Porous Asphalt Mixture with Improved Fatigue Resistance and Stormwater Pollutant Reduction in Urban Road Pavement
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials and Mixture Design
2.2. Mechanical Tests
2.3. Porous Mixture Infiltration Capacity
2.4. Evaluation of Runoff Pollutant Reduction
2.5. Pavement Structure Design
3. Case Study
4. Results
4.1. Mixture Design
4.2. Mechanical Test Results
4.3. Porous Mixture Infiltration Capacity
4.4. Pollutants Reduction
4.5. Pavement Design
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, Q.; Eslamian, S. Impact of urbanization on flooding. In Flood Handbook, 1st ed.; Eslamian, S., Eslamian, F.A., Eds.; CRC Press: Boca Raton, FL, USA, 2022; Volume 1, pp. 97–112. [Google Scholar] [CrossRef]
- Associação Brasileira de Cimento Portland (ABCP) [Brazilian Portland Cement Association]. Projeto técnico: Pavimento permeável [Technical project: Permeable pavement]. In Projeto Soluções para Cidades; Associação Brasileira de Cimento Portland (ABCP): São Paulo, SP, Brazil, 2013; Available online: https://www.solucoesparacidades.com.br/wp-content/uploads/2013/10/AF_Pav%20Permeavel_web.pdf (accessed on 4 May 2023). (In Portuguese)
- Ottoni, A.B.; Mattos, F.C.C.S. Análise crítica da obra do reservatório de amortecimento (“Piscinão”) da Praça Niterói, Rio de Janeiro-RJ e proposição de soluções com sustentabilidade ambiental para o controle das inundações na região [Critical analysis of the work on the damping reservoir (“Piscinão”) at Praça Niterói, Rio de Janeiro-RJ and proposition of environmentally sustainable solutions for flood control in the region]. Rev. Cient. ANAP Bras. 2018, 11, 108–122. (In Portuguese) [Google Scholar] [CrossRef]
- Millington, N. Stormwater Politics: Flooding, Infrastructure, and Urban Political Ecology in São Paulo, Brazil. Water Altern. 2021, 14, 866–885. Available online: https://www.water-alternatives.org/index.php/alldoc/articles/vol14/v14issue3/648-a14-3-11/file (accessed on 18 April 2023).
- Singer, M.N.; Hamouda, M.A.; El-Hassan, H.; Hinge, G. Permeable pavement systems for effective management of stormwater quantity and quality: A bibliometric analysis and highlights of recent advancements. Sustainability 2022, 14, 13061. [Google Scholar] [CrossRef]
- Imran, H.M.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef]
- Hammes, G.; Thives, L.P.; Ghisi, E. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. J. Environ. Manag. 2018, 222, 338–347. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, M.; Zhu, J.; Lu, H.; Cao, R. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. Int. J. Transp. Sci. Technol. 2019, 8, 373–382. [Google Scholar] [CrossRef]
- Suripin, S.; Sachro, S.S.; Atmojo, P.S.; Edhisono, S.; Budieny, H.; Kurniani, D. Reducing stormwater runoff from parking lot with permeable pavement. In Proceedings of the 3rd International Conference on Energy, Environmental and Information System, Semarang, Indonesia, 14–15 August 2018; Volume 73. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Kyung-Ho, K. Rainfall runoff mitigation by retrofitted permeable pavement in an urban area. Sustainability 2018, 10, 1231. [Google Scholar] [CrossRef]
- Infante, S.; Mobilia, M.; Longobardi, A.; Albini, M. Permeable pavements hydraulic modelling: An experimental study. Open J. Civ. Eng. 2021, 15, 266–278. [Google Scholar] [CrossRef]
- Kuruppu, U.; Rahman, A.; Rahman, M.A. Permeable pavement as a stormwater best management practice: A review and discussion. Environ. Earth Sci. 2019, 78, 327. [Google Scholar] [CrossRef]
- Motamedi, M.; Shafabakhsh, G.; Azadi, M. Evaluation of fatigue and rutting properties of asphalt binder and mastic modified by synthesized polyurethane. J. Traffic Transp. Eng. 2021, 8, 1036–1048. [Google Scholar] [CrossRef]
- Yang, S.; Park, H.; Baek, C. Fatigue cracking characteristics of asphalt pavement structure under aging and moisture damage. Sustainability 2023, 15, 4815. [Google Scholar] [CrossRef]
