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Abstract: The pollution of man-made groundwater has become a major global problem that threatens
human health and affects the aquatic environment. The establishment of an effective screening
system for water pollution assessment is of great importance for maintaining the ecological health
of groundwater. In this study, the concentrations of natural and non-natural pollutants in the
groundwater of Xiong’an New Area were measured, and the degree of pollution degree and toxicity
index of pollutants were used to construct a novel screening method. The result shows that it
was more suitable to use the weighted summation method with weights of 0.5, 0.25, and 0.25 for
toxicity, total pollution degree, and median pollution degree, respectively. According to the proposed
screening method, Benzo[a]pyrene, Hexachlorobenzene, As, Se, Atrazine, Benzo[b]fluoranthene, Ni,
Mo, Ti, and naphthalene were identified as the dominant pollutants in the study area and their levels
should be strictly monitored.

Keywords: index classification; toxicity quantification; natural and unnatural components; baseline
value; pollution degree

1. Introduction

Groundwater is an essential resource for humans around the world. It provides al-
most half of the drinking water worldwide, accounts for about 30% of global freshwater
resources, and is about 100 times more abundant than surface water resources [1]. However,
groundwater is becoming increasingly threatened by chemical pollution. Many organic
chemicals, such as pharmaceuticals and personal care products (PPCPs) [2–4], volatile
organic compounds (VOCs) [5], and polycyclic aromatic hydrocarbons (PAHs) [6], have
been detected in groundwater as a result of human activities. In some areas, the con-
centration of common pollutants, such as nitrates, fluorides, and heavy metals, exceed
the acceptable limit for drinking [7–9]. In comparison with surface water, groundwater
pollution is concealed and has a high cost of remediation [10]. Therefore, identification and
control of priority pollutants is important for managing groundwater pollution [11].

Screening for priority pollutants to achieve pollutant control is the process of iden-
tifying and removing harmful pollutants that exhibit a high probability of occurrence
and can cause great harm to the surrounding environment and human health [12]. Many
countries and organizations have carried out screening studies for priority pollutants and
proposed lists of priority pollutants [13,14]. In 1997, 129 substances were selected by the
EPA as priority pollutants on the basis of their toxic effect and frequency of detection
in the environment including soil, air, and water [15,16]. The EU ranked pollutants by
their exposure and toxic effects and proposed a list of priority pollutants in bodies of
water [17–19]. In China, 68 priority pollutants were identified in bodies of water based
on a large amount of monitoring data and investigation into pollutant emission and the
toxicity of the pollutants [20,21]. There is currently no specific list of priority pollutants for
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groundwater with there being only a few reports published on the screening of priority
pollutants in groundwater resources.

In addition to pollution by human activities, the natural geological environment can
also cause deterioration of groundwater quality [22,23]. For example, saline CO2-rich
waters from deep underground sources can dissolve a variety of minerals during their
migration towards the surface, which both causes instability in the aquifer and increases the
occurrence of risks, such as karst development [24]. For the evaluation of groundwater pol-
lution, it is important to differentiate natural pollution from anthropogenic pollution [25].
Due to the difficulties in obtaining statistical data, the natural baseline quality of ground-
water has always been ignored in the evaluation of groundwater pollution. The current
method for evaluating pollution often includes natural pollution of geological origins,
which is not effectively distinguished from contamination caused by human activity. As a
result, the degree of groundwater pollution is often exaggerated. Therefore, the baseline
quality of groundwater should be fully considered during the screening process for priority
pollutants, and the pollutants caused by human activities should be specifically identified.

Xiong’an New Region was established by the State Council of China on 1 April 2017,
and is of great strategic and practical significance for the coordinated development of the
Beijing-Tianjin-Hebei region [26]. The water for agricultural, industrial manufacturing,
and living activities in the Xiong’an New Region is mainly derived from groundwater.
It is critical to monitor the priority pollutants in the groundwater in Xiong’an New Re-
gion to maintain groundwater quality during urban construction. The main objectives
of our study were to investigate the quality of groundwater in the Xiong’an New Region
and to establish a screening method for controlling pollutants in groundwater based on
pollution assessment.

