Seepage and Heat Transfer of Dominant Flow in Fractured Geothermal Reservoirs: A Review and Outlook
Abstract
:1. Introduction
2. Global Research Status at Home and Abroad and Analysis of Developmental Dynamics
2.1. Seepage and Heat-Transfer Mechanisms of Dominant Flow in Fractures of Geothermal Reservoirs
2.2. Indoor Experiments and On-Site Tests on Seepage and Heat Transfer in Fractures
2.2.1. Laboratory Experiments
2.2.2. Tracer Tests for Geothermal Production and Reinjection Projects
2.2.3. Numerical Simulations
3. Existing Problems and Suggestions for Further Research
3.1. Existing Problems
- (1)
- The multifield coupling in geothermal reservoirs is a dynamic process in time and space during the operation of the geothermal production–reinjection system. Moreover, reconstructing the deep in situ high-temperature, high-pressure environment in experimental settings is challenging. All these lead to the unidentified formation and evolutionary laws of the dominant flow in deep geothermal reservoirs under coupled THMC fields. These laws include pore–fracture geometries, the spatial distribution of fracture networks, and the perturbation caused by geothermal production and reinjection.
- (2)
- The fractures in experimental settings differ greatly from subsurface fractures in the order of magnitude, making it difficult to study the multiscale applications of the microscopic mechanisms to macroscopic engineering. In addition, the effects of the seepage and heat transfer of the dominant flow on the evolution of the temperature field of the fracture network in geothermal reservoirs are yet to be ascertained. Accordingly, it is difficult to achieve the scientific design of the production–reinjection schemes for deep geothermal exploitation.
3.2. Suggestions for Further Research
- (1)
- The formation mode and heat-transfer process of the dominant flow in a single fracture
- (2)
- Evolutionary laws and accurate identification of the dominant flow in the fracture network of karst geothermal reservoirs
- (3)
- Heat transfer of the dominant flow in the fracture network of karst geothermal reservoirs and its quantitative evaluation
- (4)
- Effects of the dominant flow on the evolution of the temperature field in the fracture network of karst geothermal reservoirs and their optimal regulation
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velez, M.I.; Blessent, D.; Cordoba, S.; Lopez-Sanchez, J.; Raymond, J. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer. J. S. Am. Earth Sci. 2018, 81, 153–164. [Google Scholar] [CrossRef]
- Liu, Y.G.; Huang, Z.L.; Wang, Y.; Wang, W.L.; Wang, J.G. Thermo-hydro-mechanical Coupling Processes in Carbonate Geothermal Reservoirs and Their Numerical Simulation. Lithosphere 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Matsumoto, M. A single-phase reservoir simulation method based on a roughly distributed and highly permeable fracture network model with applications to production and reinjection problems. Geothermics 2020, 84, 15. [Google Scholar] [CrossRef]
- Asai, P.; Panja, P.; McLennan, J.; Moore, J. Efficient workflow for simulation of multifractured enhanced geothermal systems (EGS). Renew. Energy 2019, 131, 763–777. [Google Scholar] [CrossRef]
- Reimus, P.; Marina, O.; Norskog, K.; Caporuscio, F.; Perkins, G.; Sams, S. Results and interpretation of a 2016 tracer test at the Lightning Dock Geothermal Facility and planning for a reactive tracer test in 2017. In Confidential New Mexico Small Business Assistance Report Provided to Participating Companies; Los Alamos National Laboratory: Los Alamos, NM, USA, 2016. [Google Scholar]
- Beall, J.J. R-13 tracing of injection in the Geysers. Geotherm. Resour. Counc. Trans. 1994, 18, 151–159. [Google Scholar]
