Identification of Priority Pollutants in Groundwater: A Case Study in Xiong’an New Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Development
2.1.1. Pollution and Health Risk Assessment
2.1.2. Baseline Value Calculation
2.1.3. Screening Methods for Main Pollutants
- (1)
- Multiplication method
- (2)
- Weighted summation method
2.2. Sampling and Measurements
3. Results and Discussion
3.1. Groundwater Quality
3.1.1. Groundwater Quality Assessment
3.1.2. Concentration of Organic Pollutants
3.2. Quantification of Groundwater Pollution
3.2.1. Classification of Pollutants
3.2.2. Assessment of Natural Components
3.2.3. Assessment of Unnatural Components
3.3. Screening of Priority Pollutants
3.3.1. Quantification of Toxicity
3.3.2. The Multiplication Method
3.3.3. The Weighted Summation Method
3.4. Comparison of the Two Screening Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Zhang, X.G.; Fang, X.; Zhang, N.; Xu, X.Q.; Li, L.H.; Liu, Y.; Su, X. Characterization of drinking groundwater quality in rural areas of Inner Mongolia and assessment of human health risks. Ecotoxicol. Environ. Saf. 2022, 234, 113360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Wang, X.; Qiao, X.C.; Hao, S.R.; Lu, J.R.; Duan, X.D.; Dionysiou, D.D.; Zheng, B.H. Contamination Profiles of Perfluoroalkyl Substances (PFAS) in Groundwater in the Alluvial–Pluvial Plain of Hutuo River, China. Water 2019, 11, 2316. [Google Scholar] [CrossRef]
- Qiao, X.C.; Jiao, L.X.; Zhang, X.X.; Li Xue Hao, S.R.; Kong, M.H.; Liu, Y. Contamination profiles and risk assessment of perand polyfluoroalkyl substances in groundwater in China. Environ. Monit. Assess. 2020, 192, 76. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.C.; Zhao, X.R.; Guo, R.; Wang, X.; Hao, S.R.; Li, X.; Liu, Y. Distribution Characteristics and Risk Assessment of Per-and Polyfluoroalkyl Substances in water environment in Typical Karst Region. Res. Environ. Sci. 2019, 32, 2148–2156. [Google Scholar]
- Liu YHao, S.R.; Li, X.; Qiao, X.C.; Dionysiou, D.D.; Zheng, B.H. Distribution characteristics and health risk assessment of volatile organic compounds in the groundwater of Lanzhou City, China. Env. Geochem. Health 2020, 42, 3609–3622. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.C.; Zheng, B.H.; Li, X.; Zhao, X.R.; Dionysiou, D.D. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China. J. Hazard. Mater. 2021, 402, 123419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Song, X.F.; Zhang, Y.H.; Han, D.M.; Tang, C.Y.; Yu, Y.L.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Hou, D.Y.; Li, G.H.; Nathanail, P. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. Front. Environ. Sci. Eng. 2018, 12, 16. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; Michelot, J.L.; Benkaddour, A.; Hanich, L.; Heddoun, O. Origin of Groundwater Salinity in the Draa Sfar Polymetallic Mine Area Using Conservative Elements (Morocco). Water 2023, 15, 82. [Google Scholar] [CrossRef]
- Riedel, T.; Kübeck, C.; Quirin, M. Legacy nitrate and trace metal (Mn, Ni, As, Cd, U) pollution in anaerobic groundwater: Quantifying potential health risk from “the other nitrate problem”. Appl. Geochem. 2022, 139, 105254. [Google Scholar] [CrossRef]
- Zhao, P.; He, J.T.; Wang, M.L.; Huang, D.L.; Wang, L.; Liang, Y. Screening Method of Priority Control Pollutants in Groundwater Based on Contamination Assessment. Environ. Sci. 2018, 39, 800–810. [Google Scholar]
- Xu, Q.J.; Li, L.; Liang, C.Z.; Cheng, X.Y. Screening of priority control pollutants from the rural drinking water sources in Huai’an City. China Environ. Sci. 2013, 33, 631–638. [Google Scholar]
- NEPC (National Environment Protection Council). National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013; NEPC: Adelaide, Australia, 2013.
- EPA. Chemical Prioritisation: Ranking Chemicals of Concern to Scotland’ Environment: Phase 1. Surface Waters; EPA: Washington, DC, USA, 2009.
- ATSDR. Substance Priority List (SPL) Resource Page; ATSDR: Atlanta, GA, USA, 2013.
