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Abstract: In many areas of southern Europe, the scarcity of water due to climate change will
increase, making its availability for irrigation an even more limiting factor for agriculture. One of the
main necessary measures of adaptation of the vineyards in these areas will be the implementation
of water-saving irrigation strategies and technologies to improve WUE (water use efficiency).
The objective of the present study was to evaluate the long-term economic viability/profitability of
different deficit irrigation techniques such as regulated deficit irrigation (RDI) and partial root-zone
irrigation (PRI) with low water volume/fertilizer applied in a Monastrell vineyard in southeastern Spain
to plants grafted on different rootstocks, and to assess the productive, social, and economic efficiency in
these semiarid conditions. Through a cost/benefit analysis, socio-economic and environmental criteria
for the selection of optimal deficit irrigation strategies and tolerant/water use efficient rootstocks
for the vineyards in arid environments are proposed. Our analysis shows a clear conflict between
productivity and quality in wine grape production. Productive and economic indices, such as yield,
productive WUE (kg m−3), economic efficiency (€ m−3), break-even point (kg ha−1), and water
productivity (€m−3), were inversely related with berry quality. Besides, high berry quality was closely
related with higher production costs. Under the current market of low-priced grapes, if the grower is
not rewarded for the quality of the grapes (considering technological, phenolic, and nutraceutical
quality), the productivity vision will continue and the cost-effective option will be to produce a lot
of grapes, even if at the expense of the berry and wine quality. In this situation, it will be difficult
to implement optimized deficit irrigation strategies and sustainable irrigation water use, and the
pressure on water resources will increase in semiarid areas. Public policies should encourage vine
growers to invest in producing high-quality grapes as a differentiating character, as well as to
develop agronomic practices that are environmentally and socially sustainable, by the grapes more
adjusted to their real quality and production costs. Only in this way we can implement agronomic
measures such as optimized low-input DI (deficit irrigation) techniques and the use of efficient
rootstocks to improve WUE and grape quality in semiarid regions in a context of climate change and
water-limiting conditions.

Keywords: cost/benefit; partial root–zone irrigation (PRI); regulated deficit irrigation (RDI);
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1. Introduction

Recent studies project greater warming and more severe water shortage in the south of Europe,
especially in the Iberian Peninsula, and, more particularly, the south and southeast of the Iberian
Peninsula, as a result of climate change [1–3]. In addition, almost all simulations for the Mediterranean
Basin foresee that warming will exceed the average for global warming. Global warming above
2 ◦C (with respect to the pre-industrial era) may involve very important changes in Mediterranean
ecosystems, such as a loss of biodiversity, reduction of forest areas, and the expansion of desert areas
(increased desertification in southeastern Spain), as well as bringing major risks to the population as
a result of scarcity of water resources and an increase in the demand for water for irrigation, energy,
and domestic use [4]. As regards wine production, according to climatic projections for Europe and
Spain [3,5], the southern regions of Europe and the Mediterranean arc, especially the South and East of
the Iberian Peninsula, will need the most effort in order to adapt, with increased costs to maintain the
quality and productivity of vineyards, since these regions will face changes of greater magnitude than
other wine-producing areas [6]. For example, a study conducted to explore the possible measures of
adaptation to climate change in several Spanish wine-producing regions points to the fact that the
Protected Designation of Origin (PDO) of Jumilla and La Mancha are two of the most vulnerable,
and that they may suffer a high impact due to a great increase in the projected temperature and
a decrease in precipitation [6]. In these areas, scarcity of water will increase, making the availability
of irrigation water an even more limiting factor for agriculture. The increase in temperature will
generate a water shortage at the atmospheric level, which will produce an increase in the rate of
evapotranspiration of around 75–125 mm by the 2050s for most of Europe [7]. In this scenario, there will
be an increase in water needs of vines, since irrigation will be necessary to maintain a vineyard’s
long-term sustainability and to prevent severe stress in many wine-producing regions in the south of
the peninsula [8]. The three main measures of adaptation to climate change that will have to be taken in
highly vulnerable regions are the selection of varieties and rootstocks that are more tolerant to drought
and high temperatures, changes in soil management practices, and increased irrigation [6]. Although
many Mediterranean vineyards are currently cultivated on dry land, one of the main measures of
the adaptation of the vineyards in these areas will necessarily be the implementation of an efficient
irrigation system, with important changes in water management through the implementation of
water-saving irrigation strategies, techniques, and technologies to improve the efficiency in the use
and application of irrigation water. Two of the most promising deficit irrigation (DI) techniques in
vineyards with the greatest potential in semiarid regions to increase water use efficiency and improve
the quality of the berry and wine are Regulated Deficit Irrigation (RDI) and Partial Root Drying
Irrigation (PRI) [9–13]. Also, the use of rootstocks with different degrees of vigor and sensitivity to
water deficit may be considered an important and useful agronomic tool for the efficient management of
the vineyard when applying RDI and PRI, selecting rootstocks that are better adapted to the application
of both in order to optimize these irrigation techniques in semiarid conditions [14,15].

In the Mediterranean Basin, viticulture plays a vital role in the socio-economic life of the region,
often lacking other viable economic alternatives. In the southeast of Spain, together with almonds,
woody crops have the greatest importance as an agroforestry contribution, and any reduction may lead
to abandonment and the consequential problems of erosion and desertification [16,17]. The situation of
vineyards is particularly serious in regions with very limiting climatic conditions, such as the shortage
of rainfall. A productive specialization according to the destination of the grape to QWpsr (Quality
Wines Produced in Specified Regions) and a consequent differentiation of the product depending
on the quality and their environmental and landscape features could make wine-producing a viable
activity linked to the rural environment [16,18].

Several studies have assessed the efficiency in the use of water from a productive standpoint [19,20],
but there are few works that have evaluated this efficiency from a social or economic perspective [21–23],
with the importance being that using different indexes of socio-economic efficiency involves the need
for economic studies that could serve as a support for decision making. The economic analysis of water
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resources illustrates the need for a global perspective of economic efficiency, i.e., not only technical or
productive efficiency [23]. In summary, it seems essential to identify the conditions in which irrigation
strategies may be economically justified in the long term.