- Liu, Y.G.; Liu, G.H.; Zhao, Z.H.; Zhang, H.L. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain. Energy Explor. Exploit. 2019, 37, 849–864. [Google Scholar]
- Cao, V.; Schaffer, M.; Taherdangkoo, R.; Licha, T. Solute Reactive Tracers for Hydrogeological Applications: A Short Review and Future Prospects. Water 2020, 12, 653. [Google Scholar] [CrossRef]
- Liu, Y.; Long, X.; Liu, F. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs. Geothermics 2022, 105, 102533. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Wang, Y.; Liao, Y.; Zhao, G. Numerical simulation and design optimization of large-scale geothermal production based on a multi-well layout in Xianxian geothermal field. Lithosphere 2022, 20, 2929551. [Google Scholar] [CrossRef]
- Luo, S. Numerical Analysis of Coupled Fluid Flow and Heat Transfer at Multiple Scales in Deep Geothermal Systems. Ph.D. Thesis, Tsinghua University, Beijing, China, 2018. [Google Scholar]
- Radilla, G.; Sausse, J.; Sanjuan, B.; Fourar, M. Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach. Geothermics 2012, 44, 43–51. [Google Scholar] [CrossRef]
- Crooijmans, R.A.; Willems, C.J.L.; Nick, H.M.; Bruhn, D.F. The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs. Geothermics 2016, 64, 209–219. [Google Scholar] [CrossRef]
- Ganguly, S.; Kumar, M.S.M.; Date, A.; Akbarzadeh, A. Numerical modeling and analytical validation for transient temperature distribution in a heterogeneous geothermal reservoirs due to cold-water reinjection. Proc. World Geotherm. Congr. 2015, 4, 19–25. [Google Scholar]
- Guo, B.; Fu, P.; Hao, Y.; Peters, C.A.; Carrigan, C.R. Thermal drawdown-induced flow channeling in a single fracture in EGS. Geothermics 2016, 61, 46–62. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Singh, M.; Bär, K.; Sass, I. Thermo-hydro-mechanical modeling of a enhanced geothermal system in a fractured reservoir using co2 as heat transmission fluid—A sensitivity investigation. Geophysics 2021, 254, 124266. [Google Scholar]
- Mahmoodpour, S.; Singh, M.; Turan, A.; Bär, K.; Sass, I. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir. Energy 2022, 247, 123511. [Google Scholar] [CrossRef]
- Pandey, S.N.; Chaudhuri, A. The effect of heterogeneity on heat extraction and transmissivity evolution in a carbonate reservoir: A thermo-hydro-chemical study. Geothermics 2017, 69, 45–54. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Bian, K.; Zhang, H.; Wang, X.; Zhang, H.; Wang, W. Influence of low temperature tail water reinjection on seepage and heat transfer of carbonate reservoirs. Energy Explor. Exploit. 2021, 39, 2062–2079. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, W.; Lin, W.; Liu, F.; Zhu, X.; Liu, Y.; Li, J. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region. Geol. China 2017, 44, 1074–1085. [Google Scholar]
- Ciriaco, A.; Zarrouk, S.J.; Zakeri, G. Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renew. Sustain. Energy Rev. 2019, 119, 3. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Guo, X.; Hu, J.; Wang, J.; Wang, X.; Zhao, G. A Joint Method Based on Geochemistry and Magnetotelluric Sounding for Exploring Geothermal Resources in Sedimentary Basins and Its Application. Water 2022, 14, 3299. [Google Scholar] [CrossRef]
- Ma, F.; Wang, G.; Zhang, W.; Zhu, X.; Zhang, H.; Yue, G. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area. Acta Geol. Sin. 2020, 94, 1981–1990. [Google Scholar]
- Yang, Y.; Ding, G.; Xu, W.; Li, H.; Lu, H.; Wang, Y.; Zhang, J.; Wang, Y. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing. Hydrogeol. Eng. Geol. 2020, 47, 196–200. [Google Scholar]
