Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials and Design
2.2. Measurement of Soil Water Content, Water Potential, and Electrical Conductivity
2.3. Measurement of the Soil Surface Evaporation and Soil Infiltration
2.4. Measurement of Soil Water Characteristic Curve
2.5. Measurement of Soil Bicarbonate Concentration
2.6. Statistical Analysis
3. Results
3.1. Diurnal Variation in Soil Infiltration and Evaporation of the Two Habitats under Drought
3.2. Diurnal and Day-to-Day Variations Soil Water Content and Water Potential in the Two Habitats under Drought
3.3. Diurnal and Day-to-Day Variations in the Water Characteristic Curves of the Two Habitats under Drought
3.4. Diurnal and Day-to-Day Variations in Soil Conductivity, HCO3−, and pH in Two Habitats under Drought
3.4.1. Dynamic Change in Soil Conductivity with Increasing Drought Time
3.4.2. Dynamic Changes in Soil pH and HCO3− with Drought Time
3.4.3. Correlation of Soil Parameters in Two Habitats
4. Discussion
4.1. Water Retention Function of Soils under Drought in the Two Habitats
4.2. Carbon Sequestration and Sinks in Soils of the Two Habitats under Drought
4.3. Coupling Effect of Soil Water Content and HCO3− under Drought
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzsimons, J.A.; Michael, D.R. Rocky outcrops: A hard road in the conservation of critical habitats. Biol. Conserv. 2017, 211, 36–44. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Su, Y.; Wu, J.; Zhang, W. Spatial variability of surface soil moisture content in depression area of karst region under moist and arid conditions. Chin. J. Appl. Ecol. 2006, 17, 2277–2282. [Google Scholar]
- Zhao, Z.; Shen, Y.; Jiang, R.; Wang, Q. Rock outcrops change infiltrability and water flow behavior in a karst soil. Vadose Zone J. 2020, 19, e20002. [Google Scholar] [CrossRef] [Green Version]
- Göransson, H.; Edwards, P.J.; Perreijn, K.; Smittenberg, R.H.; Olde Venterink, H. Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain. Biogeochemistry 2014, 121, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Certini, G.; Campbell, C.D.; Edwards, A.C. Rock fragments in soil support a different microbial community from the fine earth. Soil Biol. Biochem. 2004, 36, 1119–1128. [Google Scholar] [CrossRef]
- Poesen, J.; Ingelmo-Sanchez, F.; Mucher, H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surf. Process. Landf. 1990, 15, 653–671. [Google Scholar] [CrossRef]
- Li, S.; Ren, H.; Yao, X. Responses of soil moisture to bare rocks in Karst rock desertification region of Southwest China during dry season. Chin. J. Ecol. 2012, 31, 3174–3178. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, D.; Chen, Q.; Tang, Y.; Chen, F. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China. Catena 2019, 172, 125–131. [Google Scholar] [CrossRef]
- Wang, D.; Shen, Y.; Li, Y.; Huang, J. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China. PLoS ONE 2016, 11, e0160773. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, M.B.; Bastazini, V.A.G.; Hofmann, G.S.; de Macedo, J.H.; Iob, G.; Duarte, L.D.S.; Hartz, S.M.; Müller, S.C. Taxonomic and functional diversity of woody plant communities on opposing slopes of inselbergs in southern Brazil. Plant Ecol. Divers. 2015, 8, 187–197. [Google Scholar] [CrossRef]
- Li, S.; Birk, S.; Xue, L.; Ren, H.; Chang, J.; Yao, X. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan County, Yunnan Province, China). Environ. Earth Sci. 2016, 75, 1482. [Google Scholar] [CrossRef]
- Khadka, M.B.; Martin, J.B.; Jin, J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment. J. Hydrol. 2014, 513, 391–402. [Google Scholar] [CrossRef]
- Liu, W.; Wei, J.; Cheng, J.; Li, W. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau. Catena 2014, 121, 321–329. [Google Scholar] [CrossRef]
- Berner, R.A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 1992, 56, 3225–3231. [Google Scholar] [CrossRef]
- Yuan, D. Sensitivity and records of karst effects to environment change. Chin. Sci. Bull. 1995, 40, 1210–1213. [Google Scholar] [CrossRef]
- Yuan, D. Progress in the Study on Karst Processes and Carbon Cycle. Adv. Earth Sci. 1999, 14, 425–432. [Google Scholar] [CrossRef]
- Manning, D.A.C. Biological enhancement of soil carbonate precipitation: Passive removal of atmospheric CO2. Mineral. Mag. 2008, 72, 639–649. [Google Scholar] [CrossRef]