The assessment of economic sustainability is obviously a prerequisite to carry out business
operations, but an assessment of the sustainability of the environment may also be a strategic tool
that can help increase the value of the product. In the last two decades, worldwide awareness of the
importance of the environment has grown dramatically [24]. Consumers have included environmental
concerns as an important factor in their purchasing processes, selecting those products that show
sensitivity towards the environment [24], and distribution chains have responded promptly to this
consumer demand. The establishment of sustainable production patterns based on socio-economic and
environmental criteria is a key strategy toward viable and competitive wine production. It is necessary
to establish cultivation systems and production in the winery that make cultivation sustainable by
promoting the quality of the wine grape and by implementing working methods with favorable effects
on the social, economic, and environmental levels for rural populations and environments.

The current situation, whereby the method of payment in many areas is still kg/◦Baumé, without
taking into account other quality parameters, favors high productivity at the expense of quality.
Improvements in grape quality are not taken into account and, in most cases, are not reflected in
the higher prices of the grapes, so there is little financial reward for growers who offer quality [18].
Many studies have shown that increases in water supplied through irrigation increase production [18,25],
and if, in addition, growers are paid on the basis of production and not quality, a productivity view
prevails. In many cases, this has favored increased irrigation and the application of full irrigation
strategies to obtain high productivity at the expense of grape quality [18].

The Protected Designation of Origin (PDO) constitutes the system used in Europe to differentiate
quality, both in vines and wine. In general, most PDOs establish limitations on productivity (production
ceilings). In southeastern Spain, for example, the PDO production limitation is around 7000–9000 kg/ha
for red grapes (PDO Jumilla, PDO Bullas, PDO Yecla, PDO Alicante, PDO Valencia, etc.). When yields
exceed the authorized total, the production may not be marketed under those names and thus fall into
the category of table wines (of lower quality), the lowest level recognized by law for vines and wines.
However, there is usually a significant improvement of grape and wine quality when RDI (Regulated
Deficit Irrigation) or PRI (Partial Root Drying Irrigation) is applied, mainly because of an increase
in the content of polyphenols and nutraceuticals in berries and wines [12–15,26,27]. At present,
maturity control indexes (sugar and acids in grapes) are clearly insufficient to evaluate the quality
of grapes [28]. Thus, anthocyanins and other polyphenolic compounds and nutraceuticals related to
the color and flavor, and other healthy aspects play an important role in the quality of the grapes and
wines. This translates into an improvement in the organoleptic characteristics of wine, such as color,
aroma, and flavor, which is of great commercial and economic importance. In arid areas with very
restrictive conditions (low water availability and high price of irrigation water), the commitment to
higher quality associated with dry land cultivation or with RDI strategies and a consequent payment
at which differentiated quality would make the viticulture viable and profitable [16,17].

The objective of the present study was to evaluate the long-term socioeconomic viability/

profitability of different DI (deficit irrigation) techniques (i.e., RDI and PRI) with low water volumes
applied in a vineyard of Monastrell in southeastern Spain, grafted on different rootstocks, and to assess
the productive, social, and economic efficiency in these semiarid conditions. Through a cost/benefit
analysis, socio-economic, quality, and environmental criteria for the selection of optimal deficit
irrigation strategies and drought-tolerant and water use-efficient rootstocks for the vineyards in arid
and semiarid environments are proposed. Based on berry and wine quality criteria, optimum ranges of
yield and WUE are proposed under current grape market conditions to look for a compromise between
productivity, quality, and returns for the grower.
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2. Material and Methods

2.1. Experimental Conditions, Plant Material, and Irrigation Treatments

This research was carried out from 2012 to 2017 (six years) in a 0.4 ha vineyard at the Instituto
Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) experimental station in
Cehegín, Murcia, southeastern Spain (38◦ 6´ 38.13” N, 1◦ 40´ 50.41” W, 432 m above sea level). The soil
was an 80-cm-deep clay loam (33% clay, 38% silt, and 30% sand) with 1.12% of organic matter.
The climate is Mediterranean semiarid, with long hot and dry summers and scarce annual rainfall
(around 386 mm·year−1), with reference evapotranspiration (ETo) above 1200 mm [14]. The grapevines
(Vitis vinifera L, var. Monastrell, syn. Mourvedre, a local red wine variety) were 20+ years old and
were grafted on five different commercial rootstocks, each with a different vigor and drought tolerance:
140Ru (V. rupestris x V. berlandieri), 1103P (V. rupestris x V. berlandieri), 41B (V. vinifera x V. berlandieri),
161-49C (V. berlandieri x V. riparia) and 110R (V. rupestris x V. berlandieri). Each rootstock was drip irrigated
for six consecutive years (2012-2017) using two different deficit irrigation techniques: Regulated Deficit
Irrigation (RDI) and Partial Root zone drying Irrigation (PRI). All combinations were irrigated with
similar annual water volumes and application of the same designed deficit irrigation strategy (Table 1).
The final goal of this DI strategy, with low water application and moderate water stress, was to
increase water use efficiency (WUE) and to obtain very high-quality Monastrell grapes for premium
red wine production. Crop evapotranspiration (ETc = ETo x Kc) was estimated using varying crop
coefficients (Kc)—based on those proposed by the FAO, adjusted for the Mediterranean area—and
reference evapotranspiration (ETo) values [14]. The ETo was calculated weekly from the mean values
of the preceding 12–15 years using the FAO Penman–Monteith method [29] and the daily climatic data
collected in the meteorological station (Campbell mod. CR 10X), located at the experimental vineyard
and belonging to the Servicio de Información Agraria de Murcia (SIAM, IMIDA). The experimental
design consisted of four replicates per rootstock–irrigation combination in a completely randomized
4-block design. Each replicate contained five vines, with only the three central vines being assessed;
the border vines in each row were excluded to eliminate potential edge effects. Soil, water and plant
characteristics, climatic factors, experimental conditions, ETo and Kc applied, and fertilizers used were
described previously in detail [14].

Table 1. Deficit irrigation techniques, strategy, and water volume applied for each irrigation method
(regulated deficit irrigation (RDI) and partial root-zone irrigation (PRI)) in each phenological period
during the experimental period (2012–2017).

