Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Smart Vitis Platform Prototype
- Cloud-ready: docker container, self-contained independent modules, micro service architecture, API Rest, http/https, and kubernetes;
- Enterprise class: vertical and horizontal scalability, ESB, HA Ready, Hadoop, Cassandra, GraphDB, EDMS: Alfresco + Activiti, and Rule Engine;
- Open: Java, html5, css, jscript, and S.O. linux;
- Secure: Saml—OAuth2, centralized identity provider for UI, API Rest, and MQTT;
- Multitenant: integrates by design multitenancy and data isolation;
- Standard: language, protocols, integration patterns—Rest, MQTT, AMQP, OGC, and SOA;
- Extensible: definition of module interfaces that can be developed by partners and plugged in, integrated with Industrial Electronic devices Modbus, EtherNet-IP, and TwinCat;
- Robust: integrated IaaS real-time monitoring, HA proxy, and clusters;
- Simple: Configuration drawing graphs, widgets, bundles in solution marketplace for a quick deploy, and wizard.
- External data sources (i.e., weather station data networks, time-series satellite data archive, and water supply management networks, …);
- Data acquired in real time from distributed smart sensors (drones, smart electronic leaf, …) through intelligent networks (wireless battery-powered smart networks);
- Precision farming tools and agricultural smart vehicles;
- Business management software (i.e., field books and crop data management registries and databases).
2.3. Aerial Thermal Imagery and Crop Water Stress Index
2.4. In Vivo Monitoring of Vines through Bioristor
2.5. Economic Indicators
- Pruning;
- Branch removal;
- Binding;
- Green pruning;
- Thinning;
- Phytosanitary treatments;
- Agricultural processing;
- Fertilization and weeding;
- Harvest;
- Vineyard maintenance;
- Machine maintenance;
- Irrigation;
- Other.
- P = precipitation (mm);
- I = irrigation water applied (mm);
- C = upward capillary rise (mm);
- R = Runoff (mm);
- D = Deep percolation (mm);
- ΔS = change in root zone soil moisture (mm).
- Y = Yield of crop (kg/ha);
- P = Market price received for crop (EUR/kg);
- B = Variable production cost of crop (EUR/kg);
- C = Fixed production cost of crop (EUR/ha).
3. Results and Discussion
3.1. Smart Vitis Platform Output
3.2. Monitoring Crop Water Stress through Airborne Thermal Imaging
3.3. In Vivo Biosensors for the Continuous Monitoring of Vineyard Health and Water Status
3.4. Economics Results
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Upton, E.; Nielsen-Pincus, M. Climate Change and Water Governance: Decision Making for Individual Vineyard Owners in Global Wine Regions. Front. Clim. 2021, 3, 55. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H. Climate change: A new challenge for the winemaking sector. Agronomy 2020, 10, 1465. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, S.; Frioni, T.; Poni, S.; Palliotti, A. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 2018, 150, 106–114. [Google Scholar] [CrossRef]
- United Nations. The Sutainable Development Agenda. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 26 April 2022).
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. Resolution CST 1/2008. Guidelines for Sustainable Vitiviniculture: Production, Processing and Packaging of Products. 2008. Available online: http://www.oiv.int/oiv/cms/index (accessed on 1 March 2022).
- Hayes, P.; Graça, A.; de la Fuente, M.; Bois, B.; Andrag, A.; Savage, C.; Corbett-Milward, J.; Koundouras, S. Sustainable Use of Water in Winegrape Vineyards. 2021. Available online: https://www.oiv.int/public/medias/7949/2021-oiv-collective-expertise-document-sustainable-use-of-wa.pdf (accessed on 24 February 2022).
