Assessment of the Streamflow and Evapotranspiration at Wabiga Juba Basin Using a Water Evaluation and Planning (WEAP) Model
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data Collection
2.2. The WEAP Model Performance
2.2.1. Nash–Sutcliffe Efficiency (NSE)
2.2.2. Percent Bias (PBIAS)
2.2.3. Coefficient of Determination
- = is observed discharge;
- = is simulated discharge;
- = is mean of the observed discharge;
- = is the mean of the simulated discharge.
2.2.4. Validation and Classification Criteria
3. Results and Discussion
3.1. Hydrologic Model Development: WEAP
3.2. The WEAP Model Performance: Validation and Classification Criteria
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farrokhzadeh, S.; Monfared, S.A.H.; Azizyan, G.; Shahraki, A.S.; Ertsen, M.W.; Abraham, E. Sustainable Water Resources Management in an Arid Area Using a Coupled Optimization-Simulation Modeling. Water 2020, 12, 885. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, A.A.J.; Beddu, S.; Abd Manan, T.S.B.; Al Yami, S.H.; Irfan, M.; Mursal, S.N.F.; Mohd Kamal, N.L.; Mohamad, D.; Machmudah, A.; Yavari, S.; et al. Prediction of Runoff in Watersheds Located within Data-Scarce Regions. Sustainability 2022, 14, 7986. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Am. Soc. Agric. Biol. Eng. 2015, 58, 1763–1785. [Google Scholar]
- Mounir, Z.M.; Ma, C.M.; Amadou, I. Application of Water Evaluation and Planning (WEAP): A Model to Assess Future Water Demands in the Niger River (In Niger Republic). Math. Model. Methods Appl. Sci. 2011, 5, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Kilsby, C.G.; O’Connell, P.E. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39, 1222. [Google Scholar] [CrossRef] [Green Version]
- Christensen, N.S.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim. Chang. 2004, 62, 337–363. [Google Scholar] [CrossRef]
- Tena, T.M.; Nguvulu, A.; Mwelwa, D.; Mwaanga, P.; Tena, T.M.; Nguvulu, A.; Mwelwa, D.; Mwaanga, P. Assessing Water Availability and Unmet Water Demand Using the WEAP Model in the Semi-Arid Bweengwa, Kasaka and Magoye Sub-Catchments of Southern Zambia. J. Environ. Prot. 2021, 12, 280–295. [Google Scholar] [CrossRef]
- Mourad, K.A. A Water Compact for Sustainable Water Management. Sustainability 2020, 12, 7339. [Google Scholar] [CrossRef]
- Jama, A.A.; Mourad, K.A. Water Services Sustainability: Institutional Arrangements and Shared Responsibilities. Sustainability 2019, 11, 916. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.E. Managing Shared Basins in the Horn of Africa—Ethiopian Projects on the Juba and Shabelle Rivers and Downstream Effects in Somalia. Nat. Resour. Conserv. 2013, 1, 35–49. [Google Scholar]
- Houghton-Carr, H.A.; Print, C.R.; Fry, M.J.; Gadain, H.; Muchiri, P. An assessment of the surface water resources of the Juba-Shabelle basin in southern Somalia. Hydrol. Sci. J. 2011, 56, 759–774. [Google Scholar] [CrossRef] [Green Version]
- Basnyat, D.B.; Gadain, H.M. Hydraulic Analysis of Rivers Juba and Shabelle in Somalia Basic Analysis for Irrigation and Flood Management Purposes; Technical Report No W-13; FAO-SWALIM: Nairobi, Kenya, 2009. [Google Scholar]
- Salman, S.M.A. The Baardhere Dam and Water Infrastructure Project in Somalia—Ethiopia’s objection and the World Bank response. Hydrol. Sci. J. 2011, 56, 630–640. [Google Scholar] [CrossRef]