Year Irrig. Method Budburst-Fruitset
(mm)

Fruit
Set-Veraison

(mm)

Veraison-Harvest
(mm)

Postharvest
(mm)

Total Annual Water
Volume Applied

(mm year−1)

April-May June-July
Beginning of
August-mid
September

mid-September-
end October

% ETc %ETc %ETc %ETc
(10−20) (10) (25−30) (20−30)

Average
(2012-2017)

PRI 20.3 25.4 36.6 10.0 92.3
RDI 19.4 25.4 35.6 10.0 90.4

Each year at harvest, the yield (kg·vine−1) was measured in 24 vines per rootstock (12 vines
per irrigation method), and productive WUE (WUEyield, Kg m−3 applied) was calculated. The total
berry quality index (technological and phenolic quality) (QIoverall berry) was calculated in Monastrell
grapevines, with some modifications [14,30]. The harvest date was in accordance with the grower´s
practice in the area, when oBrix reached 23.5−24.0. Between 40 and 50 kg of healthy grapes were
collected for each combination (R x IM) to perform the microvinifications (3 per combination of R x IM)
in 2014, 2015, and 2016. The wine quality index (QIwine) after alcoholic fermentation was calculated as
previously described [30].
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2.2. Cost/Benefit Analysis and Productive, Economic, and Social Efficiency of Irrigation Water

To study the economic feasibility and profitability of these long-term deficit irrigation strategies,
we used a cost/benefit analysis to calculate certain economic indexes [18]. The parameters and indexes
used were: Net Margin/operating cost (NM/c) (%), NM/investment (NM/K) (%), NM/total cost (MN/C)
(%), the average cost of production (€ kg−1), and break-even point or viability threshold (kg ha−1).
The break-even point indicates the minimum quantity needed (kg ha−1) from which the operation
begins to generate positive results (Net Margin = 0).

Other indexes that are devoted to the analysis of the socio-economic efficiency of irrigation water
were also calculated, due to the importance of this resource in the southeast of Spain. These indices
were: Water productivity (€m−3) or Income per m3 as an indicator of the gross income generated by
each m3 applied; Economic efficiency (€·m−3) as the Net Margin generated by a m3 of water, equivalent
to a profit per m3 [23]; and the productive water use efficiency (WUE) (kg·m−3) as an indicator of
kg of grapes produced by each m3 applied in the crop. We also analyzed the social importance of
each treatment according to the level of employment per cultivated hectare (Agricultural Work Unit,
AWU·ha−1) and cubic hectometer (AWU·hm−3), respectively. Finally, we calculated the maximum price
of irrigation water compatible with the economic viability of the activity (Water Viability Threshold,
WVT, € m−3), i.e., the price at which income and costs are equal [23]. Costs and income were the
average of the six years of the trial, so they are representative of one production year. All cultivation
practices were the same in all the treatments, with the exception of the differentials, i.e., irrigation
and its associated energy needs, and pruning and gathering during winter. Such winter pruning and
gathering was taken into account to establish the cost involved in each treatment.

In relation to the fixed costs, we calculated the annual depreciation costs (Table 2). In the fixed
asset costs, all depreciations are the same, except for the irrigation network in the case of PRI with its
double row of drippers. The initial investment of a holding of 10 hectares, as well as the depreciation
of each item, was calculated by the linear or constant quotas method. The useful life was estimated
based on the experience of the last years of the agricultural companies in similar crops, such as a real
mean life. Finally, we showed the cost impact per hectare (Table 2).

Table 2. Investment and annual depreciation in Monastrell vineyard trellis systems.

Initial Value
(€)

Residual Value
(€)

Useful life
(years)

Depreciation**
(€/year)

Depreciation
(€/ha)

Shed for equipment and
irrigation control 7200 1800 30 183 18

Irrigation equipment 7000 0 15 474 47
Irrigation network* 23,910 0 10 2427 243

Planting 76,660 0 25 3112 311
Various 200 0 10 41 4

Irrigation Reservoir 7400 1850 30 188 19
Investment (€ ha−1) 12,237

*Investment in PRI irrigation networks are 4161 € ha−1 and total investment is 14,007 € ha−1. ** Annual depreciation
plus opportunity cost (interest rate 1.5%).

The labor employed in different tasks, including operating machinery, was calculated to determine
the employment generated. In the Region of Murcia, one Agricultural Work Unit (240 work days)
corresponds to a total of 1920 hours.

Water is a variable cost—a function of the quantity applied and the established price. The prices
of the years 2012–2017 of this resource are shown in Table 3. Income was calculated from the annual
average sale price of Monastrell grapes in the 2012–2017 period in the Region of Murcia, obtained from the
Statistical Service of the Ministry of Water and Agriculture and the Rosario de Bullas cooperative (Murcia).
The latter is the largest winery by volume of production of PDO Bullas, representing almost 50% of the
total production of wine. Mean income was calculated from the production, the prices paid in euros (€)
per kilogram, the ◦Baumé (Table 3), and the average data for ◦Baumé in each treatment and year [14].
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Thus, the income from each rootstock–irrigation strategy was calculated for each year, and the mean for the
period 2012–2017 was used to establish mean income. Data for the calculation of income and costs for
the period, as already indicated, were taken from previous physiological and agronomic studies [14,15],
and were intended to show the structure of income and costs of an average representative year.

Table 3. Annual prices and average price of water and grapes for the period 2012-2017.

Prices 2012 2013 2014 2015 2016 2017

Irrigation water (€
m−3) 0.19 0.19 0.20 0.20 0.20 0.22

Grapes (€/kg ºBe)* 0.0260 0.0225 0.0255 0.0220 0.0265 0.0300

* Average price of Monastrell grape paid to the vine grower.

3. Results

The average income for each rootstock–irrigation method combination showed that the more
productive rootstock (140Ru) had the highest income, while the lowest productive rootstock (161-49C)
had the lowest income (Table 4).

Table 4. Average income (2012–2017) for each rootstock (R)–irrigation method (IM) combination.

140Ru 161-49C 110R 1103P 41B

PRI RDI PRI RDI PRI RDI PRI RDI PRI RDI
Yield (kg ha−1) 16,198 16,354 7098 8606 9802 8060 9932 9828 9802 10,010

ºBaumé 13.17 13.25 13.39 13.37 13.24 13.31 12.83 13.18 12.90 13.10
Average grape price (€ kg−1) 0.329 0.331 0.327 0.327 0.325 0.328 0.321 0.332 0.318 0.322

Total income (€ ton.−1) 329 331 326 327 325 328 320 332 318 322
Total income (€ ha−1) 5332 5416 2320 2816 3182 2647 3183 3263 3117 3225

Taking into account the cost accounting of each combination of rootstock–IM (irrigation method)
(Table 5), in general, the behavior of the 140Ru rootstock differed from the others in terms of productivity
and vigor, which influenced the income and costs. There were two clearly differentiated groups,
namely, 140Ru and the rest, since the operating cost per hectare of 140Ru was higher than the rest,
all of which had similar costs (Table 5).