- Dry, P.R.; Loveys, B.R. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape Wine Res. 1998, 4, 140–148. [Google Scholar] [CrossRef]
- Flexas, J.; Galmes, J.; Galle, A.; Gulias, J.; Pou, A.; Ribas-Carbo, M.; Tomas, M.; Medrano, H. Improving water use efficiency in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Johnson, L.F.; Roczen, D.E.; Youkhana, S.K.; Nemani, R.R.; Bosch, D.F. Mapping vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric. 2003, 38, 33–44. [Google Scholar] [CrossRef]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Orsini, R.; Basili, D.; Belletti, M.; Bentivoglio, D.; Bozzi, C.A.; Chiappini, S.; Conti, C.; Galli, A.; Giorgini, E.; Fiorentini, M.; et al. Setting of a precision farming robotic laboratory for cropping system sustainability and food safety and security: Preliminary results. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012021. [Google Scholar] [CrossRef]
- Bucci, G.; Bentivoglio, D.; Belletti, M.; Finco, A.; Anceschi, E. Implementing the Sustainable Development Goals with a digital platform: Experiences from the vitivinicultural sector. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry, Trento, Italy, 4–6 November 2020; pp. 119–123. [Google Scholar]
- Bellvert, J.; Mata, M.; Vallverdú, X.; Paris, C.; Marsal, J. Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precis. Agric. 2021, 22, 319–341. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H.; et al. Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of water stress in grapevines using proximal and remote sensing methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Soubry, I.; Patias, P.; Tsioukas, V. Monitoring Vineyards with UAV and Multi-sensors for the assessment of Water Stress and Grape Maturity. J. Unmanned Veh. Syst. 2017, 5, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; García García, J.; Botía Ordaz, P. Cost-benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in South-eastern Spain. Irrig. Sci. 2006, 24, 175–184. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 2007, 290, 127–137. [Google Scholar] [CrossRef]
- Hussain, I.; Turral, H.; Molden, D.; Ahmad, M. Measuring and enhancing the value of agricultural water in irrigated river basins. Irrig. Sci. 2007, 25, 263–282. [Google Scholar] [CrossRef]
- Salvador, R.; Martínez-Cob, A.; Cavero, J.; Playán, E. Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation Systems. Agric. Water Manag. 2011, 98, 577–587. [Google Scholar] [CrossRef] [Green Version]
- García García, J.; Contreras López, F.; Usai, D.; Visani, C. Economic assessment and socioeconomic evaluation of water use efficiency in artichoke cultivation. Open J. Account. 2013, 2, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Romero Azorin, P.; Garcia Garcia, J. The Productive, economic, and social efficiency of vineyards using combined drought-tolerant rootstocks and efficient low water volume deficit irrigation techniques under Mediterranean semiarid conditions. Sustainability 2020, 12, 1930. [Google Scholar] [CrossRef] [Green Version]
- Farahani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration: Progress in measurement and modeling in agriculture. Trans. ASABE 2007, 50, 1627–1638. [Google Scholar] [CrossRef]
- Farg, E.; Arafat, S.M.; Abd El-Wahed, M.S.; El-Gindy, A.M. Estimation of evapotranspiration ETc and crop coefficient Kc of wheat, in south Nile Delta of Egypt using integrated FAO-56 approach and remote sensing data. Egypt. J. Remote Sens. Space Sci. 2012, 15, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Hassan, D.F.; Abdalkadhum, A.J.; Mohammed, R.J.; Shaban, A. Integration remote sensing and meteorological data to monitoring plant phenology and estimation crop coefficient and evapotranspiration. J. Ecol. Eng. 2022, 23, 325–335. [Google Scholar] [CrossRef]
- Tanner, C.B. Plant temperatures. Agron. J. 1963, 55, 210–211. [Google Scholar] [CrossRef]