- Huang, Y.H. Pavement Analysis and Design, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Shadman, M.; Ziari, H. Laboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: A dissipated energy approach. Const. Build. Mater. 2017, 138, 434–440. [Google Scholar] [CrossRef]
- Sudarsanan, N.; Kim, Y.R. A critical review of the fatigue life prediction of asphalt mixtures and pavements. J. Traffic Transp. Eng. 2022, 9, 808–835. [Google Scholar] [CrossRef]
- Wu, J.P.; Herrington, P.R.; Alabaster, D. Long-term durability of epoxy-modified open-graded porous asphalt wearing course. Int. J. Pavement Eng. 2019, 20, 920–927. [Google Scholar] [CrossRef]
- Dan, H.-C.; Wang, Z.; Cao, W.; Liu, J. Fatigue characterization of porous asphalt mixture complicated with moisture damage. Const. Build. Mater. 2021, 303, 124525. [Google Scholar] [CrossRef]
- Omar, H.A.; Yusoff, N.I.M.; Mubaraki, M.; Ceylan, H. Effects of moisture damage on asphalt mixtures. J. Traffic Transp. Eng. 2020, 7, 600–628. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Partl, M.N. Evaluation of moisture susceptibility of porous asphalt concrete using water submersion fatigue tests. Constr. Build. Mater. 2009, 23, 3475–3484. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liu, Q.; Wang, Y.; Ago, C.; Oeser, M. Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions. Constr. Build. Mater. 2020, 238, 117694. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Nassiri, S.; Li, H.; Englund, K. Performance evaluation of porous asphalt mixture enhanced with high dosages of cured carbon fiber composite materials. Constr. Build. Mater. 2021, 274, 122066. [Google Scholar] [CrossRef]
- Ndon, U.J. Trends in the application of permeable pavement as sustainable highway storm water management option for safe-use of roadways. J. Civil. Environ. Eng. 2017, 7, 1000288. [Google Scholar] [CrossRef]
- Haryati, Y.; Norhidayah, A.H.; Nordiana, M.; Juraidah, A.; Nor Hayati, A.H.; Ramadhansyah, P.J.; Khairil Azman, M.; Haryati, A. Stability and rutting resistance of porous asphalt mixture incorporating coconut shells and fibres. IOP Conf. Ser. Earth Environ. Sci. 2019, 244, 012043. [Google Scholar] [CrossRef]
- Wang, S.; Kang, A.; Xiao, P.; Li, B.; Fu, W. Investigating the effects of chopped basalt fiber on the performance of porous asphalt mixture. Adv. Mat. Sci. Eng. 2019, 2019, 2323761. [Google Scholar] [CrossRef]
- Gupta, A.; Rodriguez-Hernandez, J.; Castro-Fresno, D. Incorporation of additives and fibers in porous asphalt mixtures: A review. Materials 2019, 12, 3156. [Google Scholar] [CrossRef] [PubMed]
- Senior-Arrieta, V.; Córdoba-Maquilón, J.E. Mechanical characterization of porous asphalt mixes modified with fatty acid amides-FAA. Ing. Investig. 2017, 37, 43–48. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Ling, T.; Yuan, F. Fatigue properties of aged porous asphalt mixtures with an epoxy asphalt binder. J. Mater. Civ. Eng. 2022, 34, 04021488. [Google Scholar] [CrossRef]
- Lin, C.; Tongjing, W.; Le, T.; Junjie, Y.; Jiachen, S. Laboratory evaluation on performance of porous polyurethane mixtures and OGFC. Const. Build. Mater. 2018, 169, 436–442. [Google Scholar] [CrossRef]
- Garcia, E.S.H.; Thives, L.P.; Ghisi, E.; Antunes, L.N. Analysis of permeability reduction in drainage asphalt mixtures due to decrease in void volume. J. Clean. Prod. 2020, 248, 119292. [Google Scholar] [CrossRef]
- Shirini, B.; Imaninasa, R. Performance evaluation of rubberized and SBS modified porous asphalt mixtures. Const. Build. Mater. 2016, 107, 165–171. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Zhang, S.; Zheng, Y.; Ding, Q.; Tong, B. Performance-guided design of permeable asphalt concrete with modified asphalt binder using crumb rubber and SBS modifier for sponge cities. Materials 2021, 14, 1266. [Google Scholar] [CrossRef]
