Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management
Abstract
:1. Introduction
2. Materials and Methods
3. Study Area
4. Results and Discussion
- Meteorological and agricultural droughts: Several precipitation and temperature monitoring gauges.
- Hydrological drought: The SDI indicator was applied to the series of natural flows to the Santa Cecília Reservoir (transposition site), and for analysis purposes, it was applied to the series of other reservoirs in the basin.
- Exposure: The water stress indicator (ExI1) was applied to the Guandu Basin between Pereira Passos HPP and the mouth. The equivalent reservoir volume percentage indicator (ExI2) was applied to the reservoirs in the Paraíba do Sul River Basin, upstream of the Santa Cecília Dam (transposition site).
- Environmental vulnerability: The qualitative water balance indicator (IVA1) was applied to the Guandu Basin and the rivers located in the municipalities supplied by the Guandu/Lajes/Acari system.
- Social vulnerability: The population density of the municipalities supplied by the Guandu/Lajes/Acari system.
- Economic vulnerability: The economic activities of the municipalities supplied by the Guandu/Lajes/Acari system and industries in the Guandu Basin.
4.1. Data Collection and Analysis
4.2. Hazard Subindex
4.2.1. Meteorological Drought Indicator (MDI)
4.2.2. Agricultural Drought Indicator (ADI)
4.2.3. Hydrological Drought Indicator (HDI)
4.3. Consequence Subindex
4.3.1. Exposure Indicators (ExI)
4.3.2. Environmental Vulnerability Indicator (EnVI)
4.3.3. Social Vulnerability Indicator (SVI)
4.3.4. Economic Vulnerability Indicators (EVI1 and EVI2)
4.4. W-ScaRI Calculation
5. Conclusions
6. Limitations and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tannehill Ray, I. Drought Its Causes and Effects, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Gillette, H.P. A Creeping Drought Underway. Water Sew. Work. 1950, 104–105. Available online: https://www.scirp.org/%28S%28czeh2tfqyw2orz553k1w0r45%29%29/reference/referencespapers.aspx?referenceid=2950033 (accessed on 17 November 2022).
- Sayers, P.B.; Li, Y.; Moncrieff, C.; Li, J.; Tickner, D.; Xu, X.; Speed, R.; Li, A.; Lei, G.; Qiu, B.; et al. Drought Risk Management; UNESCO: Paris, France, 2016; ISBN 9789231000942. [Google Scholar]
- Tsakiris, G. Drought Risk Assessment and Management. Water Resour. Manag. 2017, 31, 3083–3095. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- De Stefano, L.; Tánago, I.G.; Ballesteros, M. Methodological Approach Considering Different Factors Influencing Vulnerability–Pan-European Scale. Technical Report. 2015. Available online: https://www.academia.edu/14388306/METHODOLOGICAL_APPROACH_CONSIDERING_DIFFERENT_FACTORS_INFLUENCING_VULNERABILITY_PAN_EUROPEAN_SCALE (accessed on 17 November 2022).
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wang, X.; Hao, Z.; Singh, V.P.; Hao, F. Propagation from Meteorological Drought to Hydrological Drought under the Impact of Human Activities: A Case Study in Northern China. J. Hydrol. 2019, 579, 124147. [Google Scholar] [CrossRef]
- Howitt, R.; Macewan, D.; Medellín-Azuara, J. Economic Analysis of the 2015 Drought for California Agriculture; Center for Watershed Sciences, University of California—Davis: Davis, CA, USA, 2015; p. 16. [Google Scholar]
- Peng, C.; Ma, Z.; Lei, X.; Zhu, Q.; Chen, H.; Wang, W.; Liu, S.; Li, W.; Fang, X.; Zhou, X. A Drought-Induced Pervasive Increase in Tree Mortality across Canada’s Boreal Forests. Nat. Clim. Chang. 2011, 1, 467–471. [Google Scholar] [CrossRef]
- Maia, R.; Costa, M.; Mendes, J. Improving Transboundary Drought and Scarcity Management in the Iberian Peninsula through the Definition of Common Indicators: The Case of the Minho-Lima River Basin District. Water 2022, 14, 425. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Van Lanen, H.A.J. Making the Distinction between Water Scarcity and Drought Using an Observation-Modeling Framework. Water Resour. Res. 2013, 49, 1483–1502. [Google Scholar] [CrossRef]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the Economic Impact of Water Scarcity in a Changing World. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef]
- Joseph, N.; Ryu, D.; Malano, H.M.; George, B.; Sudheer, K.P. A Review of the Assessment of Sustainable Water Use at Continental-to-Global Scale. Sustain. Water Resour. Manag. 2020, 6, 18. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- UN Water. Water Scarcity. Available online: http://www.unwater.org/water-facts/scarcity (accessed on 6 August 2022).