- Baldoncini, M.; Alberi, M.; Bottardi, C.; Minty, B.; Raptis, K.G.C.; Strati, V.; Mantovani, F. Airborne Gamma-Ray Spectroscopy for Modeling Cosmic Radiation and Effective Dose in the Lower Atmosphere. IEEE Trans. Geosci. Remote Sens. 2018, 56, 823–834. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter Jr, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Janni, M.; Coppede, N.; Bettelli, M.; Briglia, N.; Petrozza, A.; Summerer, S.; Vurro, F.; Danzi, D.; Cellini, F.; Marmiroli, N.; et al. In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. Plant Phenomics 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomarici, E.; Seccia, A. Economic and Social Impacts of Climate Change on Wine Production. Ref. Modul. Food Sci. 2016, 2.1, 1–8. [Google Scholar]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Ezenne, G.I.; Jupp, L.; Mantel, S.K.; Tanner, J.L. Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agric. Water Manag. 2019, 218, 158–164. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Pereira, L.S. Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosyst. Eng. 2009, 103, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Hellegers, P.J.; Perry, C.J. Can irrigation water use be guided by market forces? Theory and practice. Water Resour. Dev. 2006, 22, 79–86. [Google Scholar] [CrossRef]
- Immerzeel, W.A.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Hellegers, P.J.G.J.; Soppe, R.; Perry, C.J.; Bastiaanssen, W.G.M. Combining remote sensing and economic analysis to support decisions that affect water productivity. Irrig. Sci. 2009, 27, 243–251. [Google Scholar] [CrossRef]
- Wassenaar, T.; Baret, F.; Robbez-Masson, J.-M.; Andrieux, P.J.A. Sunlit soil surface extraction from remotely sensed imagery of perennial, discontinuous crop areas; the case of Mediterranean vineyards. Agronomie 2001, 21, 235–245. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q.J.R.S. Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef] [Green Version]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, M.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Zarco-Tejada, P.J. Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrig. Sci. 2015, 33, 81–93. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Bonfante, A. LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study. Agric. Syst. 2019, 176, 102646. [Google Scholar] [CrossRef]
- Bramley, R.G.V. Precision Viticulture: Managing vineyard variability for improved quality outcomes. In Understanding and Managing Wine Quality and Safety; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 445–480. [Google Scholar]
- Sozzi, M.; Kayad, A.; Marinello, F.; Taylor, J.; Tisseyre, B. Comparing vineyard imagery acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) platform. OENO One 2020, 54, 189. [Google Scholar] [CrossRef] [Green Version]
- Brook, A.; De Micco, V.; Battipaglia, G.; Erbaggio, A.; Ludeno, G.; Catapano, I.; Bonfante, A. A smart multiple spatial and temporal resolution system to support precision agriculture from satellite images: Proof of concept on Aglianico vineyard. Remote Sens. Environ. 2020, 240, 111679. [Google Scholar] [CrossRef]
- Coppedè, N.; Villani, M.; Gentile, F. Diffusion Driven Selectivity in Organic Electrochemical Transistors. Sci. Rep. 2014, 4, 4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarabella, G.; Villani, M.; Calestani, D.; Mosca, R.; Iannotta, S.; Zappettini, A.; Coppedè, N. A single cotton fiberorganic electrochemical transistor for liquid electrolyte saline sensing. J. Mater. Chem. 2012, 22, 23830. [Google Scholar] [CrossRef]
- Coppedè, N.; Janni, M.; Bettelli, M.; Maida, C.L.; Gentile, F.; Villani, M.; Ruotolo, R.; Iannotta, S.; Marmiroli, N.; Marmiroli, M.; et al. An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci. Rep. 2017, 7, 16195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janni, M.; Cocozza, C.; Brilli, F.; Pignatelli, S.; Vurro, F.; Coppedè, N.; Bettelli, M.; Calestani, D.; Loreto, F.; Zappettini, A. Real-time monitoring of Arundo donax response to saline stress through the application of in vivo sensing technology. Sci. Rep. 2021, 11, 18598. [Google Scholar]