2. Materials and Methods
2.1. Method Development

There are two commonly used screening methods: the risk-based screening method
and the scoring method [27]. The exposure and toxicity levels of pollutants are the two
main factors taken into account by these two methods, but they differ in how they are rep-
resented [28]. The risk-based screening method is easy to use. It calculates a specific ratio of
exposure concentration to hazard level, such as a risk score, risk quotient, hazard quotient,
exposure activity ratio, or concern index [29]. Ranking with multiple indicators is more
preferred and is a popular way to use the arithmetic sum of indicator scores [30]. In practice,
a pollutant is identified mainly because its concentration is significantly higher than the
local baseline level. This method is called the environmental baseline (EB) method [31].
However, evaluating pollutant concentration alone is clearly insufficient because the pol-
lutant toxicity should be considered when assessing risk towards human health [32]. Liu
et al. screened the priority pollutants in drinking water by considering the effluent concen-
tration, accumulation index, ease of purification, and carcinogenic risk [33]. The screening
methods of priority pollutants carried out in the US and other countries are summarized in
Table S1 [34–41].

The screening of the priority pollutants in groundwater requires the effective assess-
ment of water quality monitoring data. The detected level, environmental hydrological
condition, and substance toxicity should be fully considered in the assessment process. The
indices should be divided into two categories: natural and unnatural components according
to the source of the pollutants. Unnatural components do not appear in groundwater under
natural conditions and their baseline values should be zero. The groundwater is polluted
when the detected levels of unnatural pollutants exceed the baseline values [42].

A screening method was established for priority pollutants in groundwater by using
the index classification evaluation method and by combining the detection frequency with
the pollution degree score. The process for the screening method is shown in Figure 1.
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2.1.1. Pollution and Health Risk Assessment

The pollution assessment for natural components and unnatural components is shown
in Formulas (1) and (2).

Pij=Cij ÷ Bj (1)

Pik = Cik ÷ Xk (2)

where Pij is the jth index pollution degree of the ith sample, Cij is the monitoring concen-
tration of jth index of ith sample, Bj is the baseline value of the jth index, Pik is the kth
index pollution degree of the ith sample, Cik is the monitoring concentration of the kth
index of the ith sample, Xk represents the detection limit value for the kth index, i is any
groundwater sampling point, and j and k are any indices [43].

The US EPA method was adopted to calculate the incremental lifetime cancer risk
(ILCR) associated with drinking groundwater:

ILCR =
TEQBaP × DR × CSF × EF × ED

BW × AT × 106 (3)

where DR is the daily water intake (L/d), CSF is the carcinogenic slope coefficient of
BaP (10 (kg d)/mg), EF is the number of days of exposure per year (set to 365 d), ED is
the exposure duration (in this study, the time unit was a year), BW is body weight (kg),
and AT is averaging time for life (d). A value of ILCR > 1 × 10−4 indicates carcinogenic
unacceptable, and 1 × 10−6 < ILCR < 1 × 10−4 indicates carcinogenic acceptable, while a
value of ILCR < 1 × 10−6 indicates no carcinogenic risk [6].

ILCRT = ILCRPAHs + ILCRPesticide + ILCRVOCs (4)

where ILCRT is the total incremental lifetime cancer risk, represented by the sum of the
incremental lifetime cancer risk from PAHs, Pesticide, and VOCs.
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2.1.2. Baseline Value Calculation

Baseline value is important in assessing groundwater pollution. Its determination meth-
ods mainly include sequential statistical regression modeling [44], probability graphs [45],
hierarchical clustering analyses [46], and pre-screening methods [47]. Based on the results
obtained by these methods, a high percentile is further used to calculate groundwater baseline
values. In our study, the piper trilinear diagrams were used to analyze hydrochemical types,
and the cumulative frequency plot method was then used to calculate the baseline value.
The index concentration was ranked from low to high, and the concentration corresponding
to a cumulative frequency of 90% was the baseline value of the natural component in the
region [48].