Table 5. Cost accounting for all combinations (R x IM) during the experimental period 2012–2017.

140Ru 161-49C 110R 1103P 41B

PRI
(€)

RDI
(€)

PRI
(€)

RDI
(€)

PRI
(€)

RDI
(€)

PRI
(€)

RDI
(€)

PRI
(€)

RDI
(€)

Shed 18 18 18 18 18 18 18 18 18 18
Irrigation equipment 47 47 47 47 47 47 47 47 47 47

Irrigation network 422 243 422 243 422 243 422 243 422 243
Planting 311 311 311 311 311 311 311 311 311 311
Various 4 4 4 4 4 4 4 4 4 4

Regulator reservoir 19 19 19 19 19 19 19 19 19 19
Fixed assets 822 642 822 642 822 642 822 642 822 642

Annual pruning 437 500 251 255 241 191 344 322 258 255
Summer pruning 206 206 206 206 206 206 206 206 206 206

Machinery 580 582 469 487 502 481 503 502 502 504
Phytosanitary products 106 106 106 106 106 106 106 106 106 106

Fertilizers 156 156 156 156 156 156 156 156 156 156
Herbicides 30 30 30 30 30 30 30 30 30 30
Electricity 16 15 16 15 16 15 16 15 16 15
Harvesting 1057 1068 462 562 639 525 648 641 639 653
Irrigation 187 183 187 183 187 183 187 183 187 183

Operating costs 2775 2847 1884 2002 2084 1894 2197 2163 2100 2111
Total costs* 3597 3489 2706 2644 2906 2537 3019 2805 2922 2753

* Production cost per hectare.
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The difference in vigor was reflected in the difference in the average cost of pruning in the analyzed
period (2012–2017) (sum of annual and summer pruning in Table 5). While for the 140Ru, this amounted
to 674 €·ha−1

·year−1, in others, it was around 450–500 €·ha−1
·year−1, a figure only surpassed slightly

by 1103P (539 €·ha−1
·year−1). In addition, 140Ru differed with regard to its productivity, achieving

an average cost of production (Table 6) of 0.23 €·kg−1, which was significantly below that of the rest of
the rootstocks (it was followed by 1103P and 41B, 0.31 €·kg−1 in both cases, and 110R with 0.32 €·kg−1).
In contrast, 161-49C rootstock showed a higher production cost (0.39 €·kg−1, Table 6), mainly due to its
lower productivity (Table 4).

Fixed assets were more linked to the installation of irrigation (60% of the fixed assets costs, Table 5).
In the case of 140Ru, due to its high productivity, the cost of fixed assets was lower in relative terms
(23%) compared to the other rootstocks. In contrast, in 161-49C, the lower productivity was also
penalized with 30% of the cost of fixed assets (Table 5).

Among the operating costs, those associated with pruning and harvesting represented between
35%–40% of the total cost and more than 50% of the total operating cost. The operating cost related
to harvesting (the most important cost) ranged from 38% of the total of operating costs for 140Ru
to 26% for 161-49C (Table 5). The economic and efficiency indices such as Net margin/Total cost
(%), Net margin/operating cost (%), NM/investment (%), break-even point (kg ha−1), WUE (kg m−3),
water productivity (€m−3), and economic efficiency (€m−3) were significantly higher in 140Ru compared
to the other rootstocks, and the lowest (negative values for NM/C, NM/c, NM/K, and economic efficiency;
not viable economically) for 161-49C, while other rootstocks showed intermediate positive values
of these economic/efficiency indexes (Table 6). In relation to the social importance of the crop
(Table 6), the results indicate that the most vigorous and productive rootstock (140Ru) generated
more employment (0.16 UTA/ha) and social efficiency (AWU hm−3) and had a significantly higher
WVT (2.16 €m−3) (water price in which income and costs are equal) compared to the other rootstocks,
due to an increased labor requirement and cost of pruning and harvesting. In contrast, less productive
rootstocks (161-49C and 110R) generated less employment and significantly lower social efficiency and
WVT (Table 6).
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Table 6. Productive, economic and social parameters calculated in the cost/benefit analysis for different rootstocks (R), irrigation methods (IM) and the interaction (R x
IM) for the period 2012–2017.

NM/Cost
(%)

NM/Operating
Cost (%)

NM/
Investment (%)

Average Cost
(€ kg−1)

Break-Even
Point

(kg ha−1)

WUE
(kg m−3)

Water
Productivity

(€m−3)

Economic
Efficiency

(€m−3)

Social
Efficiency

(AWU hm−3)

Employment
(AWU ha−1)

WVT
(€m−3)

Rootstock (R)
140Ru 50.75c 63.65c 14.07c 0.23a 10,846c 17.81d 5.85d 1.96c 180d 0.16c 2.16c
1103P 9.73b 12.26b 2.46b 0.31b 9032b 10.80c 3.51c 0.31b 132c 0.12b 0.51b
41B 10.95b 14.09b 2.62b 0.31b 8846b 10.90c 3.48bc 0.36b 126b 0.11a 0.56b

110R 6.52b 8.61b 1.54b 0.32b 8265a 9.82b 3.21b 0.22b 117a 0.11a 0.42b
161-49C −5.54a −9.20a −0.67a 0.39c 8101a 8.64a 2.82a −0.12a 114a 0.10a 0.08a

Irrigation method (IM)
PRI 10.33 12.77 2.88 0.33 9340 11.50 3.72 0.42 133 0.12 0.62
RDI 18.63 22.99 5.13 0.30 8696 11.69 3.83 0.67 135 0.12 0.87
Year
2012 28.19d 37.19d 6.49d 0.29b 7852b 11.58c 4.26d 0.96d 137c 0.120bc 1.16d
2013 26.61d 33.67d 7.14de 0.21a 12,474d 18.11d 4.84e 1.05d 170d 0.150e 1.25d
2014 −17.57a −26.01a −2.99a 0.47d 7178a 7.26a 2.60a −0.48a 118a 0.098a −0.28a
2015 0.19b −0.52b 0.50b 0.28b 10,916c 12.25c 3.35b 0.07b 137c 0.125d 0.27b
2016 18.37c 23.37c 4.73c 0.33c 7734b 10.06b 3.71c 0.66c 124b 0.116b 0.86c
2017 31.11d 39.59d 8.16e 0.30bc 7954b 10.31b 3.89c 1.02d 118a 0.123cd 1.22d