- Vurro, F.; Janni, M.; Coppedè, N.; Gentile, F.; Manfredi, R.; Bettelli, M.; Zappettini, A. Development of an In Vivo Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to Improve Water Productivity in Agriculture. Sensors 2019, 19, 4667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Menz, C.; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J.A. Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions. Agric. Water Manag. 2022, 261, 107349. [Google Scholar] [CrossRef]
- Boatto, V.; Barisan, L.; Teo, G. Valutazione della risorsa irrigua di soccorso nella produzione del Conegliano Valdobbiadene Prosecco DOCG 1. Aestimum 2017, 70, 31. [Google Scholar]
- Teixeira, A.D.C.; Bastiaanssen, W.G.M.; Bassoi, L.H. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the São Francisco river basin, Brazil. Agric. Water Manag. 2007, 94, 31–42. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Barbagallo, M.G.; Vesco, G.; Di Lorenzo, R.; Lo Bianco, R.; Pisciotta, A. Soil and regulated deficit irrigation affect growth, yield and quality of ‘Nero d’Avola’grapes in a semi-arid environment. Plants 2021, 10, 641. [Google Scholar] [CrossRef]
- Finco, A.; Bucci, G.; Belletti, M.; Bentivoglio, D. The economic results of investing in precision agriculture in durum wheat production: A case study in central Italy. Agronomy 2021, 11, 1520. [Google Scholar] [CrossRef]
June | July | August | ||
---|---|---|---|---|
Canopy Temperature (°C) | Max | 34.6 | 44.6 | 59.6 |
Min | 25.3 | 20.9 | 34.7 | |
Mean | 28.0 | 27.6 | 43.8 | |
St. Dev. | 0.9 | 2.3 | 3.0 | |
Tdry | 30.3 | 34.3 | 52.6 | |
Twet | 25.7 | 21.3 | 35.5 | |
CWSI | Mean | 0.50 | 0.48 | 0.49 |
St. Dev. | 0.19 | 0.17 | 0.17 |
Cultivation Operation | 2020 | 2021 | |
---|---|---|---|
VARIABLE COSTS | Pruning | 479 | 534 |
Branch removal | 703 | 770 | |
Binding | 406 | 353 | |
Green pruning | 1116 | 1329 | |
Thinning | 47 | - | |
Phytosanitary treatments | 1042 | 1040 | |
Agricultural processing | 439 | 709 | |
Fertilization and weeding | 633 | 592 | |
Harvest | 1236 | 1391 | |
Vineyard mantainance | 106 | 162 | |
Machinery manteinance | 128 | 199 | |
Irrigation | - | 160 * | |
Other | 185 | 90 | |
TOTAL | 6520 | 7327 | |
Cost items | |||
FIXED COSTS | Depreciation | 1000 | 1000 |
Administration and management | 150 | 150 | |
Overheads | 800 | 800 | |
Irrigation | - | 600 * | |
TOTAL | 1950 | 2550 | |
TOTAL COSTS | 8470 | 9877 |
2020 | 2021 | 2021 * | |
---|---|---|---|
Yield | 113 | 86 | 103 |
2020 | 2021 * | |
---|---|---|
WP (kg/m3) | 6.2 | 5.1 |
EWP (EUR/m3) | 0.6 | −0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finco, A.; Bentivoglio, D.; Chiaraluce, G.; Alberi, M.; Chiarelli, E.; Maino, A.; Mantovani, F.; Montuschi, M.; Raptis, K.G.C.; Semenza, F.; et al. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water 2022, 14, 1493. https://doi.org/10.3390/w14091493
Finco A, Bentivoglio D, Chiaraluce G, Alberi M, Chiarelli E, Maino A, Mantovani F, Montuschi M, Raptis KGC, Semenza F, et al. Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water. 2022; 14(9):1493. https://doi.org/10.3390/w14091493
Chicago/Turabian StyleFinco, Adele, Deborah Bentivoglio, Giulia Chiaraluce, Matteo Alberi, Enrico Chiarelli, Andrea Maino, Fabio Mantovani, Michele Montuschi, Kassandra Giulia Cristina Raptis, Filippo Semenza, and et al. 2022. "Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management" Water 14, no. 9: 1493. https://doi.org/10.3390/w14091493
APA StyleFinco, A., Bentivoglio, D., Chiaraluce, G., Alberi, M., Chiarelli, E., Maino, A., Mantovani, F., Montuschi, M., Raptis, K. G. C., Semenza, F., Strati, V., Vurro, F., Marchetti, E., Bettelli, M., Janni, M., Anceschi, E., Sportolaro, C., & Bucci, G. (2022). Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management. Water, 14(9), 1493. https://doi.org/10.3390/w14091493