2.1.3. Screening Methods for Main Pollutants

In order to measure the degree of pollution for each component in the entire study
area, the total degree of pollution for all sampling points of each component was selected
as a screening index. In addition, to avoid the effect caused by the high local concentration
of groundwater components in individual sampling points, the median pollution degree
of sampling points was also selected as a screening index. Toxicity was also listed as a
screening index to reflect the physiochemical property of the component. In summary, the
total and the median pollution degree and toxicity of each component were selected, and
the multiplication method and weighted summation method were used to screen priority
pollutants [43].

(1) Multiplication method

The multiplication method calculated the pollution degree using the following formula.

Si = Qi × Mi × Ci (5)

where Si is the pollution degree of a component, representing the comprehensive score
of the harmfulness of this component in groundwater. Qi represents the total of the ith
component pollution degree in all sample points. Mi represents the median value of the
pollution degree. Ci represents the toxicity of a component, using the inverse concentration
limit value [43].

The score for each substance is calculated and the substance is ranked according to its
score to identify the main pollutants in groundwater.

(2) Weighted summation method

The weighted summation method is one of the most commonly used decision-making
methods. The selected factors are graded and assigned, then each factor is given a weight
value according to the hierarchical analytical process. Finally, the assigned value of each factor
is multiplied with the weight of the factor and all factors are summed. The calculated value
is the quantified result of the harmfulness of pollutants to the groundwater environment.

Si = Qi × WQ + Mi × WM + Ci × Wc (6)

where Si represents the pollution degree of a component, indicating the comprehensive
score of the harmfulness of this component in groundwater; Qi represents the total of
the ith component pollution degree in all sample points; WQ is the weight value of Q;
Mi represents the median value of the pollution degree WM is the weight value of M; Ci
represents the toxicity of a component, using the inverse concentration limit value; and WC
is the weight value of C [43]. All quantities in the equation are dimensionless.

In this study, WC, WQ, and WM were assigned using different assignment combinations
in order to reduce the influence of subjective factors on the ranking of priority.

2.2. Sampling and Measurements

Sixty groundwater samples were collected in July 2019 in the Xiong’an New Region by
taking full account of hydrogeology conditions and under a uniform distribution (Figure 2).
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A total of 156 substances were analyzed. A well was pumped for approximately 3 min before
sampling to collect fresh groundwater. The samples collected at each point were filtered
through a 0.22 mm membrane, and the samples were treated with different protective agents
according to the target pollutants to be tested. The tested categories of pollutants are shown
in Table S2.
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3. Results and Discussion
3.1. Groundwater Quality
3.1.1. Groundwater Quality Assessment

The water quality in the study area was evaluated according to the Groundwater
Quality Standard (GB/T 14848-2017) [49]. The single index evaluation method was adopted
to determine the groundwater quality category according to the limit range of the index.
When the index limit values of two quality categories (such as Class II and III) are the same,
the higher quality category (Class II) is assigned. As the groundwater in this area is mainly
used for drinking, the Class III water quality values were used as the basis for judging
whether the standard is exceeded. The evaluation showed that there were 11 samples with
water quality belonging to Class II, accounting for 18% of the total number of samples;
41 samples had water quality belonging to Class III, accounting for 68% of the total water
samples; and 8 water samples had water quality belonging to Class IV, accounting for
13% of the total. The fluoride, chromium, sodium, and iodide levels exceeded the limit
value for drinking water at some collection sites. There were 1, 2, and 5 samples in Anxin,
Rongcheng, and Xiongxian Counties, respectively, with water qualities all belonging to
Class IV (Figure 3).
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3.1.2. Concentration of Organic Pollutants

