 3) revealed the existence of
a cointegration relationship among these variables.

Table 3. Cointegration test results.

Rank Params LL Eigenvalue Trace Statistic Critical Value

0 2 −370.9920 18.9219 15.4100
1 5 −361.8070 0.5830 0.5510 * 3.7600
2 6 −361.5310 0.0259

Note: * Refers to the existence of a cointegration relationship.

3.1.3. Choice of Lag Period

Choosing the lag period was essential for establishing the VAR model. We adjusted
the total water consumption (TWC) and lag period of GDP using six inspection criteria
(LogL, HQ, SC, FPE, LR, AIC). Following the rule of choosing the minimum values of HQ,
SC, FPE, and AIC, we determined that the optimal lag order for GDP and TWC was 1
(Table 4).

Table 4. Results of lag order selection for the VAR model.

Categories Lag Phase LogL HQ SC FPE LR AIC

GDP and TWC

0 31.7167 −3.4863 −3.3980 0.0001 NA −3.496090
1 89.9609 −9.8485 * −9.5836 * 1.77 × 10−7 * 95.9316 * −9.877761 *
2 91.9565 −9.5932 −9.1518 2.31 × 10−7 2.8173 −9.6419
3 94.5015 −9.4025 −8.7846 2.93 × 10−7 2.9941 −9.4707
4 99.2552 −9.4717 −8.6772 3.07 × 10−7 4.4740 −9.5594
5 99.9781 −9.0667 −8.0956 5.82 × 10−7 0.5102 −9.1738

Note: * represents the optimal lag order.

3.1.4. The Parameters Result in VAR

Based on the results of unit root test and lag period selection mentioned above, the
VAR model was formulated as (5), which represented the relationship between GDP and
TWC. The stationary sequences obtained from the tests were used as inputs to the model,
and the model’s parameters were estimated using the least squares method.

DLOGJ1 = 0.2153C + 0.0452LOGI1(t − 1) + 0.9618LOGJ1(t − 1) (5)

Table 5 illustrated that the test results for the VAR model were highly significant. The
AIC and SC values were very low, and the fitting effect was better.

Table 5. Overall test results of the VAR model.

Statistics Value Equation (5) Results

Residual Covariance (+degrees of freedom) 3.14 × 10−7

Residual Covariance 2.30 × 10−7

Log—Likelihood Estimation 100.8821
Akaike Information Criterion −9.0363

Schwarz Criterion −8.7379

3.1.5. The Test of Model Stability

After conducting the tests, it was found that all root moduli were below 1, indicating
that the established VAR model of GDP and TWC was stable. As a result, various tests
based on the VAR model proved to be effective (Table 6 and Figure 2).
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Table 6. Stability test results.

Equation (5)

Root Module

0.9631 0.9631
0.8017 0.8017
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3.1.6. Granger Causality Test (GCT)

The GCT was employed to determine the chronological order between economic
variables. However, it does not necessarily indicate a causal relationship, which necessitates
comprehensive judgment based on theory, experience, and the model. We conducted the
Granger Causality Test between GDP and total water consumption (Table 7). By combining
the principle of the Granger Causal Analysis, a one-way causal relationship between GDP
and TWC was clearly established.

Table 7. Results of GCT.

Null Hypothesis Samples F Statistic p Values Yes/No

LNJ does not Granger Cause LNI 16 0.45248 0.8123 No
LNI does not Granger Cause LNJ 16 5.33224 0.0989 Yes

3.2. Pulse Effect Analysis

Figure 3 illustrated the mutual influence and interactions between GDP and TWC.
Regarding how GDP responded to TWC, the DDLOGI value was 0 during the initial
period. However, it exhibited positive values that gradually decreased in magnitude in
the subsequent second, third, fourth, and fifth periods. This indicated that a decreasing
dependence of GDP on TWC over time.



Water 2024, 16, 1325 9 of 13

Water 2024, 16, x FOR PEER REVIEW 9 of 14 
 

 

comprehensive judgment based on theory, experience, and the model. We conducted the 
Granger Causality Test between GDP and total water consumption (Table 7). By combin-
ing the principle of the Granger Causal Analysis, a one-way causal relationship between 
GDP and TWC was clearly established. 

Table 7. Results of GCT. 

Null Hypothesis Samples F Statistic p Values Yes/No 
LNJ does not Granger Cause LNI 16 0.45248 0.8123 No 
LNI does not Granger Cause LNJ 16 5.33224 0.0989 Yes 

3.2. Pulse Effect Analysis 
Figure 3 illustrated the mutual influence and interactions between GDP and TWC. 

Regarding how GDP responded to TWC, the DDLOGI value was 0 during the initial pe-
riod. However, it exhibited positive values that gradually decreased in magnitude in the 
subsequent second, third, fourth, and fifth periods. This indicated that a decreasing de-
pendence of GDP on TWC over time. 