- Wang, S.; Liu, J.; Lin, P.; Li, H.; Yin, M.; Pang, J.; Sun, C.; Gao, X. A study of reinjection experiment and tracer test in a karst geothermal reservoir. Hydrogeol. Eng. Geol. 2013, 40, 129–133. [Google Scholar]
- Wang, Y.; Liu, Y.; Bian, K.; Zhang, H.; Qin, S.; Wang, X. Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China. J. Groundw. Sci. Eng. 2020, 8, 305–314. [Google Scholar]
- Zeng, M.; Ruan, C.; Tian, G.; Zhao, Y.; Tian, G. Connect test between karst cranny reservoir pumping well and injection well. Geol. Prospect. 2008, 44, 105–109. [Google Scholar]
- Zhou, L.; Zhu, Z.; Xie, X.; Hu, Y. Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance. Renew. Energy 2022, 181, 1440–1458. [Google Scholar] [CrossRef]
- Kamila, Z.; Kaya, E.; Zarrouk, S.J. Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics 2020, 89, 1–5. [Google Scholar] [CrossRef]
- Long, X.; Zhang, K.; Yuan, R.; Zhang, L.; Liu, Z. Hydrogeochemical and Isotopic Constraints on the Pattern of a Deep Circulation Groundwater Flow System. Energies 2019, 12, 404. [Google Scholar] [CrossRef]
- Snow, D.T. A Parallel Plate Model of Fractured Permeable Media. Ph.D. Thesis, University of California, Riverside, CA, USA, 1965. [Google Scholar]
- Andrade, J.J.S.; Henrique, E.A.A.; Almeida, M.P.; Costa, M.H.A.S. Heat transport through rough channels. Phys. A Stat. Mech. Its Appl. 2004, 339, 296–310. [Google Scholar] [CrossRef]
- Sanei, M.; Faramarzi, L.; Fahimifar, A.; Goli, S.; Rahmati, A. Shear strength of discontinuities in sedimentary rock masses based on direct shear tests. Int. J. Rock Mech. Min. Sci. 2015, 75, 119–131. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Z. Fractal Geometry and Fracture of Rock. Acta Mech. Sin. 1988, 4, 255–264. [Google Scholar]
- Duan, Z.; Li, F.; Gong, L.; Yang, Y.; Li, X. Geo-thermal development well spacing patterns based onhydrothermal coupled modeling in oil-gas bearing areas. Nat. Gas Ind. 2020, 40, 156–162. [Google Scholar]
- Sisavath, S.; Jing, X.; Zimmerman, R.W. Creeping flow through a pipe of varying radius. Phys. Fluids 2001, 13, 2762–2772. [Google Scholar] [CrossRef]
- Cheng, L.; Luo, Z.; Xie, Y.; Zhao, L.; Wu, L. Numerical simulation and analysis of damage evolution and fracture activation in enhanced tight oil recovery using a THMD coupled model. Comput. Geotech. 2023, 155, 105244. [Google Scholar] [CrossRef]
- Ibemesi, P.; Benson, P. Effect of Pressure and Stress Cycles on Fluid Flow in Hydraulically Fractured, Low-Porosity, Anisotropic Sandstone. Rock Mech. Rock Eng. 2022, 56, 19–34. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D. Three-Dimensional Thermoporoelastic Modeling of Hydrofracturing and Fluid Circulation in Hot Dry Rock. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025673. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, D.; Shen, B.; Wang, Q.; Liu, X.; Sun, D.; Yu, B.; Zhou, F.; Zhang, J. An experimental study of the temporary plugging mechanisms of rough fractures in hot dry rocks under a high temperature. Powder Technol. 2023, 427, 118687. [Google Scholar] [CrossRef]
- Richter, S.; Lubashevsky, K.; Randow, J.; Henker, S.; Bucher, A. Global Sensitivity Analysis and Uncertainty Quantification for Design Parameters of Shallow Geothermal Systems. Geotherm. Energy 2023. [Google Scholar] [CrossRef]
- Xie, H.; Lu, J.; Li, C.; Li, M.; Gao, M. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Zhou, Z.; Mikada, H.; Takekawa, J.; Xu, S. Numerical Simulation of Hydraulic Fracturing in Enhanced Geothermal Systems Considering Thermal Stress Cracks. Pure Appl. Geophys. 2022, 179, 1775–1804. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; González-Pinzón, R.; Drummond, J.D.; Larsen, L.G.; Cirpka, O.A.; Harvey, J.W. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams. Water Resour. Res. 2017, 53, 1575–1594. [Google Scholar] [CrossRef]