- Abera Abdi, D.; Ayenew, T. Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecol. Process. 2021, 10, 41. [Google Scholar] [CrossRef]
- Jha, M.K.; Gupta, A. Das Application of Mike Basin for Water Management Strategies in a Watershed. Water Int. 2009, 28, 27–35. [Google Scholar] [CrossRef]
- Vieira, E.d.O.; Sandoval-Solis, S. Water resources sustainability index for a water-stressed basin in Brazil. J. Hydrol. Reg. Stud. 2018, 19, 97–109. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Water Int. 2009, 30, 487–500. [Google Scholar] [CrossRef]
- Labadie, J.W. MODSIM: Decision Support System for Integrated River Basin Management. In Proceedings of the International Congress on Environmental Modelling and Software, Burlington, VT, USA, 9–13 July 2006; pp. 1–11. [Google Scholar]
- Assaf, H.; van Beek, E.; Borden, C.; Gijsbers, P.; Jolma, A.; Kaden, S.; Kaltofen, M.; Labadie, J.W.; Loucks, D.P.; Quinn, N.W.T.; et al. Chapter Thirteen Generic Simulation Models for Facilitating Stakeholder Involvement in Water Resources Planning and Management: A Comparison, Evaluation, and Identification of Future Needs. Dev. Integr. Environ. Assess. 2008, 3, 229–246. [Google Scholar] [CrossRef]
- Dehghanipour, A.H.; Zahabiyoun, B.; Schoups, G.; Babazadeh, H. A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts. Agric. Water Manag. 2019, 223, 105704. [Google Scholar] [CrossRef]
- de Salis, H.H.C.; da Costa, A.M.; Vianna, J.H.M.; Schuler, M.A.; Künne, A.; Fernandes, L.F.S.; Pacheco, F.A.L. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. Int. J. Environ. Res. Public Health 2019, 16, 2542. [Google Scholar] [CrossRef] [Green Version]
- Tena, T.M.; Mwaanga, P.; Nguvulu, A. Hydrological Modelling and Water Resources Assessment of Chongwe River Catchment using WEAP Model. Water 2019, 11, 839. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Shinde, V.; Pradhan, S.K.; Chalodiya, A.L.; Shukla, K.N. Hydrologic Modelling of Mahanadi River Basin in India Using Rainfall-Runoff Model. Nat. Environ. Pollut. Technol. 2014, 13, 385–392. [Google Scholar]
- Teklu, S.; Soliman, A.H.; El-Zawahry, A. Planning for Environmental Water Allocations: Hydrology—Based Assessment in the Awash River Basin, Ethiopia. J. Environ. Earth Sci. 2019, 9, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Rittima, A.; Phankamolsil, Y. The projected changes in water status of the Mae Klong Basin, Thailand, using WEAP model. Paddy Water Environ. 2018, 16, 439–455. [Google Scholar] [CrossRef]
- Maliehe, M.; Mulungu, D.M.M. Assessment of water availability for competing uses using SWAT and WEAP in South Phuthiatsana catchment, Lesotho. Phys. Chem. Earth 2017, 100, 305–316. [Google Scholar] [CrossRef]
- Desta, H.; Lemma, B.; Gebremariam, E. Identifying sustainability challenges on land and water uses: The case of Lake Ziway watershed, Ethiopia. Appl. Geogr. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Yaykiran, S.; Cuceloglu, G.; Ekdal, A. Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model. Water 2019, 11, 271. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Iqbal, J.; Amin, A.; Ribbe, L. Integrated hydrological modeling for assessment of water demand and supply under socio-economic and IPCC climate change scenarios using WEAP in Central Indus Basin. J. Water Supply Res. Technol. AQUA 2019, 68, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Mab, P.; Kositsakulchai, E. Water Balance Analysis of Tonle Sap Lake using WEAP Model and Satellite-Derived Data from Google Earth Engine. Sci. Technol. Asia 2020, 25, 45–58. [Google Scholar] [CrossRef]