- Chen, S.; Gu, L.; Tu, Z.; Ma, T.; Kang, L. Mechanical properties of porous asphalt mixtures containing styrene-butadiene-styrene and high-viscosity modifiers. J. Mater. Civ. Eng. 2023, 35, 04022417. [Google Scholar] [CrossRef]
- Willis, J.R.; Timm, D.H.; Kluttz, R. Performance of a highly polymer-modified asphalt binder test section at the national center for asphalt technology pavement test track. Transp. Res. Rec. 2016, 2575, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Hao, G.; Yan, C.; Lv, Q.; Cai, Q. Evaluation of open-grade friction course (OGFC) mixtures with high content SBS polymer modified asphalt. Const. Build. Mater. 2021, 270, 121374. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Hasan, M.M.; Van Bochove, G. Rational control parameters for determination of design binder content of porous asphalt. In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012. [Google Scholar]
- Kolodziej, V.M. Estudo das Propriedades Acústicas, Drenantes e Mecânicas de Revestimentos Asfálticos Porosos [Study of the Acoustic, Draining and Mechanical Properties of Porous Asphalt Surfaces]. Master‘s Thesis, Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, Brazil, 17 October 2016. (In Portuguese). [Google Scholar]
- Ji, T.; Xiao, L.; Chen, F. Parametric analysis of the drainage performance of porous asphalt pavement based on a 3D FEM method. J. Mater. Civ. Eng. 2020, 32, 04020383. [Google Scholar] [CrossRef]
- ASTM D7064; Standard Practice for Open-Graded Friction Course (OGFC) Mix Design. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2003.
- DNER-ES 386; Pavimentação–Pré-Misturado a Quente com Asfalto Polímero–Camada Porosa de Atrito–Especificação de Serviço [Paving–Hot Premixed with Polymer Asphalt–Porous Friction Layer–Specification]. Departamento Nacional de Infraestrutura de Transportes (DNIT), Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 1999. (In Portuguese)
- Zanoletti, A.; Botempi, E. Editorial: Urban runoff of pollutants and their treatment. Front. Environ. Chem. 2023, 4, 1151859. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Piñon-Colin, T.J.; Rodriguez-Jimenez, R.; Rogel-Hernandez, E.; Alvarez-Andrade, A.; Wakida, F.T. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Sci. Total Environ. 2020, 704, 135411. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ. Prog. Sustain. Energy 2010, 33, 676–680. [Google Scholar] [CrossRef]
- Antunes, L.N.; Thives, L.P.; Ghisi, E. Potential for potable water savings in buildings by using stormwater harvested from porous pavements. Water 2016, 8, 110. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E.; Brecht, D.G.; Pires, D.M. Filtering capability of porous asphalt pavements. Water 2018, 10, 206. [Google Scholar] [CrossRef]
- Alam, T.; Mahmoud, A.; Jones, K.D.; Bezares-Cruz, J.C.; Guerrero, J. A comparison of three types of permeable pavements for urban runoff mitigation in the semi-arid South Texas, USA. Water 2019, 11, 1992. [Google Scholar] [CrossRef]
- Ghisi, E.; Belotto, T.; Thives, L.P. The Use of permeable interlocking concrete Pavement to filter stormwater for non-potable uses in buildings. Water 2020, 12, 2045. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Liao, Z.; Zhang, K.; Schimidt, A.; Tao, T. Laboratory analysis on the surface runoff pollution reduction performance of permeable pavements. Sci. Total Environ. 2019, 692, 1–8. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Yang, B.; Xie, N.; Ning, Y. Laboratory investigation on pollutant removal effect of purification materials for porous asphalt pavement. Transp. Res. Rec. 2022, 2676, 421–435. [Google Scholar] [CrossRef]
- Lu, Q.; Fu, P.C.; Harvey, J.T. Laboratory Evaluation of the Noise and Durability Properties of Asphalt Surface Mixes; Research Report No, UCPRC-RR-2009-07; University of California, Pavement Research Center: Davis/Berkeley, CA, USA, 2009; Available online: https://escholarship.org/uc/item/2sq561kp (accessed on 20 April 2023).
