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Abstract: In recent years, the increased intensity and duration of droughts have dramatically altered
the structure and function of grassland ecosystems, which have been forced to adapt to this change
in climate. Combinations of global change drivers such as elevated atmospheric CO2 concentration,
warming, nitrogen (N) deposition, grazing, and land-use change have influenced the impact that
droughts have on grassland C cycling. This influence, to some extent, can modify the relationship
between droughts and grassland carbon (C) cycling in the multi-factor world. Unfortunately, prior
reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current
state of the study on the interactive impacts of multiple factors under drought scenarios in grassland
C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling
in a multi-factor world. Currently, adequate information is not available on the interaction between
droughts and global change drivers, which would advance our understanding of grassland C cycling
responses. It was determined that future experiments and models should specifically test how
droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of
current and future global change conditions have studied various drought scenarios poorly, including
changes in precipitation frequency and amplitude, timing, and interactions with other global change
drivers. Multi-factor experiments have contributed to quantifying these potential changes and have
provided important information on how water affects ecosystem processes under global change.
There is an urgent need to establish a systematic framework that can assess ecosystem dynamic
responses to droughts under current and future global change and human activity, with a focus on the
combined effects of droughts, global change drivers, and the corresponding hierarchical responses of
an ecosystem.
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1. Introduction

Grasslands cover around 40% of the global land surface and a large fraction of their biomass is
below ground [1]. Therefore, grassland soils hold relatively large quantities of organic C and store
around 28%–37% of the global soil organic C pool [2]. Grasslands are net sinks for the atmosphere,
collecting nearly 0.5 PgC per year [3,4]. Grasslands have an irreplaceable role, as their contribution to
climate change mitigation and adaptation improves land and ecosystem health, resilience, biological

Water 2016, 8, 460; doi:10.3390/w8100460 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2016, 8, 460 2 of 19

diversity regimes, global productivity, and water cycles under future climate scenarios [5]. However,
they are also projected to be among the most sensitive ecosystems to drought [6]. Therefore, research
on grassland response to drought is of great significance. A comprehensive understanding of these
responses would provide significant information to be used in drought mitigation policies and carbon
management programs.

There is evidence that droughts have continued escalating on a global scale [7], influencing key
ecosystem processes and functions [8]. Simultaneously, extreme climatic events such as droughts
are predicted to become more intense, more frequent, and longer lasting in arid and semi-arid
regions [7,9]. Droughts could fundamentally alter the composition, structure, and function of grassland
ecosystems, posing a far stronger threat to ecosystem functionality than global trends and shifts in
average regimes [10,11]. Moreover, while global change drivers such as elevated atmospheric CO2

concentration, warming, N deposition, grazing, and other land-use changes are outside of the grassland
ecosystems, they impose chronic, cumulative, and moderate stresses. Extreme events such as droughts,
however, often lead to periodic, pulsing, and severe alterations [12]. Long-term declines in grassland
productivity had been driven by increased dryness over four decades; to some extent, the water use
efficiency that increased through CO2 enrichment in grasslands may have slightly moderated the
decline in production of native C3 grasslands, while variations in N had no effects [13]. So it seems that
extreme droughts may change the structure, composition, and functionality of terrestrial ecosystems,
thereby influencing C cycling and its feedback to the climate system [14–16].

Droughts may affect C cycling under the influence of global change drivers. However, a full
understanding of drought impact on carbon dynamics has not yet been achieved in climate impact
research on grasslands. It is not clear whether a combination of drought and global change drivers
affect grassland C cycling. In this review, however, we found that the relation between drought-derived
water stresses imposed on grassland plants is indeed affected by multiple factors and, consequently,
changes grassland C cycling [17,18].

2. Drought and Grassland C Cycling under Global Change

2.1. Overview

In this paper, drought is defined as water stress for plants and includes natural and
human-manipulated droughts. The predominant vegetation of grasslands, including the Eurasian
steppes, prairies, rangelands, or savannas, is grass [19]. The C sequestration and cycling in grasslands
include C sequestration, allocation, turnover, emissions, and storage, such as GPP (gross primary
productivity), NPP (net primary productivity), soil respiration, and SOC (soil organic carbon).
The biomass of grasslands is allocated largely below ground with a large root to shoot ratio, which
slows decomposition and weathering rates where significant accumulations of SOM (soil organic
matter) and highly fertile soils were present [20]. Currently, grasslands possess about 12% of global
SOM [21]. The belowground system can play an important role in controlling terrestrial C sequestration
and cycling.

