The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia)
Abstract
:1. Introduction
- -
- The excess volume of sold medicines;
- -
- Their lack of demand;
- -
- The expiration of storage and shelf life;
- -
- Violations of norms and rules of production, warehousing, storage, and transportation.
2. Materials and Methods
2.1. Object of Study
2.2. Sampling
2.3. Determination of Water Composition
3. Results and Discussion
3.1. Pharmaceutical Pollution of the Kura River
- -
- ZAHES—Tbilisi, most upstream point: 5618 ng/L;
- -
- Didube: 8331 ng/L;
- -
- Between Tbilisi and Ponichala Reserve: 2741 ng/L;
- -
- Before Algeti Tributary: 3665 ng/L.
3.2. Financial Component of the Global and Georgian Pharmaceutical Markets
4. Conclusions
- -
- A quantitative assessment of pharmaceuticals contaminants from the hydrosphere is difficult due to the lack of a regulated system of accounting and implementation and forms of dispensing pharmaceuticals to the population;
- -
- One of the main indicators, in our opinion, which most fully reflects the quantitative data of the presence of pharmaceuticals as pollutants in the environment is the financial component of the pharmaceutical market;
- -
- The empirical dependence Equations (2) and (3) give a general idea of the state of the world and Georgian pharmaceutical markets and allow for the forecasting of the growth in sales of pharmaceuticals by years;
- -
- The change in the amount of pharmaceutical pollutants in the environment, and hence in water, is proportional to the volume of drug sales.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diakonidze, R.; Gvishiani, Z.; Lochoshvili, T.; Mchedlishvili, K.; Romanovski, V. Ecological problems of environment mudflows and their prediction: Experience of Georgia. Environ. Monit. Assess. 2021, 193, 832. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, N.; Singh, P.K.; Maurya, N.S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. Ecotoxicol. Environ. Saf. 2022, 247, 114220. [Google Scholar] [CrossRef] [PubMed]
- Van, D.A.; Ngo, T.H.; Huynh, T.H.; Nakada, N.; Ballesteros, F.; Tanaka, H. Distribution of pharmaceutical and personal care products (PPCPs) in aquatic environment in Hanoi and Metro Manila. Environ. Monit. Assess. 2021, 193, 847. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.C.; Rheinheimer, D.D.S.; Le Guet, T.; Vargas Brunet, J.; Aubertheau, E.; Mondamert, L.; Labanowski, J. Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure. Environ. Monit. Assess. 2023, 195, 328. [Google Scholar] [CrossRef] [PubMed]
- Hrkal, Z.; Harstadt, K.; Rozman, D.; Těšitel, J.; Kušová, D.; Novotná, E.; Váňa, M. Socio-economic impacts of the pharmaceuticals detection and activated carbon treatment technology in water management–an example from the Czech Republic. Water Environ. J. 2019, 33, 67–76. [Google Scholar] [CrossRef]
- García-Espinoza, J.D.; Zolfaghari, M.; Mijaylova Nacheva, P. Synergistic effect between ultraviolet irradiation and electrochemical oxidation for removal of humic acids and pharmaceuticals. Water Environ. J. 2020, 34, 232–246. [Google Scholar] [CrossRef]
- Kachhawaha, A.S.; Nagarnaik, P.M.; Labhasetwar, P.K.; Banerjee, K. Pharmaceuticals and personal care products in aqueous urban environment of western India. Water Environ. J. 2021, 35, 1302–1312. [Google Scholar] [CrossRef]
- Pharma, E. World Preview 2017, Outlook to 2022. EvaluatePharma. 2016, pp. 3896–3907. Available online: http://info.evaluategroup.com/rs/607-YGS-364/images/wp16.pdf (accessed on 16 January 2017).
- Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Antibiotics in global rivers. Natl. Sci. Open 2022, 1, 20220029. [Google Scholar] [CrossRef]
- Cleuvers, M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003, 142, 185–194. [Google Scholar] [CrossRef]
- Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H.; Negele, R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004, 68, 141–150. [Google Scholar] [CrossRef]
- Stalter, D.; Magdeburg, A.; Weil, M.; Knacker, T.; Oehlmann, J. Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Res. 2010, 44, 439–448. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999−2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef]
- Richards, S.M.; Wilson, C.J.; Johnson, D.J.; Castle, D.M.; Lam, M.; Mabury, S.A.; Sibley, P.K.; Solomon, K.R. Effects of pharmaceutical mixtures in aquatic microcosms. Environ. Toxicol. Chem. Int. J. 2004, 23, 1035–1042. [Google Scholar] [CrossRef]
- Gurgenidze, D.; Gvishiani, Z.; Tsinadze, Z.; Bagration-Davitashvili, A.; Suramelashvili, E.; Ebanoidze, G. Pollution of the Mtkvari River by Pharmaceutical Drugs in the Nearby Areas of Tbilisi; GEN Ltd., Georgian Engineering News: Tbilisi, Georgia, 2021. [Google Scholar]
- Santos, L.H.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef]
- Tansel, B. New technologies for water and wastewater treatment. A Survey of recent patents. Recent Pat. Chem. Eng. 2008, 1, 17–26. [Google Scholar] [CrossRef]
- Suramelashvili, E. Seasonal Changes of Diclofenac in the Mtkvari River in the Vicinity of Gardabani Wastewater Treatment Plant; GEN Ltd., Georgian Engineering News: Tbilisi, Georgia, 2021. [Google Scholar]
- Murdoch, K. Pharmaceutical Pollution in the Environment: Issues for Australia, New Zealand and Pacific Island Countries; National Toxics Network: Bangalow, Australia, 2015; pp. 1–36. [Google Scholar]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Gautam, A.K.; Kumar, S.; Sabumon, P.C. Preliminary study of physico-chemical treatment options for hospital wastewater. J. Environ. Manag. 2007, 83, 298–306. [Google Scholar] [CrossRef]
- Mubedi, J.I.; Devarajan, N.; Faucheur, S.; le Mputu, J.K.; Atibu, E.K.; Sivalingam, P.; Prabakar, K.; Mpiana, P.T.; Wildi, W.; Pot′e, J. Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: Case of south india and democratic republic of congo. Chemosphere 2013, 93, 1070–1076. [Google Scholar] [CrossRef]
- de Solla, S.R.; Gilroy, A.M.; Klinck, J.S.; King, L.E.; McInnis, R.; Struger, J.; Backus, S.M.; Gillis, P.L. Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere 2016, 146, 486–496. [Google Scholar] [CrossRef]
- Krzeminski, P.; Tomei, M.; Karaolia, P.; Langenhoff, A.; Almeida, C.; Fellis, E.; Gritten, F.; Anderson, H.; Fernandes, T.; Manaia, C.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef]
- US EPA. Sampling Protocols for Collecting Surface Water, Bed Sediment, Bivalves, and Fish for Priority Pollutant Analysis. 2006. Available online: https://pubs.usgs.gov/twri/twri9a4/twri9a4_Chap4_v2.pdf (accessed on 15 May 2023).