Interaction (R x IM)
140Ru PRI 47.13d 60.77e 12.39i 0.23a 11,028j 17.57i 5.75e 1.84e 175e 0.161f 2.04e

RDI 54.36d 66.53e 15.75j 0.22a 10,663i 18.06j 5.96e 2.09e 185f 0.167f 2.29e
1103P PRI 4.62b 5.89b 1.17c 0.32bc 9499h 10.78f 3.44cd 0.15b 132d 0.121e 0.35b

RDI 14.83c 18.62cd 3.74g 0.31bc 8565e 10.82g 3.58d 0.47cd 132d 0.119de 0.67cd
41B PRI 5.77b 7.52bc 1.39d 0.32bc 9152g 10.71e 3.39cd 0.21bcd 125bc 0.114cd 0.41bcd

RDI 16.14c 20.67d 3.86h 0.30b 8539d 11.09h 3.56d 0.51d 128cd 0.115cd 0.71d
110R PRI 10.05bc 13.77bcd 2.19f 0.31bc 8850f 10.69d 3.49cd 0.32bcd 124bc 0.113bc 0.52bcd

RDI 2.99b 3.44b 0.90b 0.34c 7680a 8.95b 2.93b 0.12b 111a 0.100a 0.32b
161-49C PRI −15.92a −24.08a −2.75a 0.44d 8170c 7.74a 2.53a −0.43a 109a 0.099a −0.23a

RDI 4.85b 5.69b 1.41e 0.34c 8032b 9.54c 3.11bc 0.18bc 120b 0.108b 0.38bc
ANOVA

R *** *** *** *** *** *** *** *** *** *** ***
IM *** *** *** ** *** ns ns *** ns ns ***

Year *** *** *** *** *** *** *** *** *** *** ***
R x IM ** *** ** *** ** ** ** ** *** *** **

‘ns’ not significant; *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels of probability, respectively. In each column and for each factor, different letters indicate
significant differences according to Duncan’s multiple range test at the 95% confidence level..
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The analysis of profitability based on grape price variability revealed that high berry quality
rootstocks (high QIoveral berry and QIwine, Table 7) were not viable economically until the grape price
rose up to 0.024 € kg◦ for 110R and 0.030 € kg−1 ◦Be−1 for 161-49C (Figure 1). In contrast, in low berry
quality rootstocks such as 140Ru and 1103P (lower QIs, Table 7), viability and economic profitability
were obtained with lower grape prices (0.020 € kg−1 ◦Be−1 for 140Ru, and 0.024 € kg−1 ◦Be−1 for
1103P). In addition, very productive combinations (rootstocks–IM) such as 140Ru PRI and RDI allowed
lower grape prices (from 0.016 € kg−1 ◦Be−1) to be viable economically and to obtain high profitability
(Figure 2). In contrast, for low productive combinations of rootstocks–IM (especially 161-49C PRI,
with the highest berry/wine quality, Table 7), we needed to increase grape price to almost double
(above 0.030 € kg−1 ◦Be−1) to start getting an economic return for the grower (Figure 2).

Table 7. Overall berry quality index (QI overall berry) calculated for Monastrell grapes at harvest for
five different rootstocks (140Ru, 1103P, 41B, 110R, and 161-49C) and two different irrigation methods
(PRI and RDI) from 2012 to 2016. Wine quality index QIwine after alcoholic fermentation calculated
for Monastrell for five different rootstocks (140Ru, 1103P, 41B, 110R, and 161-49C) and two different
irrigation methods (PRI and RDI) from 2014 to 2016.

Rootstock (R) QI overall berry QIwine

140Ru 9.8a 1.56b
1103P 10.0a 1.62b
41B 10.8b 1.38a

110R 11.2b 1.80c
161-49C 12.3c 1.83c

Irrigation method (IM)
PRI 11.2 1.68
RDI 10.5 1.60
Year
2012 12.6d -
2013 7.7a -
2014 10.6b 2.33c
2015 11.7c 1.77b
2016 11.5c 0.83a

Interaction (R x IM)

140Ru
PRI 10.2bc 1.45abc
RDI 9.4a 1.67bc

1103P
PRI 10.2bc 1.49abc
RDI 9.8ab 1.75c

41B
PRI 10.7cd 1.24a
RDI 10.8cd 1.51abc

110R
PRI 11.2d 1.83c
RDI 11.3d 1.77c

161-49C
PRI 13.5e 2.39d
RDI 11.1d 1.28ab

ANOVA
R *** *

IM *** ns
Year *** ***

R x IM *** ***

ns, not significant; *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 levels of probability,
respectively. In each column and for each factor or interaction, different letters indicate significant differences
according to Duncan’s multiple range test at the 95% confidence level.
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Figure 1. Profitability (NM/C, %) for each rootstock based on grape price variability (€ kg−1 ◦Be−1)
for the period 2012−2017 in a Monastrell vineyard in southeastern Spain. Average of the values of
QIoverall berry for each rootstock for the period (2012−2017).

Figure 2. Profitability (NM/C, %) based on grape price variability (€ kg−1 ◦Be−1) for the period 2012–2017
for each combination of rootstock–IM in a Monastrell vineyard in southeastern Spain. The vertical
dotted lines represent the weighted average market grape price (0.0254 € kg−1 ◦Be−1) for the period
2012–2017 and the price of grapes necessary to reach the viability threshold (B/C = 0) of 161-49C PRI
(0.0296 € kg−1 ◦Be−1), the most unfavorable combination. The horizontal short dashed line represents
the viability threshold (B/C = 0).
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The analysis of profitability based on the variability of prices of irrigation water also revealed
that the most productive combinations (140Ru PRI and RDI) remained very profitable economically
(above 40%), even with very high water prices (up to 0.40 €m−3), compared to the other combinations
(Figure 3). In contrast, the 161-49C PRI combination was not viable, neither with the current price of
irrigation water nor with the increase in the price of water.

Figure 3. Profitability (NM/C, %) based on water price (€ m−3) variability for each combination of
rootstock–IM during the period 2012–2017 in a Monastrell vineyard in southeastern Spain. Vertical
dotted line represents the current averaged price of irrigation water for the period (2012–2017) in the
Murcia Region, southeastern Spain.