Grassland may be exceedingly vulnerable to droughts [10], which may result in shifts in the
magnitude and patterns of C cycling [22]. In addition, effects from other changing parameters may
interact with drought and grassland C cycling, such as elevated CO2 concentrations, global warming,
N deposition, grazing, other land-use change, and grassland ecosystem components (Figure 1) [23].
C cycling may mitigate or exacerbate climate change, depending upon the relative responses of
grassland C sequestration and emissions to global change factors and droughts.



Water 2016, 8, 460 3 of 19
Water 2016, 8, 460  3 of 18 

 

 

Figure  1. The  schematic diagram describes  the  complex  interaction  between drought  and  global 

change drivers on grassland C  cycling.  In  the paper, global  change drivers  include  elevated CO2 

concentrations, global warming, N deposition, grazing, and land‐use changes. To some degree, the 

chronic and gradient factors can counteract the negative effects of drought on grassland C cycling via 

their positive effects driven by climate change, such as elevated CO2 concentrations, global warming, 

and N deposition; on the other hand, the periodic and pulsing factors can amplify the negative effects 

of drought on grassland C  cycling via human  activities  such  as grazing  and  land‐use  change.  In 

grasslands, the ecosystem has the ability to buffer impacts from drought and large amounts of soil C 

in its surface layers. As climate change and human activities continue, droughts will have a stronger 

and more complicated effect on C cycling in grassland ecosystems in the future. 

2.2. Drought and Grassland C Cycling 

Water is a limiting factor in grasslands, many of which experience periodic droughts [10,24]. On 

a global scale, the frequency, duration, and intensity of droughts have increased strongly in recent 

decades  [25], especially  in arid and  semi‐arid  regions  [7]. Droughts are  the main source of  inter‐

annual variation in terrestrial C sequestration, as they cause large reductions in GPP as well as in the 

net ecosystem exchange (NEE) of terrestrial ecosystems [26,27]. Droughts also have negative effects 

on soil biodiversity, the content of SOM, and water retention [28]; they may have  implications on 

ecosystem functions that last longer than the drought itself [29,30]. Most notably, the ecosystem C 

sequestration  accumulated over  a number of years  could be undone by  a  single  severe drought 

[26,31]. When severe droughts occur, soil microbes struggling for ‘food’ resources eat into the ‘old’ 

soil C accumulated over a number of years  in grasslands  [32]. Additionally, under  future climate 

scenarios, productivity is predicted to increase in North American grasslands despite rising aridity 

[33]. Therefore, droughts are key determinants of C cycling  in grassland ecosystems, as  they alter 

water provision and use [34,35]. 

C cycling has different responses to various drought intensities, as is supported by many studies 

[36–38]. Depending on their intensity, frequency, duration, and timing, not all droughts have an equal 

impact on grassland C cycling [39]. Drought intensity partly determines the fate of C allocation for 

photosynthate  in  grassland  plants  [40]. However,  extreme drought  limited C  translocation  from 

aboveground to belowground storage, while a moderate drought provoked allocation, assigning C 

translocation to the area of the plant where it was most urgently needed at high water stress [41]. In 

another study, soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered 

Figure 1. The schematic diagram describes the complex interaction between drought and global change
drivers on grassland C cycling. In the paper, global change drivers include elevated CO2 concentrations,
global warming, N deposition, grazing, and land-use changes. To some degree, the chronic and gradient
factors can counteract the negative effects of drought on grassland C cycling via their positive effects
driven by climate change, such as elevated CO2 concentrations, global warming, and N deposition;
on the other hand, the periodic and pulsing factors can amplify the negative effects of drought
on grassland C cycling via human activities such as grazing and land-use change. In grasslands,
the ecosystem has the ability to buffer impacts from drought and large amounts of soil C in its surface
layers. As climate change and human activities continue, droughts will have a stronger and more
complicated effect on C cycling in grassland ecosystems in the future.

2.2. Drought and Grassland C Cycling

Water is a limiting factor in grasslands, many of which experience periodic droughts [10,24].
On a global scale, the frequency, duration, and intensity of droughts have increased strongly in recent
decades [25], especially in arid and semi-arid regions [7]. Droughts are the main source of inter-annual
variation in terrestrial C sequestration, as they cause large reductions in GPP as well as in the net
ecosystem exchange (NEE) of terrestrial ecosystems [26,27]. Droughts also have negative effects on soil
biodiversity, the content of SOM, and water retention [28]; they may have implications on ecosystem
functions that last longer than the drought itself [29,30]. Most notably, the ecosystem C sequestration
accumulated over a number of years could be undone by a single severe drought [26,31]. When severe
droughts occur, soil microbes struggling for ‘food’ resources eat into the ‘old’ soil C accumulated over
a number of years in grasslands [32]. Additionally, under future climate scenarios, productivity is
predicted to increase in North American grasslands despite rising aridity [33]. Therefore, droughts are
key determinants of C cycling in grassland ecosystems, as they alter water provision and use [34,35].