- Procházka, P.; Hönig, V.; Maitah, M.; Pljučarská, I.; Kleindienst, J. Evaluation of Water Scarcity in Selected Countries of the Middle East. Water 2018, 10, 1482. [Google Scholar] [CrossRef]
- Zonensein, J. Flood Risk Index as a Flood Management Tool. Master’s Thesis, Universidade Federal do Rio de Janeiro—UFRJ, Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Miguez, M.G.; Gregório, L.T.; Veról, A.P. Risk and Hydrological Disaster Management, 1st ed.; Elsevier: Rio de Janeiro, Brasil, 2018. [Google Scholar]
- Bellen, H.M. Van Sustainability Indicators: A Comparative Analysis. Ph.D. Thesis, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil, 2002. [Google Scholar]
- Wang, L.; Yu, H.; Yang, M.; Yang, R.; Gao, R.; Wang, Y. A Drought Index: The Standardized Precipitation Evapotranspiration Runoff Index. J. Hydrol. 2019, 571, 651–668. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Yao, H.; Chen, X.; Chen, X.; Zheng, Y.; He, Y. Impacts of Reservoir Operations on Multi-Scale Correlations between Hydrological Drought and Meteorological Drought. J. Hydrol. 2018, 563, 726–736. [Google Scholar] [CrossRef]
- Cuartas, L.A.; Cunha, A.P.M.; Alves, J.A.; Parra, L.M.P.; Deusdará-Leal, K.; Costa, L.C.O.; Molina, R.D.; Amore, D.; Broedel, E.; Seluchi, M.E.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- NDMC—National Drought Mitigation Center Us Drought Monitor. Available online: https://droughtmonitor.unl.edu/data/docs/what_is_usdm.pdf (accessed on 30 September 2019).
- Svoboda, M.D.; Fuchs, B.A.; Poulsen, C.C.; Nothwehr, J.R. The Drought Risk Atlas: Enhancing Decision Support for Drought Risk Management in the United States. J. Hydrol. 2015, 526, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Martins, E.S.Q.R.; From Nys, E.; Molejón, C.; Biazeto, B.; Silva, R.F.V.; Engle, N. Northeast Drought Monitor, Looking for a New Paradigm for Drought Management. In Água Brasil Séries Nº 10; W.B.G.: Washington, DC, USA, 2015; ISBN 9788588192164. [Google Scholar]
- Bachmair, S.; Svensson, C.; Prosdocimi, I.; Hannaford, J.; Stahl, K. Developing Drought Impact Functions for Drought Risk Management. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 17, 1947–1960. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- González Tánago, I.; Urquijo, J.; Blauhut, V.; Villarroya, F.; De Stefano, L. Learning from Experience: A Systematic Review of Assessments of Vulnerability to Drought. Nat. Hazards 2016, 80, 951–973. [Google Scholar] [CrossRef]
- Tsakiris, G. A Paradigm for Applying Risk and Hazard Concepts in Proactive Planning. In Coping with Drought Risk in Agriculture and Water Supply Systems; Iglesias, A., Garrote, L., Antonino, C., Francisco, C., Donals, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; p. 320. ISBN 978-1-4020-9044-8. [Google Scholar]
- Dabanli, I. Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 1–15, preprint. [Google Scholar] [CrossRef]
- Meza, I.; Eyshi Rezaei, E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought Risk for Agricultural Systems in South Africa: Drivers, Spatial Patterns, and Implications for Drought Risk Management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef]
- Le, T.; Sun, C.; Choy, S.; Kuleshov, Y. Regional Drought Risk Assessment in the Central Highlands and the South of Vietnam. Geomatics Nat. Hazards Risk 2021, 12, 3140–3159. [Google Scholar] [CrossRef]
- Carrão, H.; Naumann, G.; Barbosa, P. Mapping Global Patterns of Drought Risk: An Empirical Framework Based on Sub-National Estimates of Hazard, Exposure and Vulnerability. Glob. Environ. Chang. 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Dunne, A.; Kuleshov, Y. Drought Risk Assessment and Mapping for the Murray–Darling Basin, Australia. Nat. Hazards 2022, 1–25. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A Software for Drought Analysis Based on Drought Indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, A. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Tigkas, D. Drought Characterisation and Monitoring in Regions of Greece. Eur. Water 2008, 23, 29–39. [Google Scholar]
- Tsakiris, G.; Nalbantis, I.; Pangalou, D.; Tigkas, D.; Vangelis, H. Drought Meteorological Monitoring Network Design for the Reconnaissance Drought Index (RDI). In Proceedings of the 1st International Conference “Drought Management: Scientific and Technological Innovations”, Zaragoza, Spain, 12–14 June 2008; Option Méditerranéennes, Series A. pp. 57–62. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Agência Nacional de Águas—ANA. Situation Room of Paraíba Do Sul River Basin. Available online: http://www3.ana.gov.br/portal/ANA/sala-de-situacao/paraiba-do-sul/paraiba-do-sul-saiba-mais (accessed on 27 August 2018).
