Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Erosion Assessment and Soil Sampling
2.2. Soil Physical Quality Indicators
2.3. Soil Chemical Quality Indicators
2.4. Soil Biological Quality Indicators
2.5. Data Analysis
3. Results
3.1. Soil Losses, Water Losses, and Soil Physical Indicators
3.2. Physical, Chemical, and Microbiological Indicators in Crop Rows
3.3. Physical, Chemical, and Microbiological Indicators in Crop Interrows
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khanchoul, K.; Boubehziz, S. Spatial variability of soil erodibility at el hammam catchment, northeast of algeria. Environ. Ecosyst. Sci. 2019, 3, 17–25. [Google Scholar] [CrossRef]
- Mello, G.; Bueno, C.R.P.; Pereira, G.T. Variabilidade espacial de perdas de solo, do potencial natural e risco de erosão em áreas intensamente cultivadas. Rev. Bras. Eng. Agríc. Ambient. 2006, 10, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Blake, W.H.; Rabinovich, A.; Wynants, M.; Kelly, C.; Nasseri, M.; Ngondya, I.; Patrick, A.; Mtei, K.; Munishi, L.; Boeckx, P.; et al. Soil erosion in East Africa: An interdisciplinary approach to realising pastoral land management change. Environ. Res. Lett. 2018, 13, 124014. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Märker, M.; Panagos, P.; Schütt, B. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. CATENA 2014, 114, 45–58. [Google Scholar] [CrossRef]
- Oliveira, F.G.; Seraphim, O.J.; Borja, M.E.L. Estimativa de perdas de solo e do potencial natural de Erosão da bacia de contribuição da microcentral Hidrelétrica do Lageado, Botucatu—SP. Eng. Agríc. 2015, 30, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Mota, P.K.; Silva, B.M.; Borghi, E.; Viana, J.H.M.; Resende, Á.V.; Moura, M.S. Soil physical quality in response to intensification of grain production systems. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 647–655. [Google Scholar] [CrossRef]
- Raghavendra, M.; Sharma, M.P.; Ramesh, A.; Richa, A.; Billore, S.D.; Verma, R.K. Soil Health Indicators: Methods and Applications. In Soil Analysis: Recent Trends and Applications; Springer: Singapore, 2020; pp. 221–253. [Google Scholar]
- Hoffmann, R.B.; Moreira, E.E.A.; Hoffmann, G.S.S.; Araújo, N.S.F. Efeito do manejo do solo no carbono da biomassa microbiana. Braz. J. Anim. Environ. Res. 2018, 1, 168–178. [Google Scholar]
- Gonçalves, V.A.; Melo, C.A.D.; Assis, I.R.; Ferreira, L.R.; Saraiva, D.T. Biomassa e atividade microbiana de solo sob diferentes sistemas de plantio e sucessões de culturas. Rev. Ciênc. Agrár. 2019, 62. [Google Scholar] [CrossRef]
- Souza, R.A.; Telles, T.S.; Machado, W.; Hungria, M.; Filho, J.T.; Guimarães, M.F. Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agric. Ecosyst. Environ. 2012, 155, 1–6. [Google Scholar] [CrossRef]
- Venzke Filho, S.P.; Feigl, B.J.; Piccolo, M.C.; Siqueira Neto, M.; Cerri, C.C. Biomassa microbiana do solo em sistema de plantio direto na região de Campos Gerais—Tibagi, PR. Rev. Bras. Ciênc. Solo 2008, 32, 599–610. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef] [PubMed]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Solos: Brasília, Brazil, 2018; ISBN 978-85-7035-800-4. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Silva, L.C.M.; Avanzi, J.C.; Peixoto, D.S.; Merlo, M.N.; Borghi, E.; Resende, Á.V.; Acuña-Guzman, S.F.; Silva, B.M. Ecological intensification of cropping systems enhances soil functions, mitigates soil erosion, and promotes crop resilience to dry spells in the Brazilian Cerrado. Int. Soil Water Conserv. Res. 2021, 9, 591–604. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture: Washington, DC, USA, 1978.
- Stolf, R.; Fernandes, J.; Furlani Neto, V.L. Recomendação Para o uso do Penetrômetro de Impacto—Modelo IAA/Planalsucar—Stolf; Piracicaba, Brazil. 1983. Available online: https://www.servidores.ufscar.br/hprubismar/arquivos10.htm (accessed on 29 December 2021).