C cycling has different responses to various drought intensities, as is supported by many
studies [36–38]. Depending on their intensity, frequency, duration, and timing, not all droughts have an
equal impact on grassland C cycling [39]. Drought intensity partly determines the fate of C allocation
for photosynthate in grassland plants [40]. However, extreme drought limited C translocation from
aboveground to belowground storage, while a moderate drought provoked allocation, assigning
C translocation to the area of the plant where it was most urgently needed at high water stress [41].
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In another study, soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered
rainfall timing, and by 20% when both were combined [42]. Thus, it was suggested that drought
timing was a factor more critical than intensity in affecting C dynamics in semi-arid regions [43–45].
Similarly, the developmental stage of a plant could be determined by a response to drought [46].
Seedlings are known to be highly susceptible to drought stress [47]. A shift in spring drought impacts
the structure and function of grasslands more than a drought in summer/fall for the North American
Great Plains [48].

Furthermore, drought has mixed effects on grassland ecosystem processes. In the short term,
drought adversely affects root biomass, litter decomposition rates, and short-term CO2 fluxes, but
increases soil nutrient retention, soil fertility, and longer term C fixation rates [49]. In addition, droughts
may have different impacts on aboveground and belowground productivity or communities [50].
Aboveground organisms grow fast, are more susceptible to drought, and have a quicker recovery rate
post-drought, while belowground organisms grow slowly, do not easily suffer from drought, and have
slower recovery rates post-drought [51]. Also, plant belowground inputs can affect the recovery of
belowground communities after drought [52]. Drought may change plants and soil microorganisms
by altering the C transfer process at the plant–microbial interface [53,54]. Drought can also change
contemporary rates of biogeochemical processes by inducing a shift of abiotic drivers and microbial
community structure [40,55].

In hostile environments, droughts can cause the functional thresholds of an ecosystem to shift
rapidly, changing a C sink to a source [56–58] or reducing resiliency to pests, fires, and disease [59].
In the future, increases in the frequency and intensity of droughts could turn temperate grasslands from
C sinks into sources, with positive C-climate feedback [60]. In fact, ecosystems suffer from the effects of
a single event by switching into alternative ecological regimes and cannot withstand the combination
of multiple extreme events [61]. Grassland ecosystems are able to withstand moderate drought
and maintain ecosystem functions [38,62], but severe, extended droughts may induce catastrophic
consequences, such as the 1930s Dust Bowl in North America [12,63]. Droughts can significantly and
divergently alter the resilience to new disturbances, such as insects, disease, or the next drought [59].
Droughts can trigger other disturbances such as wildfires [60] and pest invasion [64]. While fire and
drought can increase short-term SOC accumulation, their long-term impacts on C cycling are still
unclear [65]. Droughts interacting with high temperatures can cause plant mortality and accelerate
seed germination and ecological invasion due to favorable weather conditions [66]. According to
the ‘fluctuating resources hypothesis’, the rainfall after drought may even enhance the chance of
invasion [67]. These effects of droughts on diversity, productivity, reproduction, phenology, nutrient
cycling, and community resistance to invasion indirectly affect grassland C cycling [68].

Usually, the impacts of droughts are regulated by many environmental factors [69], as well as
ecosystem traits, such as species and functional diversity [70,71], and succession timing or growth
stage [8]. Therefore, alongside global change and human activity, droughts with novel magnitudes,
timing, and durations are out of synchrony with the resistance of ecosystems and will have stronger
and more complicated effects on C cycling in the future [17,72].

2.3. Elevated CO2 Concentrations

CO2 fertilization effects may be affected when droughts occur [73]. An elevated CO2 environment
may also increase the water use efficiency of plants and thus soil moisture—due to the reduction in
stomata conductance—and alleviate the impacts of drought [74]. Elevated CO2 could mitigate the
effects of drought on grassland net carbon uptake by increasing root growth and plant N uptake [75].
In fact, elevated CO2 directly or indirectly affects plant water loss and may be crucial to understanding
the combined effects of drought on the C cycling processes of ecosystems. The long-term effects of CO2

on ecosystem functions are more likely to be indirect responses, such as changes in the biochemical
cycle, soil moisture, and species structure, than direct responses through exchanges in production [76].
Elevated CO2 not only increases long-term mean soil moisture [77], but also enhances microbial
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biomass and density [11]. To a certain extent, rising atmospheric CO2 concentrations might decrease
the vulnerability of grassland C to droughts [78].

