Numerical Study on Fish Collection and Transportation Facility with Water Temperature Compensation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Project Background
2.2. Numerical Methods
2.2.1. Equations
2.2.2. Numerical Schemes
2.2.3. Initial and Boundary Conditions
2.2.4. Mesh
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, X. Review of fishway research in China. Ecol. Eng. 2018, 115, 91–95. [Google Scholar] [CrossRef]
- Monk, B.H.; Sandford, B.P.; Williams, G.J. Evaluation of the Juvenile Fish Collection, Transportation, and Bypass Facility at Little Goose Dam, 1990; Coastal Zone and Estuarine Studies Division, Northwest Fisheries Science Center, National Marine Fisheries Service: Seattle, WA, USA, 1992. [Google Scholar]
- Monk, B.; Weaver, D.; Thompson, C.; Ossiander, F. Effects of Flow and Weir Design on the Passage Behavior of American Shad and Salmonids in an Experimental Fish Ladder. N. Am. J. Fish. Manag. 1989, 9, 60–67. [Google Scholar] [CrossRef]
- Croze, O.; Bau, F.; Delmouly, L. Efficiency of a fish lift for returning Atlantic salmon at a large-scale hydroelectric complex in France. Fish. Manag. Ecol. 2008, 15, 467–476. [Google Scholar] [CrossRef]
- Barry, T.; Kynard, B. Attraction of Adult American Shad to Fish Lifts at Holyoke Dam, Connecticut River. N. Am. J. Fish. Manag. 1986, 6, 233–241. [Google Scholar] [CrossRef]
- Pompeu, P.d.S.; Martinez, C.B. Efficiency and selectivity of a trap and truck fish passage system in Brazil. Neotrop. Ichthyol. 2007, 5, 169–176. [Google Scholar] [CrossRef]
- Pompeu, P.d.S.; Martinez, C.B. Variações temporais na passagem de peixes pelo elevador da Usina Hidrelétrica de Santa Clara, rio Mucuri, leste brasileiro. Rev. Bras. Zool. 2006, 23, 340–349. [Google Scholar] [CrossRef]
- Fiedler, G.; Mahl, L.; Weichert, R.B. Design of auxiliary water systems for fishways. In Proceedings of the 7th IAHR International Symposium on Hydraulic Structures, ISHS 2018, Aachen, Germany, 15–18 May 2018; pp. 253–260. [Google Scholar] [CrossRef]
- Mu, X.; Zhen, W.; Li, X.; Cao, P.; Gong, L.; Xu, F. A Study of the Impact of Different Flow Velocities and Light Colors at the Entrance of a Fish Collection System on the Upstream Swimming Behavior of Juvenile Grass Carp. Water 2019, 11, 322. [Google Scholar] [CrossRef]
- Jesus, J.; Cortes, R.; Teixeira, A. Acoustic and Light Selective Behavioral Guidance Systems for Freshwater Fish. Water 2021, 13, 745. [Google Scholar] [CrossRef]
- Popper, A.N.; Hawkins, A.D.; Jacobs, F.; Jacobson, P.T.; Johnson, P.; Krebs, J. Use of sound to guide the movement of eels and other fishes within rivers: A critical review. Rev. Fish Biol. Fish. 2020, 30, 605–622. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y.; Shen, X.; Wu, Y.; Tian, W.; Liu, Y.; Wang, X.; Shi, X.; Liu, G. Spatial avoidance of tu-fish Schizopygopsis younghusbandi for different sounds may inform behavioural deterrence strategies. Fish. Manag. Ecol. 2020, 27, 10–19. [Google Scholar] [CrossRef]
- Kim, J.; Mandrak, N.E. Effects of a vertical electric barrier on the behaviour of Rainbow Trout. Aquat. Ecosyst. Health Manag. 2021, 22, 183–192. [Google Scholar] [CrossRef]
- Boubee, J.A.; Schicker, K.P.; Stancliff, A.G. Thermal avoidance in inanga, Galaxias maculatus (Jenyns), from the Waikato River, New Zealand. N. Z. J. Mar. Freshw. Res. 1991, 25, 177–180. [Google Scholar] [CrossRef]