The analysis of the relationships between the efficiency ratios, economic indices, and berry quality
index showed that high WUE was closely related with high economic efficiency and break-even point,
according to a significant positive relationship (Figure 4A,B). In contrast, QIoverall berry was inversely
related with break-even point, yield, water productivity and economic efficiency (Figure 4C–F).
In addition, QIoverall berry was positively associated with production costs (Figure 4G). Production costs
were also related in an exponentially decayed way with WUEyield, while QIoverall berry was inversely
and linearly related with WUEyield (Figure 5).
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Figure 4. (A) Significant relationship between economic efficiency and WUEyield, (economic efficiency
= -1.3739 + 0.1656* WUEyield). (B) Significant relationship between break-even point and WUEyield

(Break-even point = 4261.62 + 410.1788 WUEyield) and (C) between QIoverall berry and break-even point
(QIoverall berry = 14.4451 – 0.0004* break-even point). (D) Significant relationships between QIoverall berry

and yield (QIoverall berry = 13.0909 – 0.0002* yield), (E) between QIoverall berry and water productivity
(QIoverall berry = 12.8174 – 0.6236* water productivity) and (F) between QIoverall berry and economic
efficiency (QIoverall berry = 10.9249 – 0.8447* economic efficiency). (G) Significant relationships between
QIoverallberry and production costs (QIoverallberry = 7.0317 + 11.1401* productions costs). For each rootstock,
each single point represents the average per year and irrigation method (period 2012–2017). Dashed lines
in A and F indicate when economic efficiency is = 0 (not viable economically). Dashed lines in B and C
indicate maximum yield range allowed for Monastrell red berries in O.D. Bullas, SE Spain.
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Figure 5. Significant relationship between production cost and WUEyield (Production costs = 0.21 +

1.3714* e(–0.2757*WUEyield) and between QIoverall berry and WUEyield (QIoverall berry = 13.9310 – 0.2636*
WUEyield). For each rootstock, each single point is the average per year and the irrigation method
(period 2012–2016).

4. Discussion

Monastrell grafted on all rootstocks were economically viable crops, with the exception of 161-49C,
in the current grape market conditions. Vines grafted on 140Ru and 1103P were the most productive,
providing the best economic results and the highest WUE (kg m−3), but they showed low grape and
wine quality indexes (Table 7). The greatest profitability was reached with 140Ru (NM/C = 50.75%),
mainly due to increased vigor and productivity (kg·ha−1), because there was practically no difference in
◦Baumé, (around 13 ◦Baumé in all rootstocks). On the contrary, vines grafted on rootstocks 161-49C and
110R were the least productive and vigorous [14], but had significantly increased grape and wine quality
(Table 7). 110R rootstock was economically viable but showed low profitability (6.52%), while the
161-49C was not viable with a negative NM/C ratio (%) and the lowest WUE (kg m−3) and social
efficiency (AWU hm−3), indicating that the cost of producing grapes with this low vigor/productive
rootstock in these irrigation conditions and with the current low prices of the grapes surpassed the
income obtained.

All rootstocks, except 140Ru, had a break-even point (kg ha−1) (Table 6) close to the maximum
permitted by the regional PDO for grapes used for QWpsr wines. The rootstocks that obtained the
highest quality grapes (161-49C and 110R) had a break-even point of around 8000 kg·ha−1, which is
within the limit set by the PDOs of southeast Spain. Therefore, in terms of yield/quality, they reached
optimal values if destined for QWpsr wines. However, vines grafted on 140Ru had a higher break-even
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point (almost 11,000 kg ha−1 year−1) and annual yields of 16,000 kg ha−1, exceeding the limits established
by PDO. All efficiency indicators (yield, WUEyield, economic and social efficiencies, AWU values
per hm−3 and ha−1) showed that Monastrell vineyards grafted on 140Ru had significantly higher
efficiency and also generated significantly more profitability and employment compared to other
rootstocks (Table 6). It is particularly noteworthy that the productive WUE efficiency reported in 140Ru
vines (17.81 kg·m−3) was very high for DI wine grapes in semiarid areas [12]. Besides, the high gross
water productivity for this crop (around 3–6 €·m−3 in all cases, which rose to 5.85 €·m−3 in 140Ru) was
very high in comparison with other wine-growing regions—such as Brasil (1.17 €m−3) [31] and the
Guadiana river basin (Spain) (1– 3 €m−3) [32]—and with other horticultural crops (onions 2.96 €m−3,
potatoes 2.03 €m−3, carrots 1.62 €m−3; [33] and cereals (0.77-1.01 €m−3) [34].

Thus, this vigorous, productive, efficient, and drought-tolerant rootstock (140Ru) could be adapted
to more restrictive deficit irrigation strategies in semiarid areas, employing a lower volume of water,
or even in rainfed conditions, in order to control the excess vigor and yield and to further enhance WUE
and berry/wine quality. Alternatively, the use of 140Ru could also be a good alternative, especially for
the preparation of other types of wine (table wines), not limited in production by quality standards.

Among the operating costs, those associated with pruning and harvesting represented between
35%–40% of the total cost and more than 50% of the total operating cost. This crop had a major
social impact as a generator of rural employment, since the operating cost is more associated with
manual tasks than consumable factors of production (fertilizers, pesticides, etc.). In general, social
efficiency values in vineyards of southeastern Spain were better than other crops (stone fruits, pome
fruits, citrus, etc.) [21,23,35]. In relation to the social importance of the crop (Table 6), we reported
similar higher values for overall employment (between 0.10 and 0.16 AWU·ha−1) than those obtained
for vineyards growing on trellises in different locations (0.13 AWU ha−1 and 0.10 AWU·ha−1) [17,36].
140Ru stood apart at 0.16 AWU·ha−1, due primarily to the increased productivity and vigor and the
higher operating (labor) costs (increased cost of pruning and harvesting). The values obtained are
consistent with the average for the European Union (0.12 AWU·ha−1) and are more than double those
recorded for agricultural holdings as a whole (0.05 AWU·ha−1) [37]. These indicators confirm the value
of DI vineyards as a very important crop, being socio-economic motors for territories, closely linked to
the environment and rural development in arid and semiarid areas, in which, in many cases, there
are not many productive possibilities (because of very limited water resources or climatic and soil
limitations). We have only referred to the phase of cultivation, but the subsequent phases of processing
and marketing of QWpsr wines increase the socioeconomic importance of this crop.