Among the organic pollutants, polycyclic aromatic hydrocarbons and pesticides were
detected most frequently. A total of 52 of the 102 tested organic pollutants were detected.
All of the 16 PAHs were detected, and the detection rates were all above 70% except for
dibenzo[a,h]anthracene (17%) and acenaphthene (42%). The detection rates of fluoranthene,
pyrene, benzo[a]anthracene, chrysene, benzene, and fluoranthene were 100%. The concen-
trations of benzo[a]pyrene at two sites were 5.5 ng/L and 8.7 ng/L, respectively, more than
50% of the Class III standard (5.0 ng/L). The sites were No. 28 in Rongcheng County and No.
38 in Xiongxian County (Figure 4A). The three pesticides with the highest detection rates
were hexachlorobenzene, dieldrin, and parathion with detection rates of 98.33%, 88.33%,
and 17%, respectively. The concentration of methyl parathion at No. 20 site in Anxin County
was more than 50% of the standard of Class III, with a detected concentration of 0.92 µg/L.
The distribution patterns of hexachlorobenzene and dieldrin were similar, mainly in the
eastern part of Rongcheng County and the central and southern parts of Anxin County.
The concentration distribution patterns were mainly affected by agricultural activities
(Figure 4B). There were nine perfluorochemicals detected, and the three pollutants with the
highest detection rates were PFOA (53.33%), PFHxA (30%), and PFBA (21.67%). However,
the concentrations were all low and only slightly above the detection limit (Figure 4C). For
volatile organic pollutants, there were 19 types detected, and the 3 with the highest detection
rates were 1,2-dibromo-3-chloropropane, 1,2,4-trichlorobenzene, and 1,3-trichlorobenzene,
with detection rates of 39.66%, 25.86%, and 24.14%, respectively. The concentrations of 1,2-
dibromo-3-chloropropane, 1,2,4-trichlorobenzene, and 1,3-trichlorobenzene were relatively
low within the range of 0–161.8 ng/L, 0~14 ng/L, and 0~9.7 ng/L, respectively. The total
concentration of volatile organic pollutants was higher around a contiguous area of the
three counties (Figure 4D).

The carcinogenic risk of organic indicators was assessed, and the results showed
that there were six sites with lifetime carcinogenic risk far lower than the acceptable level
recommended by EPA (10−6~10−4), among which, five sites were located in Xiongxian
County, and the rest of the sites were in the acceptable level recommended by US EPA. The
highest overlapping risk site was No. 28, located in Rongcheng County. These results show
that attention should be paid to the detection of organic pollutants.
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3.2. Quantification of Groundwater Pollution
3.2.1. Classification of Pollutants

The undetected pollutants and those not included in the standard of groundwater qual-
ity were eliminated in the preliminary screening process. There was a total of 50 pollutants
tested in the evaluation process. The pollutants were divided into natural and unnatural as
shown in Table S3.

3.2.2. Assessment of Natural Components

RockWare Aq·QA software (RockWare AqQA 1.1.4.1 CD) was used to analyze the
hydrochemical characteristics of groundwater in the study area. The results indicated that
Na-HCO3 type of water accounted for almost 97% of the tested samples, and no obvious
outliers were observed (Figure 5A). Therefore, the baseline levels were calculated using the
current data.

Baseline levels of groundwater refer to the concentrations of chemical composition in
groundwater without the influence of human activities, which reflect the chemical com-
positions in groundwater under a natural state [50]. The determination of baseline levels
of groundwater allows for more scientific and reliable assessment of groundwater pollu-
tion [51]. The baseline levels of Al, Cu, Cd, and Volatile Phenols were all below the detection
limit. Therefore, the detection limits were used as the baseline levels in the evaluation
process. The baseline values of the natural components are shown in Figure 5B–D.
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The pollution degree of natural components was calculated using Formula (1) and the
results were analyzed. The total pollution degrees of natural components ranged from 1.11
to 48.37, with an average value of 26.22. Of the 32 indicators, the pollution degree of TDS,
CODMn, Na+, Ba, and SO4