- Fundação Coordenação de Projetos, Pesquisas e Estudos Tecnológicos—COPPETEC; Instituto Estadual do Ambiente—INEA. Rio de Janeiro State Water Resources Plan, Diagnostic Report; Rio de Janeiro, Brasil, 2014; Available online: https://www.worldbank.org/content/dam/Worldbank/Feature%20Story/SDN/Water/events/Rosa_Formiga_Johnson_Presentacion_Ingles-3.pdf (accessed on 17 November 2022).
- Instituto Brasileiro de Geografia e Estatística—IBGE. Population Estimates in 2017. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=downloads (accessed on 30 May 2018).
- Integral Engenharia and FIRJAN. Water Security Assessment of the Rio de Janeiro Metropolitan Region: Final Report; FIRJAN: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- COHIDRO and Associação Pró-Gestão das Águas da Bacia Hidrográfica do Rio Paraíba do Sul—AGEVAP. Paraíba Do Sul River Basin Integrated Water Resources Plan and Affluent Basins Water Resources Action Plans: Diagnostic Report, Tome 1; COHIDRO/AGEVAP: Resende, Brazil, 2014. [Google Scholar]
- Campos, J.D. Charging for Water Use in Transpositions of the Paraíba Do Sul River Basin Involving the Electric Sector. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Agência Nacional de Águas—ANA. Water Resources Conjuncture Report; ANA: Brasília, Brazil, 2017. [Google Scholar]
- Instituto Nacional de Meteorologia—INMET. Monthly Average Maximum and Minimum Temperature Series. BDMEP-Teach. Res. Weather Database; 2018. Available online: https://bdmep.inmet.gov.br/ (accessed on 20 March 2018).
- Agência Nacional de Águas—ANA. Monthly Rainfall Series. Available online: http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf (accessed on 8 March 2018).
- Departamento de Águas e Energia Elétrica—DAEE. Monthly Rainfall Series. Available online: http://www.hidrologia.daee.sp.gov.br/ (accessed on 8 March 2018).
- Agência Nacional de Águas—ANA. Operation Data of the Paraíba Do Sul and Guandu River Basin Reservoirs. Available online: https://www.ana.gov.br/sar0/MedicaoSin (accessed on 3 April 2018).
- Instituto Brasileiro de Geografia e Estatística—IBGE. Municipalities GDP—2015. Available online: https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9088-produto-interno-bruto-dos-municipios.html?=&t=resultados (accessed on 30 May 2018).