- Grohmann, F. Distribuição e tamanho de poros em três tipos de solos do estado de São Paulo. Bragantia 1960, 19, 319–328. [Google Scholar] [CrossRef]
- Oliveira, L.B. Determinação da macro e microporosidade pela mesa de tensão em amostras de solo com estrutura indeformada. Pesqui. Agropecu. Bras. 1968, 3, 197–200. [Google Scholar]
- Flint, L.E.; Flint, A.A. Porosity. In Methods of Soil Analysis: Part 4, Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America Book Series; Soil Science Society of America: Madison, WI, USA, 2002; pp. 241–254. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America Book Series; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Solos: Brasília, Brazil, 2017. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil—V. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. Methods Assess. Soil Qual. 1997, 49, 247–271. [Google Scholar]
- Ferreira, D.F.; Cargnelutti Filho, A.; Lúcio, A.D. Procedimentos estatísticos em planejamentos experimentais com restrição na casualização. In Boletim Informativo Sociedade Brasileira de Ciência do Solo; Sociedade Brasileira de Ciência do Solo: Campinas, Brazil, 2012; pp. 16–19. [Google Scholar]
- Cecagno, D.; Costa, S.E.V.G.A.; Anghinoni, I.; Kunrath, T.R.; Martins, A.P.; Reichert, J.M.; Gubiani, P.I.; Balerini, F.; Fink, J.R.; Carvalho, P.C.F. Least limiting water range and soybean yield in a long-term, no-till, integrated crop-livestock system under different grazing intensities. Soil Tillage Res. 2016, 156, 54–62. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, B.M.; Oliveira, G.C.; Moreira, S.G.; Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- Moura, M.S.; Silva, B.M.; Mota, P.K.; Borghi, E.; Resende, A.V.; Acuña-Guzman, S.F.; Araújo, G.S.S.; Silva, L.C.M.; Oliveira, G.C.; Curi, N. Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol. Agric. Water Manag. 2021, 243, 106523. [Google Scholar] [CrossRef]
- Andrade, A.T.; Torres, J.L.R.; Torres, J.L.R.; Paes, J.M.V.; Teixeira, C.M.; Condé, A.B.T. Desafios do Sistema Plantio Direto no Cerrado. Inf. Agropecu. 2018, 39, 18–26. [Google Scholar]
- Debiasi, H.; Franchini, C.F.; Gonçalves, S.L. Manejo da Compactação do Solo em Sistema de Produção de Soja Sob Semeadura Direta; Embrapa: Londrina, Brazil, 2008; Available online: https://www.infoteca.cnptia.embrapa.br/handle/doc/470946 (accessed on 29 December 2021).
- Wu, G.-L.; Yang, Z.; Cui, Z.; Liu, Y.; Fang, N.-F.; Shi, Z.-H. Mixed artificial grasslands with more roots improved mine soil infiltration capacity. J. Hydrol. 2016, 535, 54–60. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Arrouays, D. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 1997, 48, 39–48. [Google Scholar] [CrossRef]
- Wilson, H.A.; Browning, G.M. Soil Aggregation, Yields, Runoff, and Erosion as Affected by Cropping Systems. Soil Sci. Soc. Am. J. 1946, 10, 51–57. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Mannering, J.V. Relation of Soil Properties to its Erodibility. Soil Sci. Soc. Am. J. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses 1. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Pariz, C.M.; Martins, P.O.; Borghi, E. Intercropping soybean and palisade grass for enhanced land use efficiency and revenue in a no till system. Eur. J. Agron. 2014, 58, 53–62. [Google Scholar] [CrossRef]