- Ern, R.; Esbaugh, A.J. Assessment of hypoxia avoidance behaviours in a eurythermal fish at two temperatures using a modified shuttlebox system. J. Fish Biol. 2021, 99, 264–270. [Google Scholar] [CrossRef]
- Li, T.; Mo, K.; Wang, J.; Chen, Q.; Zhang, J.; Zeng, C.; Zhang, H.; Yang, P. Mismatch between critical and accumulated temperature following river damming impacts fish spawning. Sci. Total Environ. 2021, 756, 144052. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.; Yang, J.; Zhu, S.; Wu, Z.; Li, J.; Li, Y. Elevated Temperatures Shorten the Spawning Period of Silver Carp (Hypophthalmichthys molitrix) in a Large Subtropical River in China. Front. Mar. Sci. 2021, 8, 708109. [Google Scholar] [CrossRef]
- Zhang, P.; Qiao, Y.; Grenouillet, G.; Lek, S.; Cai, L.; Chang, J. Responses of spawning thermal suitability to climate change and hydropower operation for typical fishes below the Three Gorges Dam. Ecol. Indic. 2021, 121, 107186. [Google Scholar] [CrossRef]
- Tuo, Y.; Deng, Y.; Li, J.; Li, N.; Li, K.; Wei, L.; Zhao, Z. Effects of dam reconstruction on thermal-ice regime of Fengman Reservoir. Cold Reg. Sci. Technol. 2018, 146, 223–235. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Wang, D.; Wu, J. Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications. J. Hydrol. 2020, 590, 125240. [Google Scholar] [CrossRef]
- Garrett, J.W.; Bennett, D.H. Seasonal Movements of Adult Brown Trout Relative to Temperature in a Coolwater Reservoir. N. Am. J. Fish. Manag. 1995, 15, 480–487. [Google Scholar] [CrossRef]
- Xu, Z.; Yin, X.; Sun, T.; Cai, Y.; Ding, Y.; Yang, W.; Yang, Z. Labyrinths in large reservoirs: An invisible barrier to fish migration and the solution through reservoir operation. Water Resour. Res. 2017, 53, 817–831. [Google Scholar] [CrossRef]
- Chen, L.Q.; Li, L.H.; Zhou, Y.Q.; Yu, G.Y.; Li, H.Q.; Liu, J.; Ding, S.B. Effect of low temperature water discharged from large reservoir on aquatic ecosystem and agricultural production. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012065. [Google Scholar] [CrossRef]
- Anjum, N.; Tanaka, N. Study on the flow structure around discontinued vertically layered vegetation in an open channel. J. Hydrodyn. 2020, 32, 454–467. [Google Scholar] [CrossRef]
- Chipongo, K.; Khiadani, M.; Lari, K.S. Comparison and verification of turbulence Reynolds-averaged Navier–Stokes closures to model spatially varied flows. Sci. Rep. 2020, 10, 19059. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.B.; Liao, C.S.; Li, Z.J.; Zhang, T.L.; Ye, S.W.; Liu, J.S. Length-weight relationships of 55 fish species from the Three Gorges Reservoir in the Yangtze River, China. J. Appl. Ichthyol. 2016, 32, 1268–1272. [Google Scholar] [CrossRef]
- Li, Y.; Hou, Y.; Tao, J.; Cai, L.; Zhu, Z.; Shi, X. Comparison of inductive velocity of three fish species in the lower reaches of Dadu River. Chin. J. Ecol. 2021, 40, 3214–3220. [Google Scholar]
- Yang, Z.; Tang, H.Y.; Que, Y.F.; Xiong, M.H.; Zhu, D.; Wang, X.; Qiao, Y. Length-weight relationships and basic biological information on 64 fish species from lower sections of the Wujiang River, China. J. Appl. Ichthyol. 2016, 32, 386–390. [Google Scholar] [CrossRef]
- Barbour, M.T.; Wise, J.K.; Severson, T.J.; Luoma, J. Avoidance Behavior of Cold-, Cool-, and Warmwater Fish Exposed to Zequanox in a Two-Choice Preference Chamber [WWW Document]. U.S. Geological Survey, 2018. Available online: https://www.sciencebase.gov/catalog/item/600f24a4d34e162231fece04 (accessed on 29 December 2021).