- EPA. Toxic and Priority Pollutants; EPA: Washington, DC, USA, 2013.
- Snyder, E.; Snyder, S.; Giesy, J. SCRAM: A scoring and ranking system for persistent, bioaccumulative, and toxic substances for the North American Great Lakes. Environ. Sci. Pollut. Res. 2000, 7, 21–116. [Google Scholar] [CrossRef] [PubMed]
- Dorte, L.; Peter, B.S.; Henrik, S.L.; Lars, C.; Ole, J.N. Comparison of the combined monitoring-based and modeling-based priority setting scheme with partial order theory and random linear extensions for ranking of chemical substances. Chemosphere 2002, 49, 637–649. [Google Scholar]
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.B.; Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants—The case of pharmaceuticals in European surface waters. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Pei, S.W.; Zhou, J.L.; Liu, Z.T. Research Progress on Screening of Environment Priority Pollutants. J. Environ. Eng. Technol. 2013, 3, 363–368. [Google Scholar]
- Li, J.; Zhao, W.Q.; Yu, L.S.; Sun, B.B. Pollution source analysis and risk evaluation of heavy metals in soil of a river drinking water source in Pear River Delt. Environ. Pollut. Control. 2020, 42, 1511–1514+1522. [Google Scholar]
- Peng, C.; He, J.T.; Liao, L.; Zhang, Z.G. Research on the influence degree of human activities on groundwater quality by the method of geochemistry: A case study from Liujiang Basin. Earth Sci. Front. 2017, 24, 321–331. [Google Scholar]
- Taheri, K.; Missimer, T.M.; Mohseni, H.; Fidelibus, M.D.; Fathollahy, M.; Taheri, M. Enhancing spatial prediction of sinkhole susceptibility by mixed waters geochemistry evaluation: Application of ROC and GIS. Environ. Earth Sci. 2021, 80, 470. [Google Scholar] [CrossRef]
- Delkhahi, B.; Nassery, H.R.; Vilarrasa, V.; Alijani, F.; Ayora, C. Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. Int. J. Greenh. Gas Control. 2020, 96, 103001. [Google Scholar] [CrossRef]
- Peng, C.; He, J.T.; Wang, M.L.; Zhang, Z.G.; Wang, L. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO3−, NH4+, and COD contamination: A case study of the Liujiang River Basin, Hebei Province, P.R. China. Environ. Sci. Pollut. Res. Int. 2018, 25, 3539–3556. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L. Research on Common Junctive Sustainability of Groundwater Resources and Wetlands in Xiongan New Area; China University of Geosciences: Beijing, China, 2020. [Google Scholar]
- Choi, Y.; Lee, J.H.; Kim, K.; Mun, H.; Park, N.; Jeon, J. Identification, Quantification, and Prioritization of New Emerging Pollutants in Domestic and Industrial Effluents, Korea: Application of LC-HRMS Based Suspect and Non-target Screening. J. Hazard. Mater. 2021, 402, 123706. [Google Scholar] [CrossRef] [PubMed]
- Christia, C.; Poma, G.; Caballero-Casero, N.; Covaci, A. Suspect screening analysis in house dust from Belgium using high resolution mass spectrometry; prioritization list and newly identified chemicals. Chemosphere 2021, 263, 127817. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Qiao, X.C.; Zhao, X.R.; Ge, S.M.; Wang, H.Y.; Li, D. Multiphasic screening of priority chemical compounds in drinking water by process control and human health risk. Environ. Sci. Eur. 2022, 34, 7. [Google Scholar] [CrossRef]
- Majidipour, F.; Najafi, S.M.B.; Taheri, K.; Fathollahi, J.; Missimer, T.M. Index-based Groundwater Sustainability Assessment in the Socio-Economic Context: A Case Study in the Western Iran. Environ. Manag. 2021, 67, 648–666. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.S.; Jiao, L.X.; Yang, L.; Tian, Z.Q.; Yang, S.W.; An, Y.X.; Jia, H.B.; Cui, Z.D. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake. Environ. Sci. 2018, 39, 1616e1627. [Google Scholar]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658e1668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Zhang, Y.H.; Zhao, Y.; Yu, R.Z. Comparison on screening and sorting methods of environmental priority pollutants at home and abroad. J. Environ. Eng. Technol. 2018, 8, 456–464. [Google Scholar]
- US EPA. Screening Procedure for Chemicals of Importance to the Office of Water; Office of Health and Environmental Assessment, US EPA: Washington, DC, USA, 1986.