Conversely, when concerning how TWC responded to GDP, DDLOGJ was 0 in the 
first period. It turned positive in the second period and remained positive in the third 
period. Subsequently, the response showed increasing convergence, implying that the 
continued economic growth had a diminishing impact on the further development of wa-
ter resources. 

 

 
Figure 3. Impulse response function graph of GDP and TWC. 

3.3. Analysis of Variance Decomposition 
3.3.1. Analysis of Variance Decomposition of GDP and TWC 

In Figure 4, the variance decomposition of GDP and TWC was presented. It was ob-
served that TWC contributed less to the variance of GDP, which was consistently main-
tained below 5%. The variation in GDP was mainly influenced by its own dynamics. 

On the other hand, the contribution of GDP to TWC was notably high. Except for the 
first two periods, where it was less than 30%, the contribution increased over time and 

Figure 3. Impulse response function graph of GDP and TWC.

Conversely, when concerning how TWC responded to GDP, DDLOGJ was 0 in the first
period. It turned positive in the second period and remained positive in the third period.
Subsequently, the response showed increasing convergence, implying that the continued
economic growth had a diminishing impact on the further development of water resources.

3.3. Analysis of Variance Decomposition
3.3.1. Analysis of Variance Decomposition of GDP and TWC

In Figure 4, the variance decomposition of GDP and TWC was presented. It was
observed that TWC contributed less to the variance of GDP, which was consistently main-
tained below 5%. The variation in GDP was mainly influenced by its own dynamics.
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On the other hand, the contribution of GDP to TWC was notably high. Except for the
first two periods, where it was less than 30%, the contribution increased over time and
gradually exceeded 30%. After the fifth period, it experienced a slight increment and then
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stabilized. Ultimately, it approached and reached close to 40%, indicating that the growth
of the economy had a significant impact on water consumption.

3.3.2. Forecast the TWC and GDP Changes of 2023–2050

The VAR model predicted the changes in GDP and TWC of 2023–2050 (see Figure 5).
From 2023 to 2050, TWC exhibited a gradual upward trend. Similarly, GDP followed a
similar trend, showing continuous growth, albeit at a slower pace.
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3.4. Water Overload Status Results

Considering the sustainable water resources management, we calculated the water
environmental pressure index and the pressure index of water resources. By combining
these indices, we derived the comprehensive water overload state index.

Figure 6 illustrates that the overload index displays a nearly linear decrease starting
from the year 2023. The water pressure index was calculated by TWC and population. The
water environmental index was calculated by TWC and the environmental indicators. Both
the water environment pressure and water resources pressure indices exhibited similar
trends, indicating that the status of China’s water resources was not optimistic, considering
both the total amount and the development of the water environment.
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However, it can be observed that the water environment index declines at the fastest
rate between 2023 and 2050, while the water overload index and water resources index
decrease at a slower pace, maintaining consistent levels of decline.

4. Conclusions and Recommendations

Using the time series data of GDP and water consumption from 2001 to 2022, a
VAR model was established between GDP and TWC, and their co-integration relationship
was tested. The dynamic interaction between GDP and TWC was analyzed using the
generalized impulse response function and predictive variance, and the VAR model was
applied to forecast the water consumption trends from 2023 to 2050.

The findings are as follows: (1) Over the study period, there existed a cointegration
between China’s economic growth and TWC. However, TWC continued to demonstrate a
notable increasing trend. The impact of GDP growth in curbing water resource consumption
was not sufficiently evident. (2) The aggregated effect of GDP to TWC per capita was
positive, and likewise, the aggregated effect of TWC to GDP was also positive. (3) GDP is
a significant factor for predicting the variance of water resource use, whereas water use
contributed less to the forecasted variance of economic growth. It is crucial to address the
increase in TWC triggered by economic development and carefully consider the potential
adverse effects of water shortages on economic growth. (4) According to the GCT results,
the p-value of GDP to TWC was 0.0989. GDP did not serve as the granger cause of TWC,
and the rapid growth of GDP significantly promoted the utilization of water resources,
resulting in an increasing quantity of water use. (5) The water overload state index showed
a declining trend between 2023 and 2050, implying a sustained improvement in China’s
water overload condition.

Based on the research findings, we recommend that the government adopt the follow-
ing policy measures to achieve the sustainable management of water resources and the
sustained economic prosperity.

Develop a comprehensive plan for the sustainable development of water resources:
The government should carry out a comprehensive water resource management plan, with
clear objectives and measures to ensure efficient use and equitable distribution of water
resources.

Encourage the promotion of water-saving technologies and awareness: The govern-
ment should encourage businesses and individuals to adopt water-saving technologies and
measures while also raising public awareness about the importance of water conservation
through education and campaigns.

Enhance water resource regulation and enforcement: The government ought to en-
hance water resources regulation and establish a sound enforcement system to crack down
on illegal water extraction and water pollution.

In conclusion, prioritizing water resource management will lead to a win–win situation
for both ecological balance and economic development. This approach will have a positive
and extensive effects on China’s environmental protection and economic growth.
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