- Liu, X.; Peng, C.; Ou, J.; Long, S.; Gu, M. High-yield trial of Leiocassis longirostris is main raised in micro-running water pond. J. Water Ecol. 2009, 30, 139–141. (In Chinese) [Google Scholar]
- Zhao, H.; Han, D.; Xie, S.; Zhu, X.; Yang, Y. Effect of water temperature on the growth performance and digestive enzyme activities of Chinese longsnout catfish (Leiocassis longirostris Günther). Aquac. Res. 2009, 40, 1864–1872. [Google Scholar] [CrossRef]
- Pang, X. Research on the Fish Eco-Physiological (Thermal Tolerance, Metabolism and Swimming) Response Based on Temperature Changes; Chongqing University: Chongqing, China, 2014. (In Chinese) [Google Scholar]
- Pang, X.; Yuan, X.-Z.; Cao, Z.-D.; Zhang, Y.-G.; Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 2015, 41, 19–29. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, Y.; Shu, Q.; Luo, W.; Jiang, Z.; Ding, Y.; Ran, Y.; Tan, D. Observation on Embryo Development of Schizothorax davidi. Jiangsu Agric. Sci. 2020, 48, 198–203. [Google Scholar] [CrossRef]
- He, X.; Tan, G. Preliminary study on embryonic development of Schizothorax davidi in Dadu River. Jiangsu Agric. Sci. 2020, 48, 164–168. [Google Scholar]
- Harding, S.F.; Mueller, R.P.; Richmond, M.C.; Romero-Gomez, P.; Colotelo, A.H. Fish Response to Turbulence Generated Using Multiple Randomly Actuated Synthetic Jet Arrays. Water 2019, 11, 1715. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Z.; Wang, D. Characterization of hydraulic suitability of Chinese sturgeon (Acipenser sinensis) spawning habitat in the Yangtze River. Hydrol. Process. 2012, 26, 3489–3498. [Google Scholar] [CrossRef]
- Tan, J.; Tao, L.; Gao, Z.; Dai, H.; Shi, X. Modeling Fish Movement Trajectories in Relation to Hydraulic Response Relationships in an Experimental Fishway. Water 2018, 10, 1511. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Mlačnik, J.; Četina, M. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Bell, M.C. Fisheries Handbook of Engineering Requirements and Biological Criteria; Corps of Engineers, North Pacific Division: Portland, OR, USA, 1990. [Google Scholar]
Schemes | ||
---|---|---|
Transient | First-Order Implicit | |
Spatial Discretization | Gradient | Least square |
Pressure | Second-order | |
Momentum | Second-order upwind | |
Turbulence kinetic energy | First-order upwind | |
Turbulence dissipation energy | First-order upwind` | |
Energy | Second-order upwind |
No. | Tailwater Elevation/m | Flow Rate/m3/s | Inflow Temperature/°C | Ambient Temperature/°C |
---|---|---|---|---|
1 | 372.60 | 0.03 | 18 | 15 |
2 | 372.60 | 0.05 | 18 | 15 |
3 | 372.60 | 0.1 | 18 | 15 |
4 | 372.60 | 0.2 | 18 | 15 |
Average Temperature (K) | Max. Temperature (K) | Average TKE (m2/s2) | Maximum TKE (m2/s2) | |
---|---|---|---|---|
Fine Mesh | 291.10 | 291.15 | 0.0005518 | 0.01425 |
Medium Mesh | 291.08 | 291.15 | 0.0004998 | 0.01527 |
Coarse Mesh | 290.78 | 291.15 | 0.0004021 | 0.01868 |
Species | Temperature Preference | Common Length | Max Length |
---|---|---|---|
Schizothorax davidi | Cold water | 12.5 cm | 39.5 cm |
Spinibarbus sinensis | Warm water | 15.1 cm | 47.1 cm |
Leiocassis longirostris | Warm water | 28.5 cm | 66.0 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Tang, Y.; Shi, J.; Zhou, W.; Qian, J. Numerical Study on Fish Collection and Transportation Facility with Water Temperature Compensation. Water 2023, 15, 3185. https://doi.org/10.3390/w15183185
Zhang Q, Tang Y, Shi J, Zhou W, Qian J. Numerical Study on Fish Collection and Transportation Facility with Water Temperature Compensation. Water. 2023; 15(18):3185. https://doi.org/10.3390/w15183185
Chicago/Turabian StyleZhang, Qi, Youmin Tang, Jiayue Shi, Wu Zhou, and Jin Qian. 2023. "Numerical Study on Fish Collection and Transportation Facility with Water Temperature Compensation" Water 15, no. 18: 3185. https://doi.org/10.3390/w15183185