- Silva, R.F.; Severiano, E.C.; Oliveira, G.C.; Barbosa, S.M.; Peixoto, D.S.; Tassinari, D.; Silva, B.M.; Silva, S.H.G.; Dias Júnior, M.S.; Figueiredo, T.A.F.R. Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol. Soil Tillage Res. 2021, 213, 105127. [Google Scholar] [CrossRef]
- Williams, S.M.; Weil, R.R. Crop Cover Root Channels May Alleviate Soil Compaction Effects on Soybean Crop. Soil Sci. Soc. Am. J. 2004, 68, 1403–1409. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R.; Rostek, J.; Uteau, D.; Peth, S. Evaluation of temporal changes in hydrostructural properties of regenerating permanent grassland soils based on shrinkage properties and μCT analysis. Soil Tillage Res. 2019, 185, 102–112. [Google Scholar] [CrossRef]
- Vaezi, A.; Haghani, Z. Effect of Soil Water Content on Runoff Production and Soil Loss from Rills in Field Experimental Plots in Different Slopes. Water Soil Sci. 2021, 31, 31–43. [Google Scholar]
- Nishigaki, T.; Sugihara, S.; Kilasara, M.; Funakawa, S. Surface Runoff Generation and Soil Loss Under Different Soil and Rainfall Properties in The Uluguru Mountains, Tanzania. Land Degrad. Dev. 2017, 28, 283–293. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, B.; Wang, M. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agric. Water Manag. 2007, 94, 54–62. [Google Scholar] [CrossRef]
- Luk, S.-H.; Hamilton, H. Experimental effects of antecedent moisture and soil strength on rainwash erosion of two luvisols, Ontario. Geoderma 1986, 37, 29–43. [Google Scholar] [CrossRef]
- Bertoni, J.; Lombardi Neto, F. Conservação do Solo, 9th ed.; Ícone: São Paulo, Brazil, 2014. [Google Scholar]
- Baldassarini, J.S.; Nunes, J.O.R. Estimação da perda de solo por processos erosivos em parcelas de monitoramento utilizando pinos de erosão em propriedades rurais do interior do Estado de São Paulo. Confins 2018. Available online: https://journals.openedition.org/confins/16084 (accessed on 29 December 2021). [CrossRef]
- Cattelan, A.J.; Vidor, C. Flutuações na biomassa, atividade e população microbiana do solo, em função de variações ambientais. Rev. Bras. Ciênc. Solo 1990, 14, 133–142. [Google Scholar]
- Silva, E.E.; Azevedo, P.H.S.; De-Polli, H. Determinação de Respiração Basal (RBS) e Quociente Metabólico do solo (qCO2); Comunidado Técnico 99—EMBRAPA Agrobiol: Seropédica, Brazil, 2007. [Google Scholar]
- Araujo, T.S.; Gallo, A.S.; Araujo, F.S.; Santos, L.C.; Guimarães, N.F.; Silva, R.F. Biomassa e atividade microbiana em solo cultivado com milho consorciado com leguminosas de cobertura. Rev. Ciênc. Agrár. 2019, 42, 347–357. [Google Scholar]
- Cândido, B.M.; Silva, M.L.N.; Curi, N.; Freitas, D.A.F.; Mincato, R.L.; Ferreira, M.M. Métodos de indexação de indicadores na avaliação da qualidade do solo em relação à erosão hídrica. Rev. Bras. Ciênc. Solo 2015, 39, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Odum, E.P. Trends Expected in Stressed Ecosystems. Bioscience 1985, 35, 419–422. [Google Scholar] [CrossRef]
Soil Management System | SL | WL | CR | TP | Ma | Mi | Bd |
---|---|---|---|---|---|---|---|
Mg ha−1 | mm | Mg ha−1 | m3 m−3 | m3 m−3 | m3 m−3 | g cm−3 | |
SS | 20.364 a | 144.747 a | 1.216 cd | 0.612 ns | 0.196 ns | 0.416 ns | 0.958 ns |
MM | 1.025 b | 13.290 b | 1.75 bcd | 0.593 | 0.18 | 0.414 | 1.018 |
MS | 0.630 c | 11.959 b | 1.5 cd | 0.589 | 0.171 | 0.418 | 1.013 |
MBSB | 0.156 d | 7.032 bc | 3.55 ab | 0.589 | 0.156 | 0.433 | 0.993 |
MBSB-HI | 0.122 d | 3.893 c | 4.650 a | 0.599 | 0.184 | 0.415 | 0.902 |