Atmospheric CO2 enrichment can enhance NPP and mitigate the negative effects of droughts on
GPP and NEE [31,79]. Likewise, elevated CO2 concentrations alleviate the negative effects of droughts
on soil respiration, principally due to the promotion of carbon assimilation, which increases the
substrate supply for respiration in both roots and soil microorganisms [80]. Given a number of adverse
environmental and edaphic conditions, the increased resource use efficiency of plant growth under high
atmospheric CO2 concentrations cannot prevent a decline in productivity and quality [78]. In one study,
elevated atmospheric CO2 reduced the sensitivity of grassland ecosystems to drought and increased
grassland productivity by ~5%–15%, depending on water and nutrient availability [81,82]. However,
CO2 fertilization decreases when water and N are limited. In fact, these positive effects are unlikely
to offset the negative impacts of high temperature changes and decreased summer rainfall, which
would lead to more frequent and intense droughts [83]. Consequently, beneficial CO2 fertilization
effects are suppressed, and water use efficiency is not enough to compensate for the negative effects of
droughts [84]. As the intensity and duration of droughts increasingly result in stomatal closure, the
ecosystem can become CO2 limited, which may stimulate C starvation and hydraulic failure [85,86].
Concurrently, droughts can also lead to increasing GHG (Green House Gas) emissions, limiting the
vegetation N supply, and change the amount of fixed carbon [87].

The effects of concurrent elevated CO2 levels and droughts on a plant’s water use efficiency are
intertwined. As global climate models predict rising temperatures, it is important to acknowledge
that CO2 concentrations will interact with the change in precipitation patterns, thereby affecting C
cycling. In dry soils, elevated CO2 concentrations coincide with or even contribute to drier conditions,
resulting in negative soil respiration responses to temperatures [88]. Elevated CO2 concentrations and
extended droughts show a positive interaction, and elevated CO2 can reduce the effects of drought
on soil respiration [80]. In contrast, elevated CO2 concentrations restrain diversity, but have little
effect on the relative abundance or the production of a community [89]. Thus, those effects indicate
the importance of a multi-factor experimental approach to understanding an ecosystem’s response to
droughts [18]. Indeed, the interactive effects of multiple factors on grassland C cycling under different
drought scenarios are lacking in the literature, especially studies discussing underlying mechanisms.
Therefore, further work is needed to evaluate the integrated impacts of multiple factors on grassland
C cycling under different drought scenarios.

2.4. Global Warming

Global warming may accelerate the turnover of water [68]. Warming is often accompanied
by drought and could reduce the primary production in many temperate grasslands, which is not
necessarily mitigated by efforts to maintain or increase species richness [90]. In grassland communities,
mild droughts and warming do not lead to enhanced resistance or recovery from an extreme recurrent
drought. Also, grasslands experiencing recurrent drought demonstrate a larger decrease in green
vegetation cover [91]. For some drought-affected areas, however, annual NPP and NEE are not reduced,
likely because higher temperatures enhance photosynthesis, counteracting the drought effects on NPP
in those grasslands [91,92]. Meanwhile, it is expected that climate warming may directly accelerate soil
respiration by stimulating the activities of soil fauna, microbes, and plant roots, and may indirectly
accelerate soil respiration by stimulating N mineralization, litter production, and substrate [93,94].
Warming and prolonged droughts may strongly alter SOM decomposition, but also the quantity and
quality of litter input [95,96].

In general, under drought scenarios, warming can cause further aridity of the ecosystem and
hence act to further reduce soil respiration. In contrast, many experiments have shown that rising
temperatures increase the rate of soil respiration [97,98]. In addition, warming can cause droughts that
increase the carbon in roots and weaken the overall acclimation of plants to drought by regulating
C allocation between source and sink organs [41]. It is expected that rising temperatures will affect
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decomposition more than primary productivity [99], the consequence being a net loss of soil C and
a positive feedback to the climate system in the long term. However, there is still no agreement on
how temperature sensitivity varies with the labiality of SOC [100]. Instead, warming and drought
have a direct impact on soil C storage, mainly by altering the mineralization rates of SOM [101]. Also,
warming likely affects ANPP in grasslands, and warming effect is moderated by shifts in the C3/C4
ratios of plant communities [102]. Forecasting C cycling between droughts will interact with elevated
temperatures in the future has been a significant subject of many models. However, to date, a clear
mechanism to cope with this interaction has not been developed.