2− were relatively high, with values of 48.37, 46.67, 43.91, 41.1,
and 36.04, respectively. The total pollution degree of Volatile Phenols, Cd, and Cu were the
lowest of the 32 indicators. The median pollution degrees of natural components ranged
from 0 to 0.83. CODMn, TDS, Na+, Ba, and SO4

2− were the five highest indicators, and the
median pollution degree of NO2

−, Ti, Sb, Pb, Co, Al, Ag, Be, Volatile Phenols, Cd, and Cu
were all 0 (Figure 6).
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3.2.3. Assessment of Unnatural Components

The levels of the unnatural components in groundwater reflect the degree of pollution.
Once an unnatural component is detected, the groundwater is polluted. Therefore, the
detection limit of the unnatural component is treated as its baseline value. In this study, the
detection limits were derived from laboratory test results, as shown in Table S4.

The pollution by unnatural components was assessed. The total pollution degree
ranged from 1.12 to 460.18. Benzo[a]pyrene, Hexachlorobenzene, and Atrazine showed
the highest total pollution degree, which were all greater than 100. There were 9 chemicals
with total pollution degree below 10. Methylbenzene, 1,2-Dichloroethylene, and Carbon
tetrachloride showed the lowest total pollution degree (Figure S1).

3.3. Screening of Priority Pollutants
3.3.1. Quantification of Toxicity

The toxicity of a pollutant is defined according to the Class III water standard of GB/T
14848-2017 and Standards for Drinking Water Quality (GB5749-2022). The concentration
limits are shown in Table S4. The toxicity of each component was characterized by the
reciprocal of its concentration limit. The higher the limit of a pollutant concentration, the
less toxic it is. Taking the logarithm of the reciprocal of a concentration limit was used for
evaluation of toxicity. Benzo(a)pyrene has the highest toxicity with a toxicity value of 6.
TDS has the least toxicity with a toxicity value of −3 (Figure 7).
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3.3.2. The Multiplication Method

The 26 chemicals with a median pollution degree of 0 were not considered when
sorting the pollutants because the multiplication method calculates the pollution degree
directly using the actual values of a pollutant. Direct multiplication amplifies the pollution
degree of a given pollutant, because the total and median pollution degrees are from
the same pollutant. The indicators need to be quantified first before being used by the
multiplication method.

Considering that the total and median pollution degrees reflect the pollution degree
of the same pollutant, and 26 pollutants had a median value of 0, the ranking assignment
method was adopted to assign a value for each pollutant. As a result, the differences
within the screened pollutants were reduced. The total pollution degree, median pollution
degree, and toxicity of the 50 pollutants were ranked from 1 to 50, respectively. For the
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26 pollutants with a median pollution degree of 0, a rank of 1 was assigned for all of them;
therefore, the other pollutants were ranked from 27 to 50. Benzo[a]pyrene had the highest
total pollution degree, median pollution degree, and toxicity. Ti, Sb, Pb, parathion-methyl,
volatile phenols, and many other pollutants had relatively high toxicity values, whereas
their pollution degrees were relatively low (Figure 8A).
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As shown in Figure 4, Benzo[a]pyrene, Hexachlorobenzene, As, and Se were the four pri-
ority pollutants with both high pollution degree and toxicity, followed by Benzo[b]fluoranthene,
Ba, F−, and CODMn with high pollution degree and relatively low toxicity. 1,2-Dichlorobenzene,
1,1,1-Trichloroethane, methylbenzene, 1,2-Dichloroethylene, and Cu were at the bottom of the
list with low pollution degree and low toxicity (Figure 8B).