- DNIT 129; Cimento Asfáltico de Petróleo Modificado por Polímero Elastomérico–Especificação de Material [Polymer-Modified Petroleum Asphalt Cement Elastomeric–Material Specification]. Departamento Nacional de Infraestrutura de Transportes (DNIT), Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 2011. (In Portuguese)
- NBR 6576; Materiais Asfálticos–Determinação da Penetração [Bituminous Materials–Determination of Penetration]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2007. (In Portuguese)
- NBR 6560; Materiais Asfálticos–Determinação do Ponto de Amolecimento–Método do anel e bola [Bituminous Materials–Determination of the Softening Point–Ring-and-Ball Method]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2016. (In Portuguese)
- NBR 15086; Materiais betuminosos–Determinação da Recuperação Elástica pelo Ductilômetro de Cimentos Asfálticos Modificados por Polímeros Elastoméricos ou Borracha [Bituminous Materials–Determination of the Elastic Recovery by Ductilometer of Elastomeric Polymer and Ground Tyre Modified Asphalt]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2022. (In Portuguese)
- NBR 15184; Materiais betuminosos–Determinação da Viscosidade em Temperaturas Elevadas Usando um Viscosímetro Rotacional [Bituminous Materials–Viscosity Determination of Elevated Temperatures Using a Rotational Viscometer]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2021. (In Portuguese)
- NBR 15166; Asfalto Modificado–Ensaio de Separação de Fase [Modified Asphalt–Test Method for Phase Separation]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2004. (In Portuguese)
- NBR 15235; Materiais Asfálticos–Determinação do Efeito do calor e do Ar em uma Película Delgada Rotacional [Asphalt Materials–Determination of Effect of heat and Air on a Moving Thin-Film]. Associação Brasileira de Normas Técnicas (ABNT): São Paulo, SP, Brazil, 2009. (In Portuguese)
- ASTM D3203; Standard Test Method for Percent Air Voids in Compacted Asphalt Mixtures. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017.
- AFNOR NF P98-254-2; Mesure de Proprietés Liées à la Perméabilité des Matériaux des Mélanges Hydrocarbonés, Partie 2. Association Française de Normalisation (AFNOR): Paris, France, 1993. (In French)
- Raimbault, G.; Andrieu, H.; Berthier, E.; Joannis, C.; Legret, M. Infiltration des eaux Pluviales à Travers les Surfaces Urbaines: Des Revêtements Imperméables aux Structures-Réservoirs. Bull. Des. Lab. Des. Ponts Chaussées 2002, 238, 39–50. Available online: https://www.ifsttar.fr/collections/BLPCpdfs/blpc_238_39-50.pdf (accessed on 12 February 2023). (In French).
- NLT-327; Permeabilidad In Situ de Pavimentos Drenantes con el Permeámetro LCS. Laboratorio Escuela de Caminos de Santander: Santander/Cantabria, Spain, 2000. Available online: http://normativa.itafec.com/ensayos/ES.12.02.138.LT.pdf (accessed on 12 March 2023)In Spanish.
- Tex-245-F; Test Procedure of Cantabro Loss. Texas Department of Transportation: Austin, TX, USA, 2021. Available online: https://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/200-F_series/pdfs/bit245.pdf (accessed on 25 April 2023).
- AASHTO T 283; Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage. American Association of State and Highway Transportation Officials: Washington, DC, USA, 2021.