2.5. N Deposition

CO2 fertilization effects can depend on the amount of available nitrogen and water [73]. Therefore,
nitrogen becomes a limiting factor when droughts occur due to strong interactions between water
and N [17]. Although variances in droughts can have different effects on ecosystem productivity and
C cycling [10], how these might interact with N deposition is not clear.

There are more rapid ecosystem alterations caused by the interactive effects of N deposition
and droughts than when N deposition or droughts occur alone [12]. Drought and N additions
increase enzymatic efficiency and induce faster decomposition of litter [103]. In the Mongolian
steppe, elevated N deposition can enhance the recovery of grassland productivity after drought [104].
Drought can cause nutrient deficiencies, even in fertilized soil. The increased duration and intensity of
drought are usually linked to decreasing N mineralization [105], mobility, and absorbance of inorganic
nutrients [106,107]. Moreover, plant biomass, N concentration levels, and the amount of N in the whole
plant increases by adding water after a short-term or medium-term drought, while they decrease
after a long-term drought [108]. N addition increases grassland productivity after a drought [104].
In contrast, N fertilization has been shown to reduce the ability of grassland ecosystems to sustain net
CO2 assimilation. N addition enhances within-plot variability in plant size structure at the species
level, but did not change total aboveground biomass [109]. Indeed, droughts affect soil respiration
by influencing the feedback from soil N pools, because the microbial processes that regulate soil
N availability are sensitive to short-term variations in soil moisture [110]. Meanwhile, N and water
supplies limit potential NEE. Conversely, soil N availability has little effect on the short-term stability of
ecosystem processes to extreme drought [49]. Some results suggest that increases in ANPP associated
with N deposition may be offset by precipitation-mediated shifts, with negative consequences for
the strength of the ecosystem C sink [111,112]. For grasslands, the frequency and intensity of the
disturbances have a key role in C balance [113]. Thus, annual grasslands experiencing higher rates of
N may provide lower-than-expected C storage. In short, how C storage responds to N depends on the
longer term variations of droughts.

2.6. Grazing

Grazing has been a way of life and a common land use for people in arid and semiarid regions
for centuries [114]. Grazing may have uncertain impacts on grassland C cycling [115], as it can have
high intensity and relate to drought [116]. Low-intensity grazing coupled with droughts can impact
aboveground productivity (AGP) and belowground productivity (BGP) [117]. Moderate grazing was
less important than droughts in reducing plant cover, but heavy grazing was at least as influential [118].
Sensitivity to droughts can override grassland productivity, significantly altering C dynamics in grazing
management systems [119]. The interaction between grazing and droughts can change diversity, alter
dominance, and affect productivity [120]; it also restrains grass stem density and delays recovery in
mesic grasslands in North America and South Africa [121]. In grazed and ungrazed North American
tallgrass prairie sites, ANPP was relatively resilient under drought. Moreover, grasslands with different
evolutionary histories respond similarly to grazing and drought. At frequently burned sites, droughts
increase grassland sensitivity to grazing. The effects of droughts were not the primary driver of
grassland productivity; instead, the magnitude of the effects is similar to those of grazing and fire [122].
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Grazing also interacts with droughts to affect BGP, and grazed grassland can be more or less sensitive
to changes in precipitation than ungrazed grassland [38]. Frequently grazed grassland has a higher
probability of experiencing a drought during a regrowth stage. Drought controls major trends in
plant species composition and production, with grazing playing a secondary role [123]. The role of
rangelands as sinks or sources of GHG, however, is determined by complex interactions between
drought, vegetation, and grazing.

Collectively, grazing and drought have uncertain effects on grassland C dynamics, contingent on
the intensity of grazing and the drought as well as grassland type. In the event of extreme drought gives
way to a wet year, both enhanced GPP and ER cause greater C uptake on the grazed (uptake 6 g·C·m−2)
than on the ungrazed desert steppe (release 43 g·C·m−2). In an extreme year-long drought, a grazed
desert steppe (release 70 g·C·m−2) has greater C release due to reduced GPP than ungrazed (release
48 g·C·m−2), but the grazed and ungrazed steppes have comparable ecosystem respiration [117].
The primary challenges in maximizing the potential of rangeland GHG mitigation are to create a
complete account of GHG balances across many rangeland ecosystems and to quantify the magnitude
and direction of GHG changes, due to interactions between management and environment [119].
Long-term monitoring is needed to thoroughly document mechanisms contributing to C dynamics
in semi-arid rangelands in order to fully understand their role as CO2 sinks, given the anticipated
trajectory of future climate change [57,124].