- Kirkham, M.B. Potential Evapotranspiration. Princ. Soil Plant Water Relat. 2005, 455–468. [Google Scholar] [CrossRef]
- Röske, F. A global heat and freshwater forcing dataset for ocean models. Ocean Model. 2006, 11, 235–297. [Google Scholar] [CrossRef]
- Chiew, F.; McMahon, T. Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments. J. Hydrol. 1994, 153, 383–416. [Google Scholar] [CrossRef]
- Zhu, Y.; Shan, D.; Wang, B.; Shi, Z.; Yang, X.; Liu, Y. Floristic features and vegetation classification of the Hulun Buir Steppe in North China: Geography and climate-driven steppe diversification. Glob. Ecol. Conserv. 2019, 20, e00741. [Google Scholar] [CrossRef]
- Aboelsoud, H.M.; Habib, A.; Engel, B.; Hashem, A.A.; El-Hassan, W.A.; Govind, A.; Elnashar, A.; Eid, M.; Kheir, A.M.S. The combined impact of shallow groundwater and soil salinity on evapotranspiration using remote sensing in an agricultural alluvial setting. J. Hydrol. Reg. Stud. 2023, 47, 101372. [Google Scholar] [CrossRef]
- Dass, B.; Daniel, D.; Saxena, N.; Sharma, A.; Sen, D.; Sen, S. Informing watershed management in data-scarce Indian Himalayas. Water Secur. 2023, 19, 100138. [Google Scholar] [CrossRef]
- Hund, S.V.; Allen, D.M.; Morillas, L.; Johnson, M.S. Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. J. Hydrol. 2018, 563, 1119–1134. [Google Scholar] [CrossRef]
- Orkodjo, T.P.; Kranjac-Berisavijevic, G.; Abagale, F.K. Impact of climate change on future availability of water for irrigation and hydropower generation in the Omo-Gibe Basin of Ethiopia. J. Hydrol. Reg. Stud. 2022, 44, 101254. [Google Scholar] [CrossRef]
- Dutta, D.; Vaze, J.; Kim, S.; Hughes, J.; Yang, A.; Teng, J.; Lerat, J. Development and application of a large scale river system model for National Water Accounting in Australia. J. Hydrol. 2017, 547, 124–142. [Google Scholar] [CrossRef]
- Lei, T.; Pang, Z.; Wang, X.; Li, L.; Fu, J.; Kan, G.; Zhang, X.; Ding, L.; Li, J.; Huang, S.; et al. Drought and Carbon Cycling of Grassland Ecosystems under Global Change: A Review. Water 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Watkins, J.R. The definition of the terms hydrologically arid and humid for Australia. J. Hydrol. 1969, 9, 167–181. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Z.; Xiong, L. Runoff variation and response to precipitation on multi-spatial and temporal scales in the southern Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101157. [Google Scholar] [CrossRef]
- Murphy, K.W.; Ellis, A.W. An assessment of the stationarity of climate and stream flow in watersheds of the Colorado River Basin. J. Hydrol. 2014, 509, 454–473. [Google Scholar] [CrossRef]
- Waterman, B.R.; Alcantar, G.; Thomas, S.G.; Kirk, M.F. Spatiotemporal variation in runoff and baseflow in watersheds located across a regional precipitation gradient. J. Hydrol. Reg. Stud. 2022, 41, 101071. [Google Scholar] [CrossRef]