- DNIT 135; Pavimentação Asfáltica-Misturas Asfálticas–Determinação do Módulo de Resiliência–Método de Ensaio [Asphalt Paving–Asphalt Mixtures-Resilient Modulus Determination–Test Method]. Departamento Nacional de Infraestrutura de Transportes (DNIT), Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 2018. (In Portuguese)
- DNIT 183; Pavimentação Asfáltica-Ensaio de Fadiga por Compressão Diametral à Tensão Controlada–Método de Ensaio [Asphalt Paving-Diametral Fatigue Test by Controlled Force Indirect Tensile–Test Method]. Departamento Nacional de Infraestrutura de Transportes (DNIT), Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 2018. (In Portuguese)
- ANA. Conservação e Reúso da Água em Edificações [Water Conservation and Reuse in Buildings]; Agência Nacional De Águas: São Paulo, SP, Brazil, 2005; Available online: https://smastr16.blob.core.windows.net/municipioverdeazul/2011/11/ManualConservacaoReusoAguaEdificacoes.pdf (accessed on 10 January 2023). (In Portuguese)
- Software MeDiNa; Departamento Nacional de Infraestrutura de Transportes (DNIT), Diretoria de Planejamento e Pesquisa/IPR: Rio de Janeiro, RJ, Brazil, 2020. Available online: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/medina (accessed on 16 May 2023). (In Portuguese)
- INMET. Normais Climatológicas do Brasil [Climatological Standards in Brazil]; Instituto Nacional de Meteorologia (INMET): Brasília, DF, Brazil, 2023. Available online: https://portal.inmet.gov.br/normais (accessed on 18 March 2023). (In Portuguese)
- INMET. 2023. Available online: https://portal.inmet.gov.br/dadoshistoricos (accessed on 18 March 2023). (In Portuguese)
- INMET. 2023. Available online: https://tempo.inmet.gov.br/ValoresExtremos/PMAX (accessed on 18 March 2023). (In Portuguese)
- ND. 2022. Available online: https://ndmais.com.br/tempo/chuvas-causam-alagamentos-e-deslizamento-em-florianopolis/ (accessed on 27 December 2022). (In Portuguese).
- Simm Júnior, G.P. Estudo do Comportamento de Estruturas de Pavimentos com Materiais Alternativos Visando a Redução dos Custos de Pavimentação no Estado de Santa Catarina [The Behaviour of Pavement Structures Study with Alternative Materials Aiming Paving Costs Reducing in the State of Santa Catarina]. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil, 2007. (In Portuguese). [Google Scholar]
- Custódio, D.A.S.; Pascoal, P.T.; Baroni, M.; Pereira, D.S.; Specht, L.P. Influência da Saturação pós-Compactação no Comportamento Resiliente de um solo Laterítico Empregado em Subleito Rodoviário. Rev. Ibero Am. Ciências Ambient. 2021, 12, 265–278. (In Portuguese) [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). EnviroAtlas. Available online: https://enviroatlas.epa.gov/enviroatlas/DataFactSheets/pdf/ESC/Percentimperviousareacensusblockgroup.pdf (accessed on 25 January 2023).
- Pasquier, U.; Vahmani, P.; Jones, A.D. Quantifying the city-scale impacts of impervious surfaces on groundwater recharge potential: An urban application of WRF–Hydro. Water 2022, 14, 3134. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Döring, A.O.; Möck, M.; Sedrez, O.; Munn, O.; Schneider, A.K.; Weber, S.; Schröder, B. The “Hidden Urbanization”: Trends of impervious surface in low-density housing developments and resulting impacts on the water balance. Front. Environ. Sci. 2019, 7, 29. [Google Scholar] [CrossRef]
- Clar, M.L.; Barfield, B.J.; O’Connor, T.P. Stormwater Best Management Practice Design Guide: Volume 1, General Considerations; Report EPA/600/R-04/121; Environmental Protection Agency (EPA): Cincinnati, OH, USA, 2004. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/901X0A00.PDF?Dockey=901X0A00.PDF (accessed on 15 May 2023).
- Minnesota Pollution Control Agency. Overview for Permeable Pavement. Available online: https://stormwater.pca.state.mn.us/index.php/Overview_for_permeable_pavement (accessed on 26 January 2023).
- United States Geological Survey (USGS). Evaluating the Potential Benefits of Permeable Pavement on the Quantity and Quality of Stormwater Runoff. Available online: https://www.usgs.gov/centers/upper-midwest-water-science-center/science/evaluating-potential-benefits-permeable-pavement (accessed on 11 January 2023).
- Huang, W.; Yu, H.; Lin, Y.; Zheng, Y.; Ding, Q.; Tong, B.; Wang, T. Energy analysis for evaluating durability of porous asphalt mixture. Constr. Build. Mater. 2022, 326, 126819. [Google Scholar] [CrossRef]
- Jaya, R.P.; Hamzah, M.O. Properties of porous asphalt mixture made with styrene butadiene styrene under long term oven ageing. Adv. Mater. Res. 2012, 486, 378–383. Available online: http://www.scientific.net/AMR.486.378 (accessed on 27 July 2023).