Color Scale | SPI | Classification |
---|---|---|
SPI > 0 | Wet period | |
0 to −0.99 | Mild Drought | |
−1.00 to −1.49 | Moderate Drought | |
−1.50 to −1.99 | Severe Drought | |
SPI ≤ −2.00 | Extreme Drought |
SPI Values | Cumulative Probability—Normal Distribution | Adjusted Equation |
---|---|---|
0 −1 | 0.50 0.841 | y = −0.341x + 0.5 |
−1 −2 | 0.841 0.977 | y = −0.136x + 0.705 |
−2 −3 | 0.977 0.999 | y = −0.022x + 0.933 |
Color Scale | VEqR (%) | ExI2 | Classification |
---|---|---|---|
VEqR > 40 | ExI2 < 0.6 | Wet period | |
30 < VEqR ≤ 40 | 0.70 > ExI2 ≥ 0.6 | Mild Drought | |
20 < VEqR ≤ 30 | 0.80 > ExI2 ≥ 0.7 | Moderate Drought | |
10 < VEqR ≤ 20 | 0.90 > ExI2 ≥ 0.8 | Severe Drought | |
0 ≤ VEqR ≤10 | 1 ≥ ExI2 ≥ 0.9 | Extreme Drought |
Population Density—PD (People/km2) | Social Vulnerability Indicator—SVI (0–1) | Adjusted Equation |
---|---|---|
City with the highest population density | 1 | SVI = a × PD + b, where PD is the population density; a and b are the adjusted parameters of the SVI equation. |
Country’s average population density | 0.5 |
GDP per Capita | Economic Vulnerability Indicator—EVI1 (0–1) | Adjusted Equation |
---|---|---|
City with the highest GDP per capita | 1 | EVI1 = c × GDP per capita + d where c and d are the adjusted parameters of the IVE1 equation. |
Country’s average GDP per capita | 0.5 |
Drought Hazard Subindex | Consequence Subindex | ||||||
---|---|---|---|---|---|---|---|
Indicators | Weight | Exposure | Vulnerability | ||||
Indicators | Weight | Indicators | Weight | ||||
Meteorological Drought (MDI) | SPI | 0.333 | Water stress | 0.5 | Environmental vulnerability (EnVI) | Bqual | 0.333 |
Agricultural Drought (ADI) | RDI | 0.333 | % VEqR | 0.5 | Social vulnerability (SVI) | PD | 0.333 |
Hydrological Drought (HDI) | SDI | 0.333 | Economic vulnerability (EVI) | GDP per capita | 0.1665 | ||
% Competition with human supply | 0.1665 | ||||||
Weight = 0.5 | Weight = 0.5 |
Indicator | Type of Information | Period | Reference |
---|---|---|---|
MDI (SPI) | Monthly rainfall series. Gauges: Resende, Taubaté, Fazenda Santa Clara, S. Luiz do Paraitinga, Igaratá and Santa Isabel | 1991–2016 | [49,50,51] |
ADI (RDI) | Monthly rainfall and monthly average and maximum and minimum temperature series. Gauges: Resende and Taubaté | 1991–2016 | [49,50] |
HDI (SDI) | Average monthly natural flows at Paraibuna HPP, Santa Branca HPP, Funil HPP and Santa Cecília Dam | 1931–2017 | [52] |
ExI1 Water stress | Pereira Passos HPP outflows series, incremental 95% flow (Guandu mouth—Pereira Passos HPP), water consumption data (Guandu River users) | 1994–2016 2014 | [52,43] |
ExI2 % Equivalent volume of reservoirs | Daily series of accumulated useful volumes of Paraibuna, Santa Branca, Jaguari and Funil Reservoirs, and useful volume of reservoirs | 1993–2017 | [52] |
EnVI Qualitative water balance | Consumed flows by the users of RJMR basins, dilution flows of RJMR basins and water availability in RJMR basins | 2014 | [43] |
SVI Population density | Municipal population and area | 2017 estimate | [44] |
EVI1 GDP per capita | GDP and population | 2015 | [53] |
EVI2 % Competition human supply | Industrial abstraction flows Human supply abstraction flows | 2014 | [43] |
Rainfall Gauges | Weight | January 2015 | October 2015 | ||
---|---|---|---|---|---|
SPI | SPI (0–1) | SPI | SPI (0–1) | ||