2.7. Land-Use Change

Land-use change enhanced the vulnerability to drought and posed a threat to grasslands
ecosystem. Land-use and management change can strongly influence variations in grassland SOC [125].
The impacts of land-use change on drought mostly focus on land-use change as a driver of climate
change [126]. Grasslands could be influenced by potential variations in droughts and by alterations
in land-use changes [127]. Land-use change and droughts may induce multidirectional impacts
on an ecosystem [128]. In addition, land-use change can cause a decline in grassland biodiversity
and plant cover [129]. Land use can also strongly affect the resistance and resilience of soil food
webs to drought [130]. Drought has significant effects on vegetation and may enhance the risk of
wildfires [131]. Also, large-scale and destructive shifts in grasslands can change climate conditions
and affect vegetation regimes and the surface energy budget, deteriorating water depletion [132,133].
However, drought and land-use change can deteriorate soil erosion, causing soil C to be lost at a faster
rate and in larger amounts [134]. It is difficult to distinguish which one is the driver. Land-use change
can influence the frequency and duration of drought [135]. Changes in land-use and plant species
components can affect the decomposition of litter via a number of mechanisms, such as alterations of
litter quality, but also reshape the pattern of temperature and moisture at the soil surface [136,137].
Furthermore, grasslands serve as a significant C sink via improved management, and are highly
regulated by biome type and climate conditions [115]. To mitigate drought effects on SOC, land-use
change is important to avoid in management practice within a dryland ecosystem [2,138]. Drought
and land-use change have a direct impact on the C source/sink function of a grassland ecosystem,
and may be major drivers affecting the C budget of grasslands.

2.8. Grassland Ecosystem Properties

To a certain extent, the effects of drought on an ecosystem are related to the traits of the dominant
species, as well as plant functional diversity [139]. The ecosystem functions and species composition
of grasslands are likely to be impacted by droughts [140]. Drought may have pronounced effects on
functional performance, such as C-fixation as well as fluxes and pools [36,56]. However, a grassland’s
plant diversity provides a buffer against environmental fluctuations because different species respond
differently to these fluctuations, triggering functional compensations among species [11,141]. Plant
diversity has a stronger effect on soil microbial functions and enzymes [142]. Plant diversity is a major
determinant of soil microbial biomass in a changing environment [143]. Specifically the ability for a
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community to maintain ecosystem functions during a stressful event (resistance) or to recover rapidly
from it (resilience) is a component of stability [144]. Likewise, a grassland may withstand moderate
drought in areas with rich biodiversity [104,145]. In particular, greater ecological diversity means
higher resistance to drought because of the complementary use of available water and other resources
when compared to communities with low ecological diversity [146]. Accordingly, at the species level,
the individual may not respond to drought, but the ecosystem significantly responds [147]. Because of
high diversity, the ecosystem exhibits greater stability and ensures species persistence and ecosystem
functions [71,148]. Post-drought recovery of an ecosystem is much more rapid where greater levels
of biodiversity are conserved than in less diverse areas [149]. On the other hand, droughts are not
buffered by increased biodiversity richness. Intriguingly, frequent mild droughts did not change the
productivity patterns and point to a higher resistance to severe droughts, with increasing richness
levels not necessarily enhancing resistance [91]. Similarly, higher drought stress with increased
biodiversity richness led to greater mortality, yet all communities are able to recover similar green
cover post-drought [150]. In fact, another threat to C sequestration in grassland stems from the rapid
loss of plant diversity, which is projected under climate change [151].

In a grassland, soil plays an important role in buffering the impacts from drought. Plant–soil
interaction plays an important role in regulating C cycling [152]. The adaptive strategies of
plant–soil interactions play a key role in the short-term stability of C cycling to extreme drought
events [49]. To better withstand times of drought, increased amounts of C sequestered as SOM into soil
enhance rainfall effectiveness through increased infiltration, water-holding capacity, and water source
replenishment. Moreover, grasslands may be most likely missing C-sinks [3,113], owing to grasslands
potential capacity to sequester and store C in soils [5,153]. Higher soil C levels can reduce the impacts
of droughts [154,155]. The relative extent of drought impacts on soil respiration depends on the level
of belowground biomass and soil C [156]. Sequestering C in grassland soils brings about a number
of positive environmental outcomes, or co-benefits, beyond offsetting GHG emissions [157]. SOM
plays an important role in determining soil chemical properties, including pH, nutrient availability
and cycling, and buffer capacity [158]. Thus, increasing SOM is an effective method for increasing
drought resistance in arid and semiarid areas.