- Shukry, A.M.S.; Hassan, N.A.; Hainin, M.R.; Abdullah, M.E.; Abdullah, N.A.M.; Mahmud, M.Z.H. Experimental evaluation of anti-stripping additives on porous asphalt mixtures. J. Teknol. 2016, 78, 113–119. [Google Scholar] [CrossRef]
- Kim, H.; Sokolov, K.; Poulikakos, L.D.; Partl, M.N. Fatigue evaluation of porous asphalt composites with carbon fiber reinforcement polymer grids. Transp. Res. Rec. 2009, 2116, 108–117. [Google Scholar] [CrossRef]
- Potter, J.G.; Halliday, A.R. The Contribution of Pervious Macadam Surfacing to the Structural Performance of Roads; TRL Report 1022; Transport Research Laboratory: Crowthorne, UK, 1981. [Google Scholar]
- James, E. A Literature review on the effect of porous asphalt roads on water pollution. In Sustainable Road Surfaces for Traffic Noise Control; Silvia Project Report; European Commission: Ottawa, ON, Canada, 2013. [Google Scholar]
- Pratt, C.J.; Mantle, J.D.G.; Schofield, P.A. UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality. Water Sci. Technol. 1995, 32, 63–69. [Google Scholar] [CrossRef]
- Gilbert, J.K.; Clausen, J.C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut. Water Res. 2006, 40, 826–832. [Google Scholar] [CrossRef]
- Sansalone, J.; Kuang, X.; Ying, G.; Ranieri, V. Filtration and clogging of permeable pavement loaded by urban drainage. Water Res. 2012, 46, 6763–6774. [Google Scholar] [CrossRef] [PubMed]
- Park, D.G.; Sandoval, N.; Lin, W.; Kim, H.; Cho, Y.H. A case study: Evaluation of water storage capacity in permeable block pavement. KSCE J. Civ. Eng. 2014, 18, 514–520. [Google Scholar] [CrossRef]
- Knappenberger, T.; Jayakaran, A.D.; Stark, J.D.; Hinman, C.H. Monitoring porous asphalt stormwater infiltration and outflow. J. Irrig. Drain. Eng. 2017, 143, 04017027. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- ASTM C88; Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2018.
Test | Unit | Result | Reference |
---|---|---|---|
Penetration, 100 g, 5 s, 25 °C | 0.1 mm | 36 | [54] |
Softening point 1 | °C | 90.8 | [55] |
Elastic recovery, 20 cm; 25 °C | % | 95 | [56] |
Apparent viscosity 2 | |||
135 °C, spindle 21, 20 rpm | cP | 2989 | [57] |
150 °C, spindle 21, 50 rpm | cP | 1408 | |
175 °C, spindle 21, 100 rpm | cP | 405 | |
Storage stability, ΔSp 3 | °C | 2.1 | [58] |
RTFO 4 | |||
Mass loss | % | 0.333 | [59] |
Change in softening point | °C | 4.3 | [55] |
Change in elastic recovery | % | 97.8 | [56] |
Retained penetration | % | 68 | [54] |
Parameters | Sample | ||
---|---|---|---|
1 | 2 | 3 | |
Modulus (MPa) | 2717 | 2797 | 2779 |
Mean (MPa) | 2764 | ||
Standard deviation (MPa) | 42 | ||
Coefficient of variation (%) | 1.5 |
Parameters | Results |
---|---|
k1 | 4.0 × 10−6 |
k2 | 2.391 |
R2 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammes, G.; Thives, L.P. Porous Asphalt Mixture with Improved Fatigue Resistance and Stormwater Pollutant Reduction in Urban Road Pavement. Water 2023, 15, 2962. https://doi.org/10.3390/w15162962
Hammes G, Thives LP. Porous Asphalt Mixture with Improved Fatigue Resistance and Stormwater Pollutant Reduction in Urban Road Pavement. Water. 2023; 15(16):2962. https://doi.org/10.3390/w15162962
Chicago/Turabian StyleHammes, Gabriela, and Liseane Padilha Thives. 2023. "Porous Asphalt Mixture with Improved Fatigue Resistance and Stormwater Pollutant Reduction in Urban Road Pavement" Water 15, no. 16: 2962. https://doi.org/10.3390/w15162962