- Candela, L.; Tamoh, K.; Olivares, G.; Gomez, M. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Sci. Total Environ. 2012, 440, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Kusahara, K.; Williams, G.D.; Massom, R.; Reid, P.; Hasumi, H. Roles of wind stress and thermodynamic forcing in recent trends in Antarctic sea ice and Southern Ocean SST: An ocean-sea ice model study. Glob. Planet. Chang. 2017, 158, 103–118. [Google Scholar] [CrossRef]
- Ho, L.T.; Goethals, P.L.M. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Chisola, M.N.; Kuráž, M. Patterns and Implications of Hydrologic Regime Change in Chongwe River, Zambia. J. Geogr. Geol. 2016, 8, p1. [Google Scholar] [CrossRef] [Green Version]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Duru, U.; Arabi, M.; Wohl, E.E. Modeling stream flow and sediment yield using the SWAT model: A case study of Ankara River basin, Turkey. Phys. Geogr. 2017, 39, 264–289. [Google Scholar] [CrossRef]
- Güngör, Ö.; Göncü, S. Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrol. Process. 2013, 27, 453–466. [Google Scholar] [CrossRef]
- Hamlat, A.; Guidoum, A. Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Appl. Water Sci. 2018, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Ingol-Blanco, E.; McKinney, D.C. Development of a Hydrological Model for the Rio Conchos Basin. J. Hydrol. Eng. 2013, 18, 340–351. [Google Scholar] [CrossRef]
Hydrological Model(s) | Research Focus | Approach | Simulation Method | Model Performance | Basin and Location | |
---|---|---|---|---|---|---|
Physical Model | Statistical Model | |||||
WEAP | Water resources | √ | √ | Soil moisture method | R2 = 0.97 NSE = 0.64 | Chongwe River Catchment (Zambia) [22] |
WEAP | Sub-basin hydrology | √ | √ | Soil moisture method | R2 = 0.82 NSE =0.80 | Central Rift Valley basin (Ethiopia) [31] |
WEAP | Hydrologic simulation | √ | √ | Soil moisture rainfall–runoff method | R2 = 0.88 NSE = 0.86 PBIAS = −16.5 | Awash basin (Ethiopia) [24] |
WEAP | Evaluating the current availability of water resources | √ | √ | Simplified coefficient method | R2 = 0.91 NSE = 0.89 PBIAS = −10.7 | Mae Klong (Thailand) [25] |
WEAP & SWAT | Assessing the quantity of surface water | √ | √ | Allocated the resources in the catchment | R2 = 0.64 NSE = 0.73 | South Phuthiasana (Tanzania) [26] |
SWAT | Assessing the current status of Lake Ziway and its watershed from hydrological point of view | √ | √ | WEAP-PGM | R2 = 0.6 NSE = 0.55 | Lake Ziway (Ethiopia) [27] |
WEAP | Estimating the water budget components of the Sakarya River basin on annual basis | √ | √ | WEAP-PGM | R2 = 0.89 NSE = 0.74 PBIAS = 21.68 | Sakarya River Basin (Turkey) [28] |
WEAP | Assessing current water resources by considering future climate change | √ | √ | WEAP-PGM | R2 = 0.89 NSE = 0.85 | Central Indus Basin [29] |
WEAP | Comprehensive water balance analysis in a large region using limited, locally measured data | √ | √ | WEAP-PGM | R2 = 0.818 NSE = 0.647 | Mae Klong (Thailand) [32] |
WEAP & multi-objective optimization model | Optimising water allocation decisions over multiple years. | √ | √ | WEAP | NSE =0.93 PBIAS = 11.4% | Sistan region and Hamoun wetland (Iran) [1] |
WEAP | Hydrological assessment of the Juba River catchment | √ | √ | Soil moisture method | R2 = 0.91 NSE = 0.71 PBIAS = 14% | Current Research: Wabiga Juba basin (Somalia–Ethiopia) |
(a) Data sources used in the Juba River Basin–WEAP model | ||||||||||||
Data type | Scale | Format | Description | Source | ||||||||