3. Syntheses and Perspectives

3.1. Combined Effects of Multiple Factors

Ecosystems exist in a multi-factor world. Global change drivers can mediate the rate and
efficiencies of both photosynthesis and water use to affect ecosystem productivity and other processes.
Realistic combinations of global change drivers show small diversity effects, but a remarkable effect
on dominant species [159]. In addition, global change drivers can alter available resources in an
ecosystem by directly affecting the biota and driving ecosystem responses, causing chronic changes
in water balance and modifying the biogeochemical cycle of nutrients [160]. Drivers can also change
ecosystem nutrient dynamics indirectly by affecting plant litter quality [161]. The natural ecosystem
response to global change drivers may be constrained by different perturbations [162]. Collectively,
current disturbance regimes and global changes impose a suite of impacts on available resources in
an ecosystem [163]. Effects from global change drivers and droughts may interact within ecological
diversity and in the composition of natural communities [164]. C cycling may mitigate or exacerbate
climate change, depending upon the relative responses of grassland C sequestration and emissions to
global change factors and droughts [165].

Climate, fire, and grazing are three important drivers affecting the composition, structure, and
function of grasslands. There are also many interactions between these drivers, which affect ecological
patterns and processes in grasslands differently than if they were single drivers [166]. Grassland
composition and diversity are primarily governed by long-term regional climate. To some extent,
grassland composition and diversity can alleviate the impacts of a drought on an ecosystem [121]. In a
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warmer world, elevated CO2 concentrations will increase both soil water content and productivity
in semi-arid grasslands [167]. Adversely, elevated CO2 alone, or in combination with warming,
alters ER to a greater extent than GPP, resulting in net C loss by the stimulated decomposition of
SOM. For instance, an elevated CO2 concentration causes a greater increase in C cycling than in C
storage in grasslands [168], which can alleviate or offset the impacts of a drought on C cycling. Also,
anthropogenic pressures such as grazing and land-use change could be key drivers of biodiversity loss,
with serious consequences for ecosystem functioning [12]. Simultaneously, the combined effects of
environmental factors have great potential to interact and indirectly or directly mediate soil moisture,
affecting the main process of C cycling [165].

Similarly, analyses of the roles of other factors in grassland C cycling or ecosystem functions should
not overlook the influence of drought. The contribution of each factor to grassland C cycling should be
diagnosed and quantified, especially with regard to influencing the relationship between droughts
and grassland C cycling in a realistic multi-factor world. Clearly, there has been much progress in
the sophistication of both models and experiments. It is no longer considered acceptable to make
projections about drought response without incorporating the likely effects from other factors, such as
elevated CO2 concentrations and global warming [169]. Doing so is significant in discussing how and
why ecosystems have different sensitivities to chronic global change and pulsing droughts [12].

The multi-factor effects differ greatly from simple combinations of single-factor responses
because the impacts of abrupt changes and alternative multi-factors induced nonlinear changes in the
ecosystem [18]. Concurrent changes in multiple factors potentially trigger complex interactive impacts
on ecosystem structure and functioning. For example, CO2 enrichment restrains the effects of increasing
temperature, precipitation, and available N on NPP annually in Californian grasslands [170]. Moreover,
the amplification or suppression of one factor’s impact by another factor on soil C has not been
observed in most studies [161,171]. These effects are the key to identifying the most sensitive factors
affecting C cycling. Therefore, evaluating multi-factor interactions influencing ecosystem structure
and functioning is critical to understanding their response to global change. Indeed, once interactive
effects can regulate the main effects of single factors, single-factor experiments will become less useful
in understanding ecosystem changes [171]. There are a number of single factors that help assess
the impacts of global change, such as rainfall manipulation experiments [10], FACE experiments,
and N-addition experiments [12]. A multi-factor experimental approach explains ecosystem responses
to multiple factors, especially under different drought stress scenarios [172].

Usually, multi-factor experiments are quite expensive and provide imprecise results and undefined
interactive mechanisms. They also cannot be properly managed in many ecosystems due to financial
constraints. To make multi-factor experiments more effective, models can help imitate the formation of
a scientific hypothesis in its initial stages and extrapolate experimental results [171]. Ecosystem
models should incorporate the direct and indirect effects of climate change on soil moisture to
accurately predict drought feedback and the long-term effects of C cycling. Models can be informed
by single-factor experiments that provide ecosystem-level information for single-factor responses.
Multi-factor experiments are important for testing concepts, thus indicating the reality of multi-factor
influences. However, large uncertainties remain in most current models that evaluate the feedbacks
between C-cycle and climate change over the past few decades.