3.3.3. The Weighted Summation Method

The weighted summation method used the same ranking as the multiplication method
in Section 3.3.2. However, weights were assigned to total pollution degree (Q), median
pollution degree (M), and toxicity (C) based on the importance of each evaluation factor.
When Q, M, and C are equally important, each of them is assigned a weight of 0.33. When
C is considered to be slightly more important and Q and M are equally important, C is
assigned a wight of 0.5, and Q and M are assigned weights of 0.25, respectively. There are
five schemes to assign the weights as shown in Table S5.

Relative to the evaluation scores obtained with the same weights for Q, M, and C,
opposite trends for the evaluation scores were observed when WC was greater compared to
when WQ or WM was greater. When WM was greater, the calculated scores of the lower
ranked pollutants were similar because the same median pollution degree of 1 was assigned
to all the pollutants. As the total and median pollution degrees are closely related, it is
reasonable to assign a higher weight for toxicity. Comparing the results with weights
of 0.5 and 0.6 for toxicity, the weight of 0.5 yielded more differentiation power for the
50 pollutants (Figure 9). Therefore, Scheme b was chosen.
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Figure 9. The evaluation scores of different weight assignment schemes.

3.4. Comparison of the Two Screening Methods

The results from the two screening methods were compared. There were 3 significant
differences among the top 15 ranked pollutants (Figure 10). The multiplication method
calculated the pollution degree directly using the actual value of each pollutant, there was
no arbitrary intervention in the calculation process. However, the applicability of this
method is poor when the evaluation parameters (Qi, Mi, and Ci) of a pollutant exhibit large
variation. The weighted summation method can effectively avoid the influence caused by
the large variation of evaluation parameters, but the weight settings are arbitrary. The total
pollution degree ranged from 1.11 to 460.18; the median pollution degree ranged from 0 to
4.9 and the toxicity ranged from 0.001 to 106 (Figure S2). In the multiplication method, the
total pollution degree and the median pollution degree were closely related. As a result,
the effect of pollution level was overestimated. Therefore, it is more appropriate to use the
weighted summation method to calculate the ranking of major pollutants in this study.
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Using the weighted summation screening method, the pollutants in the study area were
sorted. The top 10 pollutants were Benzo[a]pyrene, Hexachlorobenzene, As, Se, Atrazine,
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Benzo[b]fluoranthene, Ni, Mo, Ti, and Naphthalene. These pollutants should be monitored
closely as part of groundwater environment management in the Xiong’an New Region.

4. Conclusions

An efficient priority ranking list is required to focus on the compounds in groundwater
that are predicted to be the most hazardous to the environment. The main objective of
this study was to develop a screening method for major pollutants based on groundwater
pollution assessment. By using this method, the evaluation indexes were divided into
natural and man-made components, and pollution evaluation was realized based on the
apparent background value and inspection limit, respectively. Additionally, the mean
and median of pollution degree were selected, and combined with the toxicity parameters
of each component, the product method and hierarchical scoring method were used for
coupling calculation. According to the calculated score, the main pollutants in groundwater
could be sorted.

Assessment results by using the multiplication method and the weighted summation
method were also compared. The unwanted effects caused by the large variation of
pollutant evaluation parameters can be effectively avoided when using the weighted
summation method. Using the results from comparing different combination of weights, it
was more appropriate to use the weighted summation method with weights of 0.5, 0.25,
and 0.25 for toxicity, total, and median pollution degrees, respectively. Ten pollutants
including Benzo[a]pyrene, Hexachlorobenzene, As, Se, Atrazine, Benzo[b]fluoranthene, Ni,
Mo, Ti, and Naphthalene, were selected as priority pollutants in Xiong’an New Region by
using the selected screening method, which means more concern is required to strengthen
pollution prevention and control of these pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15081565/s1, Table S1. The reported screening and sorting
methods of priority pollutants. Table S2. Tested category. Table S3. Classification of pollutants used
for evaluation. Table S4. The detection limits of unnatural components. Table S5. Weight assignment
scheme. Figure S1. The pollution degree of unnatural components. Figure S2. The data distribution
in the study. (References [19,33–41] are cited in the Supplementary Materials).
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