Nutrients’ Removal from Mariculture Wastewater by Algal–Bacterial Aggregates Developed from Spirulina platensis
Abstract
:Highlights
- Spirulina platensis was applied to treat mariculture wastewater for N and P removal.
- Microalgal aggregates were formed under air velocity of 1.75 cm/s or higher.
- Microalgal aggregation was promoted, which was attributed to the protein contents in TB-EPS.
- P accumulation in biomass was enhanced accompanied by the aggregation process.
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Culture and Synthetic Mariculture Wastewater
2.2. Experimental Set-Up for Microalgal Aggregation
2.3. Analytical Methods
3. Results
3.1. Adaptation of S. platensis to Salinity-Stress
3.2. Formation of Microalgal Aggregates
3.3. Performance of Nutrients Removal
3.4. Contents of EPS and Phosphorus
4. Discussion
4.1. Suitable Aeration Intensity for Microalgal Aggregation from Filamentous S. platensis
4.2. Nutrients’ Removal by Filamentous or Aggregated S. platensis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, L.; Liu, Q.; Liu, J.; Xiao, J.; Xu, G. Pollution Control of Industrial Mariculture Wastewater: A Mini-Review. Water 2022, 14, 1390. [Google Scholar] [CrossRef]
- Webber, J.L.; Tyler, C.R.; Carless, D.; Jackson, B.; Tingley, D.; Stewart-Sinclair, P.; Artioli, Y.; Torres, R.; Galli, G.; Miller, P.I. Impacts of Land Use on Water Quality and the Viability of Bivalve Shellfish Mariculture in the UK: A Case Study and Review for SW England. Environ. Sci. Policy 2021, 126, 122–131. [Google Scholar] [CrossRef]
- Zhang, C.; Hasunuma, T.; Lam, S.S.; Kondo, A.; Ho, S.-H. Salinity-induced Microalgal-based Mariculture Wastewater Treatment Combined with Biodiesel Production. Bioresour. Technol. 2021, 340, 125638. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, L.; Liao, Q.; Zhang, Z.; Zhao, Y.; Gao, M.; Jin, C.; She, Z.; Wang, G. Mariculture Wastewater Treatment with Bacterial-Algal Coupling System (BACS): Effect of Light Intensity on Microalgal Biomass Production and Nutrient Removal. Environ. Res. 2021, 201, 111578. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.P.; Bundschuh, J.; Chen, C.-Y.; Bhattacharya, P. Microalgae for Third Generation Biofuel Production, Mitigation of Greenhouse Gas Emissions and Wastewater Treatment: Present and Future Perspectives—A Mini Review. Energy 2014, 78, 104–113. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Chen, Z.; Wang, X.C.; Chen, R.; Zhang, X. Microalgae for Saline Wastewater Treatment: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1224–1265. [Google Scholar] [CrossRef]
- Skjånes, K.; Lindblad, P.; Muller, J. BioCO2-A Multidisciplinary, Biological Approach Using Solar Energy to Capture CO2 while Producing H2 and High Value Products. Biomol. Eng. 2007, 24, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Madkour, F.F.; Kamil, A.E.W.; Nasr, H.S. Production and Nutritive Value of Spirulina platensis in Reduced Cost Media. Egypt. J. Aquat. Res. 2012, 38, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Masten Rutar, J.; Jagodic Hudobivnik, M.; Nečemer, M.; Vogel Mikuš, K.; Arčon, I.; Ogrinc, N. Nutritional Quality and Safety of the Spirulina Dietary Supplements Sold on the Slovenian Market. Foods 2022, 11, 849. [Google Scholar] [CrossRef]
- Park, Y.I.; Labrecque, M.; Lavoie, J.M. Influence of Elevated CO2 and Municipal Wastewater Feed on the Productivity, Morphology, and Chemical Composition of Arthrospira (Spirulina) platensis. ACS Sustain. Chem. Eng. 2013, 1, 1348–1356. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, H.; Hu, W.; Ji, Y.; Han, L.; Ma, G. The Feasibility of Using Complex Wastewater from a Monosodium Glutamate Factory to Cultivate Spirulina subsalsa and Accumulate Biochemical Composition. Bioresour. Technol. 2015, 180, 304–310. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Gao, Y.; Zhao, H. Nutrients Removal and Recovery from Saline Wastewater by Spirulina platensis. Bioresour. Technol. 2017, 245, 10–17. [Google Scholar] [CrossRef]
- Lu, Z.; Beal, C.M.; Johnson, Z.I. Comparative Performance and Technoeconomic Analyses of Two Microalgae Harvesting Systems Evaluated at aCommercially Relevant Scale. Algal Res. 2022, 64, 102667. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Q.; Wang, J.; Zhang, Y.; Zhang, Z.; Lei, Z.; Shimizu, K.; Lee, D.-J. Fast Cultivation and Harvesting of Oil-producing Microalgae Ankistrodesmus falcatus var. Acicularis Fed with Anaerobic Digestion Liquor via Biogranulation in Addition to Nutrients Removal. Sci. Total Environ. 2020, 741, 140183. [Google Scholar]