- Fouillac, C.; Sauty, J.P.; Vuataz, F.D. Use of Tracers in the Geothermal Industry-Tracer Flow Equations in Porous Media. In Geothermal Reservoir Engineering; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Rose, P.E.; Clausen, S. The Use of Amino G as a Thermally Reactive Tracer for Geothermal Applications. In Proceedings of the 39th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 February 2014; pp. 1–5. [Google Scholar]
- Asadollahi, P. Stability Analysis of a Single Three Dimensional Rock Block: Effect of Dilatancy and High-Velocity Water Jet Impact; University of Texas at Austin: Austin, TX, USA, 2009. [Google Scholar]
- Heinze, T.; Hamidi, S.; Galvan, B. A dynamic heat transfer coefficient between fractured rock and flowing fluid. Geothermics 2017, 65, 10–16. [Google Scholar] [CrossRef]
- Ayling, B.F.; Hogarth, R.A.; Rose, P.E. Tracer testing at the Habanero EGS site, central Australia. Geothermics 2016, 63, 15–26. [Google Scholar] [CrossRef]
- Liu, J. The status geothermal reinjection. Hydrogeol. Eng. Geol. 2003, 3, 100–104. [Google Scholar]
- Liu, H.; He, H.; Du, L.; Zhao, L.; Qiao, Y.; Nie, F. Study on the influencing factors of the seepage law of reinjection water in carbonate fractured geothermal reservoir. Sci. Technol. Eng. 2020, 20, 14505–14511. [Google Scholar]
- Li, T.; Cai, Y.; Liu, Y.; Liu, G.; Zhang, H.; Qin, X. Tracer test and simulation of thermal energy storage in carbonate rocks ofthe Xian County geothermal field. Earth Sci. Front. 2020, 27, 152–158. [Google Scholar]
- Ganguly, S.; Kumar, M.S.M. Analytical solutions for movement of cold water thermal front in a heterogeneous geothermal reservoirs. Appl. Math. Model. 2014, 38, 451–463. [Google Scholar] [CrossRef]
- Delbar, A.; Chapuis, R.P. Tracer movements in a straight uniform flow: New equations for the advective part considering the distortion of flow lines around the well. J. Contam. Hydrol. 2021, 239, 5. [Google Scholar] [CrossRef]
- Pruess, K.; Bodvarsson, G.S. Thermal effects of reinjection in geothermal reservoirs with major vertical fractures. J. Pet. Technol. 1984, 36, 1567–1578. [Google Scholar] [CrossRef]
- Nottebohm, M.; Licha, T.; Sauter, M. Tracer design for tracking thermal fronts in geothermal reservoirs. Geothermics 2012, 43, 37–44. [Google Scholar] [CrossRef]
- Leecaster, K.; Ayling, B.; Moffitt, G.; Rose, P. Use of safranin T as a reactive tracer for geothermal reservoir characterization. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Maier, F.; Schaffer, M.; Licha, T. Determination of temperatures and cooled fractions by means of hydrolyzable thermo-sensitive tracers. Geothermics 2015, 58, 87–93. [Google Scholar] [CrossRef]
- Hawkins, A.J.; Fox, D.B.; Becker, M.W.; Tester, J.W. Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers. Water Resour. Res. 2017, 53, 1210–1230. [Google Scholar] [CrossRef]
- Rose, P.; Clausen, S. The use of amino-substituted naphthalene sulfonates as tracers in geothermal reservoirs. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 13–15 February 2017; Volume 42, pp. 1–7. [Google Scholar]
- Schaffer, M.; Idzik, K.R.; Wilke, M.; Licha, T. Amides as thermo-sensitive tracers for investigating the thermal state of geothermal reservoirs. Geothermics 2016, 64, 180–186. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A.; Dallan, E.; Marion, A. STIR-RST: A Software Tool for Reactive Smart Tracer Studies. Environ. Model. Softw. 2020, 135, 10. [Google Scholar] [CrossRef]