- Swanson, M.B.; Davis, G.A.; Kincald, L.E. A screening method for ranking and scoring chemicals by potential human health and environmental impacts. Environ. Toxicol. Chem. 1997, 16, 372–383. [Google Scholar] [CrossRef]
- Sousa, J.C.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Dunn, A.M. A relative risk ranking of selected substances on Canada’s national pollutant release inventory. Hum. Ecol. Risk Assess. 2009, 15, 579–603. [Google Scholar] [CrossRef]
- Guinee, J.; Hellungs, R.; Oers, V.L.; Sleeswijk, A.; Van Meent, D.; Vermeire, T.; Rikken, M. USES: Uniform system for the evaluation of substances inclusion of fate in LCA characterisation of toxic releases applying USES 1.0. Int. J. Life Cycle Assess. 1996, 1, 133–138. [Google Scholar] [CrossRef]
- National Pollutant Inventory Review Steering Committee. National Pollutant Inventory Review Report 2021. Australian Government. Available online: http://npi.gov.au/resource/npi-review-report-2021 (accessed on 4 April 2021).
- David, S.; Helen, W.; Wayne, C.; Lorraine, H.; Elena, A.; Natalie, K.; Kerry, S.; Tim, B. Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England. Sci. Total Environ. 2022, 835, 155101. [Google Scholar]
- Naree, P.; Younghun, C.; Deokwon, K.; Kyunghyun, K.; Junho, J. Prioritization of highly exposable pharmaceuticals via a suspect/nontarget screening approach: A case study for Yeongsan River, Korea. Sci. Total Environ. 2018, 639, 570–579. [Google Scholar]
- Xu, Z.; He, J.T.; Ma, W.J.; Zeng, Y. A renovated comprehensive evaluation method for groundwater pollution index classification. J. Saf. Environ. 2016, 16, 342–347. [Google Scholar]
- Wang, M.L. Identification Method of Main Pollutants in Groundwater Based on Groundwater Contamination Assessment: A Case Study in Lanzhou Plain; China University of Geosciences: Beijing, China, 2017. [Google Scholar]
- Lee, L.; Helsel, D. Baseline models of trace elements in major aquifers of the United States. Appl. Geochem. 2005, 20, 1560–1570. [Google Scholar] [CrossRef]
- Kim, K.H.; Yun, S.T.; Kim, H.K.; Kim, J.W. Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. J. Geochem. Explor. 2015, 148, 196–205. [Google Scholar] [CrossRef]
- Parrone, D.; Ghergo, S.; Preziosi, E. A multi-method approach for the assessment of natural background levels in groundwater. Sci. Total Environ. 2019, 659, 884–894. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.C.; Zhang, Y.X.; Sun, J.C. Background features and origin analysis of contents of halogen elements in groundwater of Pearl River Delta. Water Resour. Prot. 2011, 38, 190–196. [Google Scholar]
- Zeng, Y. Study on Natural Background Levels of Conventional Components in Shallow Groundwater of the Liujiang River Basin in Qinhuangdao; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- GB/T 14848–2017; Standard Groundwater Quality. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2017.
- Cruz, J.V.; Andrad, C. Natural background groundwater composition in the Azores archipelago (Portugal): A hydrogeochemical study and threshold value determination. Sci. Total Environ. 2015, 520, 127–135. [Google Scholar] [CrossRef]
- Klaus, H.; Melo MT, C.; Mette, D. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total Environ. 2008, 401, 1–20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Li, X.; Qi, T.; Liu, Y. Identification of Priority Pollutants in Groundwater: A Case Study in Xiong’an New Region, China. Water 2023, 15, 1565. https://doi.org/10.3390/w15081565
Qiao X, Li X, Qi T, Liu Y. Identification of Priority Pollutants in Groundwater: A Case Study in Xiong’an New Region, China. Water. 2023; 15(8):1565. https://doi.org/10.3390/w15081565
Chicago/Turabian StyleQiao, Xiaocui, Xue Li, Tong Qi, and Yan Liu. 2023. "Identification of Priority Pollutants in Groundwater: A Case Study in Xiong’an New Region, China" Water 15, no. 8: 1565. https://doi.org/10.3390/w15081565
APA StyleQiao, X., Li, X., Qi, T., & Liu, Y. (2023). Identification of Priority Pollutants in Groundwater: A Case Study in Xiong’an New Region, China. Water, 15(8), 1565. https://doi.org/10.3390/w15081565