Paraitinga | 0.20 | −2.74 | 0.99 | −0.78 | 0.77 |
Taubaté | 0.18 | −2.36 | 0.98 | −1.72 | 0.94 |
Resende | 0.27 | −1.35 | 0.89 | −1.34 | 0.89 |
Cachoeira Paulista | 0.18 | −0.55 | 0.69 | −0.08 | 0.53 |
Igaratá | 0.11 | −0.55 | 0.69 | 0.36 | 0.00 |
Santa Isabel | 0.06 | −0.94 | 0.82 | 0.37 | 0.00 |
Meteorological drought indicator—MDI | 0.87 | 0.66 |
Gauges | Weight | January 2015 | October 2015 | ||
---|---|---|---|---|---|
RDI | RDI (0–1) | RDI | RDI (0–1) | ||
Resende | 0.50 | −1.22 | 0.99 | −1.25 | 0.84 |
Taubaté | 0.50 | −2.54 | 0.87 | −1.01 | 0.87 |
Agricultural drought indicator—ADI | 0.93 | 0.86 |
Place | January 2015 | October 2015 | ||
---|---|---|---|---|
SDI | SDI (0–1) | SDI | SDI (0–1) | |
Paraíba do Sul River in Santa Cecília | −2.96 | 1.0 | −1.35 | 0.89 |
Hydrological Drought Indicator—HDI | 1.0 | 0.89 |
Local | Basin Water Uses (m3/s) | Available Flow (m3/s) | |
---|---|---|---|
January 2015 | October 2015 | ||
Guandu River Basin between mouth and Pereira Passos HPP | 95.1 | 101.3 | 79.3 |
Water stress Indicator—ExI1 | 0.94 | 1.0 |
Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 42 | 54 | 60 | 68 | 69 | 65 | 62 | 57 | 51 | 48 | 45 | 48 |
2014 | 48 | 42 | 41 | 39 | 34 | 28 | 23 | 18 | 13 | 7 | 4 | 2 |
2015 | 0.4 | 0.3 | 8 | 16.3 | 17.1 | 15.3 | 11.6 | 7.1 | 6.6 | 5.4 | 5.8 | 9.9 |
2016 | 18 | 27 | 34 | 43 | 44 | 44 | 52 | 50 | 48 | 46 | 45 | 49 |
Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 0.58 | 0.46 | 0.40 | 0.32 | 0.31 | 0.35 | 0.38 | 0.43 | 0.49 | 0.52 | 0.55 | 0.52 |
2014 | 0.52 | 0.58 | 0.59 | 0.61 | 0.66 | 0.72 | 0.77 | 0.82 | 0.87 | 0.93 | 0.96 | 0.98 |
2015 | 1.00 | 1.00 | 0.92 | 0.84 | 0.83 | 0.85 | 0.88 | 0.93 | 0.93 | 0.95 | 0.94 | 0.90 |
2016 | 0.82 | 0.73 | 0.66 | 0.57 | 0.56 | 0.56 | 0.48 | 0.50 | 0.52 | 0.54 | 0.55 | 0.51 |
Sub-Basin | Dilution Flow—Wdil (m3/s) | Bqual (%) | Vulnerability (0–1) |
---|---|---|---|
Piraí River | 3.3 | 50.3 | 0.5 |
Lajes Reservoir | - | 33.4 | 0.33 |
Guandu River | 7.3 | 81.9 | 0.82 |
da Guarda River | 16.9 | 478.3 | 1 |
Guandu-Mirim and Litorâneos Rivers | 105.6 | 1195.1 | 1 |
Iguaçu and Saracuruna Rivers | 226.6 | 1305.4 | 1 |
Jacarepaguá and Marapendi Lake Rivers | 156.0 | 1184.8 | 1 |
Pavuna-Meriti, Faria-Timbó and Maracanã Rivers; Governador and Fundão Island Rivers; Rodrigo de Freitas Lake Rivers | 171.3 | 1248.7 | 1 |
Environmental Vulnerability Indicator—EnVI | =0.99 |
City/Country | Population Density—PD (People/km2) | Social Vulnerability Indicator—SVI (0–1) | Adjusted Equation |
---|---|---|---|
São Paulo | 7959.27 | 1 | SVI = 6 × 10−5 × PD + 0.4985 |
Brazil | 24.40 | 0.5 |
Municipality | Population Density (Inhabitants/km2) | Population (Inhabitants) | SVI (0–1) |
---|---|---|---|
Belford Roxo | 6277 | 495,783 | 0.88 |
Duque de Caxias | 1905 | 890,997 | 0.61 |
Itaguaí | 446 | 122,369 | 0.53 |
Japeri | 1237 | 101,237 | 0.57 |
Nilópolis | 8164 | 158,329 | 0.99 |
Nova Iguaçu | 1542 | 798,647 | 0.59 |
Mesquita | 4130 | 171,280 | 0.75 |
Paracambi | 264 | 50,447 | 0.51 |
Queimados | 1921 | 145,386 | 0.61 |
Rio de Janeiro | 5433 | 6,520,266 | 0.82 |
São João de Meriti | 13,075 | 460,461 | 1.00 |
Seropédica | 297 | 84,416 | 0.52 |
Social Vulnerability Indicator—SVI | =0.79 |
City/Country | GDP per Capita | Economic Vulnerability Indicator—EVE1 (0–1) | Adjusted Equation |
---|---|---|---|