The water viability threshold indicated that four rootstocks (140Ru, 1103P, 41B, and 110R) were
adapted to the existing prices of water and, even, in the case of 140Ru, very high prices of water of up
to 2 €m−3 could be supported. Only 161-49C, due to its lower productivity, showed a lower threshold
than the existing price of water and is, therefore, not viable under current conditions.

In general, RDI strategies were better than PRI strategies in economic terms (economic efficiency
and WVT) in practically all rootstocks, except in 110R (where PRI was more beneficial than RDI)
(Table 6). This advantage of RDI may be due to two reasons: the first, that the fixed cost of PRI strategies
represented a cost greater than RDI due to the dual network of irrigation—in particular, the PRI
treatments cost 180 € ha−1 per year more than RDI; and a second cause, the gross income (€ ha−1) of RDI
was higher in all rootstocks, except in 110R (Table 4). It is interesting to note that the 161-49C rootstock,
which was not viable in global terms (taking into account the average of the rootstock, including both
PRI and RDI), was viable in RDI conditions (Table 6). It is likely that excessive water stress caused by
PRI in this rootstock, because of the low volumes of irrigation applied in the wet root zone, strongly
affected its productivity and, therefore, its profitability, although the technological quality and grape
polyphenols were clearly improved [14]. These results suggest that the implementation of PRI could
be improved in this unproductive rootstock by increasing annual irrigation volumes, an aspect that
needs to be investigated. Other combinations like 161-49C RDI or 110R PRI may be good strategies for
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use in arid conditions since they are profitable and more productive, while maintaining a good quality
of grape and wine (Table 7).

We would expect that a price premium for a certain wine variety or appellation would translate
into a price premium for the corresponding wine grape variety and grape location, but this is not
always the case. In recent years, there has been increasing concern in the wine grape market for the
need to establish protocols and methods to classify different qualities of grapes intended to make
quality wines [18,28]. Our group has developed some berry and wine quality indices (based on
technological and phenolic quality) that help in the differentiation of Monastrell grapes and wines in
relation to each tested strategy or combination [30]. The possibility of increasing the price of grapes
through a premium on quality would change all of the profitability scenarios shown in this work,
especially considering that most Spanish wine consumers are willing to pay a price premium for
a greater quality and more sustainable wine, and that there are differences among the main market
segments [38]. Thus, our analysis showed that 161-49C was the only rootstock that was unviable at
the average current price of the period (Figure 1). However, with a premium price of 0.030 €·kg−1

◦Be−1, equivalent to 0.40 €·kg−1, this option was cost effective (NM/Cost = 13.5%) (Figure 1). That is,
only with a premium of 6 cents, the use of rootstock 161-49C would be profitable for Monastrell
production. In addition, this rootstock produced higher quality grapes and wines (Table 7) and was
at the limit marked by the majority of PDO (Origin Denominations) in the Spanish Mediterranean
area (7000–9000 kg·ha−1). Besides, the evolution of the NM/C indicator with the price of the grape
indicated that all combinations of rootstock–IM were viable with the weighted average market price of
the period 2012–2017 (0.0254 €·kg−1 ◦Be−1), except the one with the highest quality, i.e., 161-49C PRI
(Table 7, Figure 2). These grapes, which potentially give a better wine (Table 7), should have a premium
set for their high quality to make it economically viable (NM/C = 0). In particular, if the average price
paid had been just 0.0296 €·kg−1 ◦Be−1 (about 5 cents per kg more than the current price), which is
equivalent to an increase in the price of 16.5%, 161-49C PRI would have been viable, while the rest
of the combinations that also gave higher berry and wine quality, such as 161-49C RDI, 110R PRI,
and 110R RDI would have provided a more than 20% increase, which is a good economic choice for the
Monastrell vines in these semiarid conditions (Figure 2). In Spain, the lowest grape prices correspond
to traditional wine-growing areas of Southeastern Spain (Valencia, Alicante, Murcia) and Castilla la
Mancha, and to varieties such as Monastrell, Bobal, and Cencibel (0.24 and 0.33 € kg−1), while the
highest grape prices (0.85–1.30 € kg−1) were paid to varieties such as Tempranillo in the areas of North
of Spain, Ribera del Duero, and Rioja [39]. It is noteworthy that these semiarid areas of Southeastern
Spain (Valencia, Murcia) and Castilla la Mancha (with the lowest grape prices) will be more vulnerable
to the effects of climate change than other wine-growing regions and will need the most effort to adapt,
with increased costs to maintain the quality and productivity of vineyards, since these regions will face
changes of greater magnitude than other wine-producing areas [6]. Thus, if the grape prices do not
rise substantially and if sustainable adaptation measures are not taken quickly, wine grape production
will likely disappear in these traditional wine-growing areas. For instance, in the region of Murcia,
a reduction of 12,224 ha was already observed in the vineyard surface in the period 2009–2017 [40].

In contrast, the current averaged prices paid for red grapes in other wine-growing regions
worldwide, in general, are also higher than those paid in southeastern Spain, depending on variety and
wine-growing region, oscillating between 0.32 € kg−1 in South African wine-growing regions [41] (with
production costs and grape prices similar to this study), 0.29–1.43 € kg−1 in different wine-growing
regions in Australia [42], 1.21–1.57 € kg−1 in Ontario (Canada) [43], 0.93–1.80 € kg−1 in New Zealand [44],
and up to 2.51–4.95 € kg−1 in premium wine-growing regions such as Sonoma and Napa County
(California, USA) [45].

On the other hand, in Spanish southeastern Mediterranean vineyards, production costs are
also lower (around 3000 € ha−1, Table 5) than in other wine-growing areas [46–48], due in part to
the lower consumption of water, fertilizers, and phytosanitary products [13,18]. These vineyards,
irrigated with highly efficient water-use DI strategies and low water volumes, are also more efficient
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in the use of agrochemicals, with the relative cost of agrochemicals (fertilizers, phytosanitary and
herbicides) between 8% and 10% of the total cost, compared to 20.4% in Ontario (Canada) [47], 13.2%
in Russian River valley (California) [48], 13.6% in La Rioja (Spain) [49], and 11.6% in Murray Valley
(Australia) [46]. This lower use of agrochemicals produces a lower environmental impact, since
fertilizers and pesticides generate high pollutant emissions, both during their production and during
their subsequent application in the field [50–53]. These factors contribute between 30% and 80% to the
carbon footprint in viticulture [54]. In our area, in particular, they have calculated a global fertilizer
and phytosanitary contribution to greenhouse gas emission of 78% [55].