Meteorology | Daily (1966–2019) | Excel | Precipitation; wind speed, humidity; average temp | National Meteorological Information Centre | ||||||||
River Flow | Daily (2002–2020) | Excel | River discharge | National Meteorological Information Centre | ||||||||
Hydrology | - | Shapefile | River | Q-GIS | ||||||||
(b) Water Components for Wabiga Juba Basin for the selected years | ||||||||||||
Year | 2002/03 | 2005 | 2010 | 2020 | ||||||||
Precipitation (Mm3) | 34,209.6 | 32,002.64 | 38,698.16 | 39,461.51 | ||||||||
Evapotranspiration (Mm3) | −38,021 | −29,422 | −31,154 | −33,566 | ||||||||
Surface Runoff | 1596.12 | 818.68 | 2283.91 | 3717.39 | ||||||||
Streamflow (Mm3) | 3,057,39 | 7718.6 | 9339.82 | 11,558.06 | ||||||||
(c) Averaged monthly climate values of Wabiga Juba catchment (1969 to 2018) | ||||||||||||
Month | January | February | March | April | May | June | July | August | September | October | November | December |
Average Air Temperature (°C) | 30 | 21 | 21.3 | 20.55 | 16.6 | 16.4 | 16.4 | 16 | 23.6 | 26 | 26.1 | 26.8 |
Average RH (%) | 55.5 | 87.3 | 88.2 | 56.3 | 77.2 | 80.2 | 80.3 | 75.2 | 82.3 | 69 | 55.2 | 75.2 |
Average Wind Speed (m/s) | 39.34 | 52.4 | 73.4 | 83.71 | 39.34 | 82.45 | 88.3 | 69.1 | 63.9 | 58 | 48.1 | 39.7 |
Cloudiness Fraction | 0.9 | 0.9 | 0.3 | 0.1 | 0.1 | 0.1 | 0.2 | 1 | 1 | 0.1 | 0.1 | 0.3 |
SN | Parameter | Code | Unit | Range of Values | Optimal Range | ||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Default | |||||
1 | Soil Water Capacity | SWC | mm | 0 | >0 | 1000 | 0–400 |
2 | Deep Water Capacity | mm | 0 | >0 | 1000 | ||
3 | Runoff Resistance Factor | RRF | - | 0 | 1000 | 2 | 0–12 |
4 | Root Zone Conductivity | RZC | mm/month | 0 | >0 | 20 | 14–80 |
5 | Deep Conductivity | DC | mm/month | 0.1 | >0.1 | 20 | 20 |
6 | Preferred Flow Direction | PF | - | 0 | 1 | 0.15 | 0.33–0.8 |
7 | Initial Z1 | - | % | 0 | 100 | 30 | - |
8 | Initial Z2 | - | % | 0 | 100 | 30 | - |
9 | Crop Coefficient | Kc | - | - | - | - | 0–0.987 |
Goodness-of-Fit | NSE | PBIAS | R2 |
---|---|---|---|
Very good | 0.75 NSE 1 | PBIAS 10 | R2 0.75 |
Good | 0.6 NSE 0.75 | 10 PBAIS 15 | 0.7 < R2 0.75 |
Satisfactory | 0.5 NSE 0.6 | 15 PBAIS 45 | 0.6 < R2 0.75 |
Unsatisfactory | NSE 0.5 | PBIAS 45 | R2 0.6 |
Statistical Parameter | Gauge Station: Juba Dolow | |
---|---|---|
Calibration: 2002–2008 | Validation: 2009–2014 | |
Coefficient of Determination (R2) | 0.71 | 0.70 |
Nash–Sutcliffe Efficiency (NSE) | 0.91 | 0.88 |
Percent Bias (PBIAS) (%) | 14% | 13.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail Dhaqane, A.; Murshed, M.F.; Mourad, K.A.; Abd Manan, T.S.B. Assessment of the Streamflow and Evapotranspiration at Wabiga Juba Basin Using a Water Evaluation and Planning (WEAP) Model. Water 2023, 15, 2594. https://doi.org/10.3390/w15142594
Ismail Dhaqane A, Murshed MF, Mourad KA, Abd Manan TSB. Assessment of the Streamflow and Evapotranspiration at Wabiga Juba Basin Using a Water Evaluation and Planning (WEAP) Model. Water. 2023; 15(14):2594. https://doi.org/10.3390/w15142594
Chicago/Turabian StyleIsmail Dhaqane, Abdirahman, Mohamad Fared Murshed, Khaldoon A. Mourad, and Teh Sabariah Binti Abd Manan. 2023. "Assessment of the Streamflow and Evapotranspiration at Wabiga Juba Basin Using a Water Evaluation and Planning (WEAP) Model" Water 15, no. 14: 2594. https://doi.org/10.3390/w15142594