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.B.; Hollert, H. Optimization of screening-level risk assessment and priority selection of emerging pollutants–the case of pharmaceuticals in European surface waters. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gurgenidze, D.; Bagration-Davitashvili, A.; Tsinadze, Z.; Suramelashvili, E.; Ebanoidze, G. Distribution of Pharmaceutical Preparations in Drinking Water; GEN Ltd., Georgian Engineering News: Tbilisi, Georgia, 2021; Volume 93. [Google Scholar]
- Tsinadze, Z.; Suramelashvili, E.; Ebanoidze, G. Contamination of wastewater with pharmaceutical preparations in the conditions of the COVID-19 pandemic. In Proceedings of the WyScience, Modern Movement of Science: Abstracts of the 13th International Scientific and Practical Internet Conference, Dnipro, Ukraine, 18–19 October 2021; pp. 237–238. [Google Scholar]
- Ebanoidze, G. Contamination of Mtkvari River with Anaprilin in the Territory of Tbilisi; GEN Ltd., Georgian Engineering News: Tbilisi, Georgia, 2021. [Google Scholar]
Site Number | GPS Coordinates | Site Description |
---|---|---|
2 | 41.822513, 44.760498 | ZAHES—Tbilisi, Most Upstream Point |
3 | 41.768066, 44.781505 | Didube |
6 | 41.641379, 44.934379 | Between Tbilisi and Ponichala Reserve |
9 | 41.596104, 44.956209 | Before Algeti Tributary |
Name of Pharmaceuticals | Sampling Site Numbers | |||
---|---|---|---|---|
2 | 3 | 6 | 9 | |
Caffeine (psychostimulant and analeptic) | 4284 | 6500 | 786 | 2982 |
Clarithromycin (macrolide antibiotic) | 120 | 179 | – | – |
Cotinine (nicotine) | 120 | 231 | 152 | 74 |
Nicotine (nicotine) | 864 | 1283 | 1493 | 480 |
Paracetamol (analgesic–antipyretic) | 230 | 138 | 310 | 129 |
The total amount of pharmaceuticals by site | 5618 | 8331 | 2741 | 3665 |
Name of Pharmaceuticals | CAS | Mean Concentrations (ng/L) | Maximum Concentrations (ng/L) | PNECs (ng/L) | Mean RQ | Maximum RQ |
---|---|---|---|---|---|---|
Caffeine | 58-08-2 | 3638 | 6500 | 320 | 11.36875 | 20.3125 |
Clarithromycin | 81103-11-9 | 75 | 179 | 20 | 3.7375 | 8.95 |
Cotinine | 486-56-6 | 144 | 231 | 1000 | 0.14425 | 0.231 |
Nicotine | 54-11-5 | 1030 | 1493 | 400 | 2.575 | 3.7325 |
Paracetamol | 103-90-2 | 202 | 310 | 500 | 0.4035 | 0.62 |
Years | World Sales of Prescription Drugs, USD Billion | Global Sales of Prescription Drugs by Addiction (1), USD Billion |
---|---|---|
2008 | 650 | 676 |
2009 | 663 | 672 |
2010 | 687 | 674 |
2011 | 729 | 682 |
2012 | 717 | 694 |
2013 | 724 | 712 |
2014 | 749 | 735 |
2015 | 742 | 764 |
2016 | 778 | 798 |
2017 | 822 | 837 |
2018 | 873 | 881 |
2019 | 931 | 931 |
2020 | 996 | 986 |
2021 | 1060 | 1047 |
2022 | 1121 | 1112 |
2023 | - | 1183 |
2024 | - | 1260 |
2025 | - | 1341 |
Year | Sales Volume, mln. GEL | Sales Volume, mln. USD | Sales Volume according to Equation (2), mln. USD |
---|---|---|---|
2016 | 565 | 238 | 251 |
2017 | 676 | 270 | 253 |
2018 | 655 | 256 | 255 |
2019 | 716 | 254 | 256 |
2020 | 798 | 255 | 258 |
2021 | - | - | 260 |
2022 | - | - | 262 |
2023 | - | - | 264 |
2024 | - | - | 265 |
2025 | - | - | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurgenidze, D.; Romanovski, V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. https://doi.org/10.3390/w15142574
Gurgenidze D, Romanovski V. The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia). Water. 2023; 15(14):2574. https://doi.org/10.3390/w15142574
Chicago/Turabian StyleGurgenidze, David, and Valentin Romanovski. 2023. "The Pharmaceutical Pollution of Water Resources Using the Example of the Kura River (Tbilisi, Georgia)" Water 15, no. 14: 2574. https://doi.org/10.3390/w15142574