In the semiarid wine-growing regions of southern Europe (such as southeastern Spain), climate
models predict more frequent and longer periods of drought, an increase in temperatures, evaporative
demand, and the water needs of vines [3,6]. For this, we considered it interesting to make a simulation
for the foreseeable increases in the price of water, since the water resource for agricultural use will
become increasingly more limited in semiarid areas. Therefore, the economic data indicate that in the
not too distant future, the sustainability of vineyards will be seriously threatened in these areas due to
higher water prices. For example, with a moderate rise in the price of water of between 12–18 cents,
compared to the current price (0.20 €·m−3), i.e., reaching 0.32 or 0.38 €·m−3, options such as RDI 110R or
RDI 161-49C that until now have been profitable for PDO-permitted production because of their good
quality grapes and wines, will be unviable economically, and the rest of the options will significantly
diminish their profitability, with the most profitable ones becoming the more vigorous rootstocks
140Ru and 1103P (Figure 3).

The model shows that in a situation with high water prices, the best option to find a compromise
between quality, production, and profitability for the grower would be a rootstock such as R110 using
PRI, since it tolerates water prices of up to 0.52 €·m−3 with high yields and good quality. The use of the
PRI technique in 110R allows vineyards to increase or maintain berry and wine quality with an increase
in yield and wine volume, compared to RDI [14,15], which can be a more profitable option.

If grape prices continue to be as low as the current ones, and if the grower is not rewarded for
the quality of the grapes, only the productivity vision will continue and the cost-effective option will
be to produce a lot of grapes, even if at the expense of berry and wine quality. There is therefore
a clear conflict between productivity and quality in wine grape production. Our analysis shows
that most of the productive and economic indices, such as yield, economic efficiency, break-even
point, and water productivity, are inversely related to berry quality (Figure 4C–F). In addition,
the relationships between WUEyield, production costs, and QIoverall berry indicate that in the current
wine market conditions, maximum productive efficiency is closely related to low productive costs and
QIoverall berry (Figures 4 and 5). In contrast, maximum berry quality is closely related to lower WUEyield

and higher production costs (Figure 5). Although the most vigorous and productive rootstocks
(especially 140Ru, followed by 1103P) have higher absolute costs per ha (mainly due to the more intense
manual labor in pruning and harvesting, Table 5), in terms of unit production costs (what it costs to
produce a kilo of grapes, € kg−1), these rootstocks are more efficient (show lower unit production
costs, meaning it costs less to produce a kg of grapes, Table 6) compared to low productive rootstocks.
The analysis shows that in the very high WUEyield range, between 10 and 25 kg m−3, production costs
are quite low, even below the current average price, due to very high productivity, making this option
very profitable economically overall in high vigor rootstocks such as 140Ru. In contrast, with lower
WUEyield, (between 5−10 kg m−3), production costs start to increase sharply in an exponential way,
whilst also increasing progressively the berry quality in a linear way (Figure 5). Below 5–6 kg m−3,
production costs increase a lot, with little effect on berry quality. In these conditions, the rapid increase
in production costs due to very low productivity makes this option economically unfeasible. In this
situation, it will be difficult to implement optimized deficit irrigation strategies and a sustainable
irrigation water use, and the pressure on water resources will increase in semiarid areas.

According to the WUEyield–production costs–QIoverall berry relationship analysis, maximum
QIoverall berry (≥12) was reached at a WUEyield of around 7.3 Kg m−3 (161-49C), which supposes
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a low yield, around 7256 kg ha−1 year−1, similar to the yield range obtained with 161-49C PRI,
and within the yield range allowed by O.D. Bullas. Unfortunately, with the current grape price
(0.326 € kg−1), this maximum quality option is unfeasible economically. In this situation, everything
that supposes a production cost higher than the current grape price is not viable economically.
According to our results, this corresponds with a WUEyield < 9 kg m−3 and a yield < 8128 kg ha−1.
Thus, to maintain low production costs and high berry quality, the analysis aims for yield ranges
between 8100 and 9000, thus not exceeding the range allowed for D.O. Bullas wines (yield range
7500–9000 kg ha−1, and WUEyield between 9 and 10 kg m−3), which, with the current price of the
grapes, could be a good compromise between productivity, quality, and returns for the grower.

Taking into account the various problems that the wine sector faces, such as the decrease in the
consumption of wine per capita, health and road safety problems associated with the consumption of
alcohol, and strong competition with wines from other regions of the new world with less wine-making
traditions, our results indicate that in Mediterranean semiarid areas, we must bet on quality as
a differentiating character in wine production. That is, we should prize the typicality and the varietal
character of wines from these Mediterranean regions; in the case of southeastern Spain, the Monastrell
variety should be the focus of attention. This local ancient variety is well adapted to these harsh and
dry climates of high temperatures and recurrent drought cycles, and possesses important wine-making
potential, as evidenced by the wines of high quality and of great economic value currently produced
with the Monastrell grape in different parts of the world [56]. Wines of this variety offer an alternative
and very positive differentiating character compared with wines made from varieties more widely
extended internationally. Therefore, we believe that public policies should encourage vine growers to
invest in producing high-quality grapes (not only of technological quality, but also of polyphenolic and
nutraceutical quality, and being chemical residue-free), as well as to develop agronomic practices in the
vineyards that are environmentally and socially sustainable, by paying prices that are more adjusted
to their current quality and real production costs. In this way, the production costs should take into
account environmental and social costs, too. This fits with the most accepted concept of sustainability,
which is defined through the three overlapping principles of environmentally sound, economically
feasible, and socially equitable production [38]. Thus, the necessary changes that the industry will need
to make over the coming years to remain competitive will be to introduce environmentally sustainable
practices (e.g., to reduce inputs and implement organic and agroecological practices), to increase global
grape and wine quality, and to maintain sustainable grape pricing, among other factors. With this
low-input viticulture, we can implement agronomic measures such as optimized regulated deficit
irrigation techniques with low water volumes, and we can use more efficient and drought-tolerant
rootstocks that will improve efficiency in the use of water, fertilizers, and agrochemicals, which will
improve the quality of the grapes and wine made in semiarid regions in a context of global warming
and water-limiting conditions.
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