- Samal, S.K.; Moharana, M.K. Numerical Assessment of Nanofluids in Recharging Microchannel: Thermo-Hydrodynamic and Entropy Generation Analysis. J. Therm. Sci. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Wang, G.; Lin, W.; Liu, F.; Gan, H.; Wang, S.; Yue, G.; Long, X.; Liu, Y. Theory and survey practice of deep heat accumulation in geothermal system and exploration practice. Acta Geol. Sin. 2023, 97, 639–660. [Google Scholar]
- Reimus, P.; Caporuscio, F.; Marina, O.; Janney, D. Field demonstration of the combined use of thermally-degrading and cation-exchanging tracers to predict thermal drawdown in a geothermal reservoir. Geothermics 2020, 83, 5. [Google Scholar] [CrossRef]
- Seyedrahimi-Niaraq, M.; Ardejani, F.D.; Noorollahi, Y.; Porkhial, S.; Itoi, R.; Nasrabadi, S.J. A three-dimensional numerical model to simulate Iranian NW Sabalan geothermal system. Geothermics 2019, 77, 42–61. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, G.; Tan, X.; Zhang, P. Theoretical model of geothermal tail water reinjection based on the equivalent seepage channel model. Hydrogeol. Eng. Geol. 2017, 44, 158–164. [Google Scholar]
- Long, J.C.S.; Gilmour, P.; Witherspoon, P.A. A model for steady f1uid in random three-dimensional networks of Disc-shaped fractures. Water Resour. Res. 1985, 21, 1105–1115. [Google Scholar] [CrossRef]
- Shao, H.; Wang, W.; Bauer, S. Thermo-Hydro-Mechanical Chemical Processes in Fractured Porous Media: Modelling and Benchmarking; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Liu, B.; Wang, M.; Zhang, M.; Li, W. Dispersivity Experimental Investigation Based on Fracture Network Pipe Model. J. Jilin Univ. (Earth Sci. Ed.) 2016, 46, 230–239. [Google Scholar]
- Ma, Y.; Zhang, Y.; Yu, Z.; Huang, Y.; Chi, Z. Heat transfer by water flowing through rough fractures and distribution of local heat transfer coefficient along the flow direction. 14at transfer coefficient along the flow direction. Int. J. Heat Mass Transf. 2018, 119, 139–147. [Google Scholar] [CrossRef]
- Long, X.; Xie, H.; Deng, X.; Wen, X.; Ou, J.; Ou, R.; Wang, J.; Liu, F. Geological and Geochemical Characteristics of the Geothermal Resources in Rucheng. China. Lithosphere 2021, 2021, 1357568. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Zhao, G.; Zhu, X.; Li, C. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics 2019, 78, 118–128. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Z.; Peng, H. Convective heat transfer of water flow in intersected rock fractures for enhanced geothermal extraction. J. Rock Mech. Geotech. Eng. 2021, 14, 108–122. [Google Scholar] [CrossRef]
- Liu, D.; Xiang, Y. Temporal semi-analytical method for water flow and heat transfer in fractured rocks. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 523–531. [Google Scholar]
- He, Y.; Bai, B.; Hu, S.; Li, X. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Comput. Geotech. 2016, 80, 312–321. [Google Scholar] [CrossRef]
- Bai, B.; He, Y.; Li, X.; Huang, X.; Zhu, J. Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl. Therm. Eng. 2017, 116, 79–90. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, Y.; Lv, S.; Xu, Y.; Sun, Q.; Cai, M.; Yao, J. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems. J. China Univ. Pet. (Ed. Nat. Sci.) 2016, 40, 109–417. [Google Scholar]
- Chen, B.; Song, E.; Cheng, X. A numerical method for discrete fracture network model for flow and heat transfer in tuwo-dimensional fractured rocks. Chin. J. Rock Mech. Eng. 2014, 33, 43–51. [Google Scholar]
- Mahmoodpour, S.; Singh, M.; Mahyapour, R.; Tangirala, S.K.; Bär, K.; Sass, I. Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts. Energies 2022, 15, 9285. [Google Scholar] [CrossRef]
- Mahmoodpour, S.; Singh, M.; Turan, A.; Bär, K.; Sass, I. Hydro-thermal modeling for geothermal energy extraction from soultz-sous-Forêts, France. Geosciences 2021, 11, 464. [Google Scholar] [CrossRef]