- Wang, Q.; Shen, Q.; Wang, J.; Zhao, J.; Zhang, Z.; Lei, Z.; Yuan, T.; Shimizu, K.; Liu, Y.; Lee, D.-J. Insight into the Rapid Biogranulation for Suspended Single-cell Microalgae Harvesting in Wastewater Treatment Systems: Focus on the Role of Extracellular Polymeric Substances. Chem. Eng. J. 2022, 430, 132631. [Google Scholar] [CrossRef]
- Cai, W.; Zhao, Z.; Li, D.; Lei, Z.; Zhang, Z.; Lee, D.-J. Algae Granulation for Nutrients Uptake and Algae Harvesting during Wastewater Treatment. Chemosphere 2019, 214, 55–59. [Google Scholar] [CrossRef]
- Bazdar, E.; Roshandel, R.; Yaghmaei, S.; Mardanpour, M.M. The Effect of Different Light Intensities and Light/Dark Regimes on the Performance of Photosynthetic Microalgae Microbial Fuel Cell. Bioresour. Technol. 2018, 261, 350–360. [Google Scholar] [CrossRef]
- Leema, J.T.M.; Kirubagaran, R.; Vinithkumar, N.V.; Dheenan, P.S.; Karthikayulu, S. High Value Pigment Production from Arthrospira (Spirulina) platensis Cultured in Seawater. Bioresour. Technol. 2010, 101, 9221–9227. [Google Scholar] [CrossRef]
- Zhu, J.; You, H.; Li, Z.; Xie, B.; Chen, H.; Ding, Y.; Qi, S.; Li, W.; Ma, B.; Qu, X. Comparison on the Photogranules Formation and Microbial Community Shift between the Batch and Continuous-flow Mode for the High Saline Wastewater Treatment. Chem. Eng. J. 2022, 446, 137284. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA; American Water Work Association: Washington, DC, USA; Water Environment Federation: Washington, DC, USA, 2012; Available online: https://beta-static.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/apha-water-testing-standard-methods-introduction-white-paper.pdf (accessed on 14 December 2022).
- Lowry, O.H. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- de Sousa Rollemberg, S.L.; Barros, A.R.M.; Firmino, P.I.M.; Dos Santos, A.B. Aerobic Granular Sludge: Cultivation Parameters and Removal Mechanisms. Bioresour. Technol. 2018, 270, 678–688. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.; Shi, W.; Zhang, R.; Zhang, Z.; Guo, Y.; Bao, X.; Cui, F. Enhancement of Aerobic Granulation and Nutrient Removal by an Algal-bacterial Consortium in aLab-scale Photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Si, G.; Liu, B.; Liu, Y.; Yan, T.; Wei, D. Light-introduced Partial Nitrification in an Algal-bacterial Granular Sludge Bioreactor: Performance Evolution and Microbial Community Shift. Bioresour. Technol. 2022, 354, 127226. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Xu, G.; Gao, F. Simultaneous Nitritation, Denitritation and Phosphorus Removal in an Algal-bacterial Consortium System Treating Low-strength Mariculture Wastewater. J. Water Process Eng. 2022, 49, 103056. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Y.; Chen, S.; Guo, N.; Xiang, P.; Lin, S.; Bai, Y.; Hu, X.; Zhang, Z. Evaluating the Role of Algae in Algal-bacterial Granular Sludge: Nutrient Removal, Microbial Community and Granular Characteristics. Bioresour. Technol. 2022, 365, 128165. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, S.; Jin, Y.; Wu, Z.; Liu, D.; Su, H. Insights into Nitrogen and Phosphorus Metabolic Mechanisms of Algal-bacterial Aerobic Granular Sludge via Metagenomics: Performance, Microbial Community and Functional Genes. Bioresour. Technol. 2023, 369, 128442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Jiang, Q.; Yang, X.; Liu, L.; Liu, L.; Li, J.; Li, S.; Luo, Q.; Chen, J.; Zhao, Z.; et al. Nutrients’ Removal from Mariculture Wastewater by Algal–Bacterial Aggregates Developed from Spirulina platensis. Water 2023, 15, 396. https://doi.org/10.3390/w15030396
Fu X, Jiang Q, Yang X, Liu L, Liu L, Li J, Li S, Luo Q, Chen J, Zhao Z, et al. Nutrients’ Removal from Mariculture Wastewater by Algal–Bacterial Aggregates Developed from Spirulina platensis. Water. 2023; 15(3):396. https://doi.org/10.3390/w15030396
Chicago/Turabian StyleFu, Xiaohua, Qianrong Jiang, Xiaojing Yang, Lihong Liu, Li Liu, Jingshi Li, Siyang Li, Qijin Luo, Jianyu Chen, Ziwen Zhao, and et al. 2023. "Nutrients’ Removal from Mariculture Wastewater by Algal–Bacterial Aggregates Developed from Spirulina platensis" Water 15, no. 3: 396. https://doi.org/10.3390/w15030396