Fortunately, close cooperation between experimentalists and modelers make it easier to
understand water and C cycling via explicit programs of model–data fusion, such as data sharing,
data assimilation, and clarity of model processes. A major improvement in current observations
may be gained by the combination of long-term, multi-factor experiments at the ecosystem level,
such as whole-ecosystem flux measurements. To some extent, the coupled C-cycle–climate models
can demonstrate the importance of potential carbon-cycle–climate system feedbacks [17]. However,
much work towards these experiments and models is needed to increase our understanding of the
mechanisms between drought and grassland C cycling in the multi-factor world at the ecosystem level.
In general, the emerging gaps are as follows:
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(1) Under particular scenarios such as droughts, recognizing the key environmental factors impacting
grassland C cycling in the real, multi-factor world is important. It is necessary to carry out
multi-factor experiments to determine the contribution of each factor and their interactive effects
with other factors on grassland C cycling at the ecosystem scale.

(2) The quantitative impacts between drought and other factors (e.g., elevated CO2 concentrations,
global warming, N deposition, grazing, and other land-use change) on grassland C cycling are
not clearly proposed at the ecosystem level.

(3) The next challenge is to establish the quantitative relationships between different C fluxes and
different global change factors under different drought scenarios as soon as possible.

(4) Multi-factor response models should be developed with better coupling mechanisms to examine
the interactive effects of global change multi-factors on the carbon and water processes of
ecosystems, especially under different levels of drought stress or other extreme scenarios.
The data–model fusion has become essential to assess the interactive effects of multiple factors in
global change research.

3.2. A Framework for Assessment and Application of Combined Effects

Practical fluctuations with the background of global changes would result in an intricate blend of
internal processes and external forces on ecosystem, which can trigger a regime shift in grasslands [173].
According to the ‘fluctuating resources hypothesis’, ecosystems become more susceptible to biological
encroachment whenever the amount of idled resources increases in two basic ways: declines in the
supply and use of ecosystem or external resources. A disturbance such as drought, grazing, or other
land-use change could damage or kill resident vegetation and reduce resource uptake (light, water, and
nutrients) [174]. Drought coupled with global change drivers or with favorable weather conditions
can induce plant mortality or promote seed germination and ecological invasion, respectively [175].
It is clear that several interacting global change drivers and droughts trigger shifts in ecological
thresholds [12].

However, there is not enough knowledge about how drought affects biodiversity and ecosystem
function. The framework describes a hierarchy of mechanisms that climate change uses to impact
ecosystem C dynamics, generating three levels of response, and also provides a new approach to
the studying climate change impacts on C cycling [176]. The expression of functional thresholds is
affected by many factors including droughts, other global change drivers, and ecosystem characteristics.
Combined multi-factor effects may make ecosystems surpass ecological thresholds, resulting in a
reconfigured ecosystem structure and function and a profound influence on C cycling. Rapid ecosystem
shifts are triggered by droughts occurring within the background of gradual global change, overgrazing,
land-use change, and invasive species [177], and is projected to increase in the future because ecosystem
resilience is corroded by chronic global changes [12]. The interactions between drought and global
change drivers influence and accelerate the trajectories of ecosystem response [178]. An ecotone shift
caused by drought has severe consequences on ecological and accelerates soil erosion, which induces
large losses of soil C [173]. The shifts of grassland composition in response to seasonal or annual
precipitation regimes represent drought-induced alterations of vegetation dynamics that may trigger
threshold development [12]. Ecological thresholds must further evaluate and develop to effectively
manage grassland C cycling and fully assess the ecological consequences of climate extremes for
ecosystem structure and function [179]. Threshold recognition and prediction is significant to help
managers prevent the emergence of undesirable states and promote the management of grassland
C cycling [180]. We do not know the ecological mechanisms trigger the ecological threshold, or the
speed and degree of response to the triggering threshold. Therefore, a systematic framework that
assesses ecosystem dynamics in response to drought under current and future global change and
human activity is urgently needed to focus on the combined effects that drought and global change
drivers have on an ecosystem and to assess the hierarchical response of that ecosystem [181,182].
More research is needed to create a framework that meets the following needs:
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(1) Defines the intensity and duration of drought at which ecological thresholds are triggered;
(2) Represents ecological mechanisms of response to drought under current and future global change

scenarios at different spatial–temporal scales;
(3) Assesses the hierarchical responses of an ecosystem to drought and global change, including

individual, species, and ecosystem responses;
(4) Quantifies the contribution of other global change drivers that prevent ecological thresholds

triggered by droughts;
(5) Provides a baseline to assess the impact of drought under global change;
(6) Assesses the contribution of ecological thresholds to the fate of grassland C cycling;
(7) Gives suggestions to managers can use to enhance C sink of grasslands.
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