- Xia, Y.; Plummer, M.; Mattson, E.; Podgorney, R.; Ghassemi, A. Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems. Renew. Energy 2017, 105, 232–247. [Google Scholar] [CrossRef]
- Reimus, P.; Dean, C.; Newell, D. Evaluation of a cation-exchanging tracer to interrogate fracture surface area in enhanced geothermal systems. Geothermics 2018, 71, 12–23. [Google Scholar] [CrossRef]
- Reimus, P.W.; Pohll, G.; Mihevc, T.; Chapman, J.; Papelis, L.; Lyles, B.; Kosinski, S.; Niswonger, R.; Sanders, P. Testing and parameterizing aconceptual model for radionuclide transport in a fractured granite using multiple tracers in a forced-gradient test. Water Resour. Res. 2003, 39, 1350. [Google Scholar] [CrossRef]
- Wang, G.; Lin, W. Main hydro- geothermal systems and their genetic models in China. Acta Geol. Sin. 2020, 94, 1923–1937. [Google Scholar]
- Hoteit, H.; He, X.; Yan, B.; Vahrenkam, V. Optimization and uncertainty quantification model for time-continuous geothermal energy extraction undergoing re-injection. Geophysics 2021, 12, 1–44. [Google Scholar]
- Parini, M.; Acuna, J.A.; Laudiano, M. Reinjected water return at Miravalles geothermal reservoirs, Costa Rica: Numerical modelling and observations. In Proceedings of the 21st Workshopon Geothermal reservoirs Engineering, Stanford, CA, USA, 17–27 January 1997; Volume 22, pp. 127–134. [Google Scholar]
- Robinson, B.A.; Tester, J.W. Kinetics of alkaline hydrolysis of organic esters and amides in neutrally-buffered solution. Int. J. Chem. Kinet. 1990, 22, 431–448. [Google Scholar] [CrossRef]
- Yazdi, M.R.; Mohebbi, A. Comparison of dissolution in a calcite fracture by isothermal and non-isothermal models. Comput. Geosci. 2022, 26, 401–421. [Google Scholar] [CrossRef]
- Zhao, Z. On the heat transfer coefcient between rock fracture walls and flowing fluid. Comput. Geotech. 2014, 59, 105–111. [Google Scholar] [CrossRef]
- Batchelor, A. Reservoir behaviour in a stimulated hot dry rock system. In Proceedings of the Eleventh Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 21–23 January 1986; Volume 21–23, pp. 35–41. [Google Scholar]
- Du, Y.; Guan, L. Interwell Tracer Tests: Lessons Learned From Past Field Studies. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibtion, Jakharta, Indonesia, 5–7 April 2005; Volume 5, pp. 1–9. [Google Scholar]
- Liu, Y.; Zhu, X.; Wang, G. A review of fluid flow and heat transfer in the CO2-EGS. J. Groundw. Sci. Eng. 2015, 3, 170–175. [Google Scholar] [CrossRef]
- Ke, Z.; Feng, B.; Liu, Y.; Cui, Z.; Liu, X. Dissolution and sedimentation patterns of typical minerals in artificial reservoirs under different environment. Unconv. Resour. 2022, 2, 60–71. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Zhu, X.; Wang, G. Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers. J. Groundw. Sci. Eng. 2017, 5, 87–95. [Google Scholar] [CrossRef]
- Long, X.; Wang, G.; Lin, W.; Wang, J.; He, Z.; Ma, J.; Yin, X. Locating geothermal resources using seismic exploration in Xian county, China. Geothermics 2023, 112, 102747. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, Y.; Li, T.; Wei, M. Seepage and Heat Transfer of Dominant Flow in Fractured Geothermal Reservoirs: A Review and Outlook. Water 2023, 15, 2953. https://doi.org/10.3390/w15162953
Liu Z, Liu Y, Li T, Wei M. Seepage and Heat Transfer of Dominant Flow in Fractured Geothermal Reservoirs: A Review and Outlook. Water. 2023; 15(16):2953. https://doi.org/10.3390/w15162953
Chicago/Turabian StyleLiu, Zhiyan, Yanguang Liu, Tingxin Li, and Meihua Wei. 2023. "Seepage and Heat Transfer of Dominant Flow in Fractured Geothermal Reservoirs: A Review and Outlook" Water 15, no. 16: 2953. https://doi.org/10.3390/w15162953