São Paulo | 54.4 | 1 | EVI1 = 0.02 × GDP per capita—0.0856 |
Brazil | 29.3 | 0.5 |
Municipality | GDP (103 BRL) | GDP per Capita | IVE1 |
---|---|---|---|
Belford Roxo | 7,479,539 | 16 | 0.23 |
Duque de Caxias | 35,114,426 | 40 | 0.71 |
Itaguaí | 7,404,493 | 62 | 1.00 |
Japeri | 1,342,219 | 13 | 0.18 |
Nilópolis | 2,525,559 | 16 | 0.23 |
Nova Iguaçu | 15,948,718 | 20 | 0.31 |
Paracambi | 2,084,163 | 12 | 0.16 |
Mesquita | 843,386 | 17 | 0.26 |
Queimados | 4,851,828 | 34 | 0.59 |
Rio de Janeiro | 320,774,459 | 50 | 0.90 |
São João de Meriti | 7,931,134 | 17 | 0.26 |
Seropédica | 2,306,345 | 28 | 0.47 |
Economic Vulnerability Indicator—EVI1 | =0.82 |
Water Use | Abstraction Flow (m³/s) | Percentage (%) |
---|---|---|
Industrial sector | 29.1 | 41% |
Human supply | 42 | 59 % |
Economic Vulnerability Indicator | EVI2 = 1.00 |
Drought Hazard Subindex | Consequence Subindex | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Indicators | Weight | Value | Exposure | Indicators | Weight | Value | ||||
Indicator | Weight | Value | ||||||||
Meteorological drought indicator (MDI) | SPI | 0.333 | 0.87 | Water stress | 0.5 | 0.94 | Environmental vulnerability (EnVI) | Bqual | 0.333 | 0.99 |
Agricultural drought indicator (ADI) | RDI | 0.333 | 0.93 | % VEqR | 0.5 | 1.00 | Social vulnerability (SVI) | PD | 0.333 | 0.79 |
Hydrological drought indicator (HDI) | SDI | 0.333 | 1.00 | Economic vulnerability (EVI) | GDP per capita | 0.167 | 0.82 | |||
% Human supply competition | 0.167 | 1.00 | ||||||||
Final Exposure | 0.97 | Final Vulnerability | 0.90 | |||||||
Hazard Subindex | 0.93 | Consequence Subindex | 0.87 | |||||||
Weight | 0.50 | Weight | 0.50 | |||||||
Water Scarcity Risk Index—W-ScaRI | 0.90 |
Drought Hazard Subindex | Consequence Subindex | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Indicators | Weight | Value | Exposure | Indicators | Weight | Value | ||||
Indicator | Weight | Value | ||||||||
Meteorological drought indicator (MDI) | SPI | 0.333 | 0.66 | Water stress | 0.5 | 1.00 | Environmental vulnerability (EnVI) | Bqual | 0.333 | 0.99 |
Agricultural drought indicator (ADI) | RDI | 0.333 | 0.86 | % VEqR | 0.5 | 0.95 | Social vulnerability (SVI) | PD | 0.333 | 0.79 |
Hydrological drought indicator (HDI) | SDI | 0.333 | 0.89 | Economic vulnerability (EVI) | GDP per capita | 0.167 | 0.82 | |||
% Human supply competition | 0.167 | 1.00 | ||||||||
Final Exposure | 0.97 | Final Vulnerability | 0.90 | |||||||
Hazard Subindex | 0.80 | Consequence Subindex | 0.87 | |||||||
Weight | 0.50 | Weight | 0.50 | |||||||
Water Scarcity Risk Index—W-ScaRI | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomaz, F.R.; Miguez, M.G.; de Souza Ribeiro de Sá, J.G.; de Moura Alberto, G.W.; Fontes, J.P.M. Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management. Water 2023, 15, 255. https://doi.org/10.3390/w15020255
Thomaz FR, Miguez MG, de Souza Ribeiro de Sá JG, de Moura Alberto GW, Fontes JPM. Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management. Water. 2023; 15(2):255. https://doi.org/10.3390/w15020255
Chicago/Turabian StyleThomaz, Fernanda Rocha, Marcelo Gomes Miguez, João Gabriel de Souza Ribeiro de Sá, Gabriel Windsor de Moura Alberto, and João Pedro Moreira Fontes. 2023. "Water Scarcity Risk Index: A Tool for Strategic Drought Risk Management" Water 15, no. 2: 255. https://doi.org/10.3390/w15020255