MS-HI | 0.251 d | 16.005 b | 2.433 bc | 0.581 | 0.15 | 0.432 | 1.038 |
BS | 20.144 a | 120.442 a | 0.000 d | 0.606 | 0.192 | 0.414 | 0.951 |
Soil Management System | MBC | BSR | qCO2 | FDA | P | Sb | m | K | Mg | Ca | OC | GMD | MWD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | 272 cd | 194 c | 0.72 bc | 110 c | 21.6 ab | 6.41 ab | 1.27 ab | 148 ab | 1.36 ab | 4.68 ns | 1.63 ns | 4.58 ns | 4.75 ns |
MM | 196 d | 424 a | 2.19 a | 107 c | 45.1 ab | 5.58 b | 1.49 a | 153 ab | 0.89 b | 3.98 | 1.56 | 4.39 | 4.77 |
MS | 311 bc | 288 abc | 0.93 bc | 127 b | 68.8 a | 6.58 ab | 0.71 cd | 154.6 ab | 1.49 a | 4.70 | 1.43 | 4.76 | 4.91 |
MBSB | 361 ab | 292 abc | 0.81 bc | 137 ab | 20.6 b | 5.57 b | 1.18 abc | 66.6 b | 1.28 ab | 4.12 | 1.42 | 4.49 | 4.86 |
MBSB-HI | 423 a | 272 abc | 0.65 c | 147 a | 27.6 ab | 6.73 ab | 0.57 d | 124.7 ab | 1.38 ab | 5.03 | 1.47 | 4.60 | 4.85 |
MS-HI | 316 bc | 384 ab | 1.24 ab | 111 c | 22.1 ab | 7.60 ab | 0.70 d | 199.7 a | 1.39 ab | 5.71 | 1.75 | 4.68 | 4.90 |
BS | 311 bc | 251 bc | 0.82 bc | 113 c | 29.1 ab | 8.58 a | 0.85 bcd | 70.3 b | 1.61 a | 4.83 | 1.63 | 4.64 | 4.85 |
Soil Management System | MBC | BSR | qCO2 | FDA | P | Sb | m | K | Mg | Ca | OC | GMD | MWD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | 395 b | 352 c | 0.90 cd | 112.1 c | 21.5 ab | 6.71 abc | 0.70 bc | 123.3 ab | 1.37 b | 4.81 ab | 1.48 ns | 4.39 ns | 4.78 ns |
MM | 380 b | 480 b | 1.27 bc | 142.6 a | 26.3 ab | 6.49 abc | 1.95 a | 87.8 b | 1.22 b | 4.05 b | 1.80 | 4.66 | 4.90 |
MS | 178 d | 483 ab | 2.7 a | 118.5 bc | 51.1 a | 5.50 c | 0.74 bc | 122.6 ab | 1.95 a | 5.32 ab | 1.73 | 4.58 | 4.84 |
MBSB | 256 cd | 459 b | 1.83 b | 126.1 b | 18.8 b | 7.59 abc | 1.01 b | 79.0 b | 1.50 ab | 4.56 ab | 1.53 | 4.71 | 4.89 |
MBSB-HI | 498 a | 424 b | 0.85 d | 117.1 c | 18.6 b | 6.26 bc | 0.49 c | 135.1 ab | 1.95 a | 5.98 ab | 1.80 | 4.76 | 4.92 |
MS-HI | 389 b | 532 a | 1.37 b | 99.2 d | 22.9 ab | 8.27 ab | 0.58 bc | 199.1 a | 1.60 ab | 6.47 a | 1.46 | 4.76 | 4.93 |
BS | 311 bc | 251 c | 0.82 d | 112.7 c | 29.1 ab | 8.58 a | 0.85 bc | 105.6 ab | 1.61 ab | 4.83 ab | 1.63 | 4.64 | 4.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlo, M.N.; Avanzi, J.C.; Silva, L.d.C.M.d.; Aragão, O.O.d.S.; Borghi, E.; Moreira, F.M.d.S.; Thebaldi, M.S.; Resende, Á.V.d.; Silva, M.L.N.; Silva, B.M. Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado. Water 2022, 14, 614. https://doi.org/10.3390/w14040614
Merlo MN, Avanzi JC, Silva LdCMd, Aragão OOdS, Borghi E, Moreira FMdS, Thebaldi MS, Resende ÁVd, Silva MLN, Silva BM. Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado. Water. 2022; 14(4):614. https://doi.org/10.3390/w14040614
Chicago/Turabian StyleMerlo, Marina Neves, Junior Cesar Avanzi, Lucas de Castro Moreira da Silva, Osnar Obede da Silva Aragão, Emerson Borghi, Fatima Maria de Souza Moreira, Michael Silveira Thebaldi, Álvaro Vilela de Resende, Marx Leandro Naves Silva, and Bruno Montoani Silva. 2022. "Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado" Water 14, no. 4: 614. https://doi.org/10.3390/w14040614
APA StyleMerlo, M. N., Avanzi, J. C., Silva, L. d. C. M. d., Aragão, O. O. d. S., Borghi, E., Moreira, F. M. d. S., Thebaldi, M. S., Resende, Á. V. d., Silva, M. L. N., & Silva, B. M. (2022). Microbiological Properties in Cropping Systems and Their Relationship with Water Erosion in the Brazilian Cerrado. Water, 14(4), 614. https://doi.org/10.3390/w14040614