- Carmi, I.; Kronfeld, J.; Moinester, M. Sequestration of atmospheric carbon dioxide as inorganic carbon in the unsaturated zone under semi-arid forests. Catena 2019, 173, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Nyachoti, S.; Jin, L.; Tweedie, C.E.; Ma, L. Insight into factors controlling formation rates of pedogenic carbonates: A combined geochemical and isotopic approach in dryland soils of the US Southwest. Chem. Geol. 2019, 527, 118503. [Google Scholar] [CrossRef]
- Romero-Mujalli, G.; Hartmann, J.; Börker, J.; Gaillardet, J.; Calmels, D. Ecosystem controlled soil-rock pCO2 and carbonate weathering—Constraints by temperature and soil water content. Chem. Geol. 2019, 527, 118634. [Google Scholar] [CrossRef]
- Rose, M.T.; Rose, T.J.; Pariasca-Tanaka, J.; Yoshihashi, T.; Neuweger, H.; Goesmann, A.; Frei, M.; Wissuwa, M. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta 2012, 236, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Poschenrieder, C.; Fernandez, J.A.; Rubio, L.; Perez, L.; Teres, J.; Barcelo, J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int. J. Mol. Sci. 2018, 19, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahsavandi, F.; Eshghi, S.; Gharaghani, A.; Ghasemi-Fasaei, R.; Jafarinia, M. Effects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine. Sci. Hortic. 2020, 270, 109427. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.; Xing, D.; Hang, H.; Xie, X.; Yang, X.; Zhang, K.; Rao, S. Biomass Production of Three Biofuel Energy Plants’ Use of a New Carbon Resource by Carbonic Anhydrase in Simulated Karst Soils: Mechanism and Capacity. Energies 2017, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S.; Viles, H.A. Weathering and the global carbon cycle: Geomorphological perspectives. Earth Sci. Rev. 2012, 113, 59–71. [Google Scholar] [CrossRef]
- Harmon, R.S.; White, W.B.; Drake, J.J.; Hess, J.W. Regional hydrochemistry of North American carbonate terrains. Water Resour. Res. 1975, 11, 963–967. [Google Scholar] [CrossRef]
- Covington, M.D.; Vaughn, K.A. Carbon dioxide and dissolution rate dynamics within a karst underflow-overflow system, Savoy Experimental Watershed, Arkansas, USA. Chem. Geol. 2019, 527, 118689. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 2019, 49, 1321–1334. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 2019, 26, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Dart, R.C.; Barovich, K.M.; Chittleborough, D.J.; Hill, S.M. Calcium in regolith carbonates of central and southern Australia:Its source and implications for the global carbon cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 322–334. [Google Scholar] [CrossRef]
- Liu, Z. Is pedogenic carbonate an important atmospheric CO2 sink? Chin. Sci. Bull. 2011, 56, 3794–3796. [Google Scholar] [CrossRef] [Green Version]
- Curl, R.L. Carbon Shifted but Not Sequestered. Science 2012, 335, 655. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, D.; Chris, G.; Huang, F.; Yang, H.; Lu, Q. Carbon Fluxes and Sinks: The Consumption of Atmospheric and Soil CO2 by Carbonate Rock Dissolution. Acta Geol. Sin. 2012, 86, 963–972. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, Y. Rain-induced weathering dissolution of limestone and implications for the soil sinking-rock outcrops emergence mechanism at the karst surface: A case study in southwestern China. Carbonates Evaporites 2022, 37, 69. [Google Scholar] [CrossRef]
- Feng, T.; Chen, H.; Wang, K.; Nie, Y.; Zhang, X.; Mo, H. Assessment of underground soil loss via the tapering grikes on limestone hillslopes. Agric. Ecosyst. Environ. 2020, 297, 106935. [Google Scholar] [CrossRef]
- Mao, D.; Cao, Y.; Zhu, W.; Tian, F.; Hao, L.; Kang, L.; Zhang, T. Climatic Characteristics of Short-Time Severe Precipitation in Southwest China. Meteorol. Mon. 2018, 44, 1042–1050. [Google Scholar] [CrossRef]
- Yuan, C.; Lei, T.; Mao, L.; Liu, H.; Wu, Y. Soil surface evaporation processes under mulches of different sized gravel. Catena 2009, 78, 117–121. [Google Scholar] [CrossRef]
- Zeitoun, R.; Vandergeest, M.; Vasava, H.B.; Machado, P.V.F.; Jordan, S.; Parkin, G.; Wagner-Riddle, C.; Biswas, A. In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths. Sensors 2021, 21, 447. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, L.; Gu, R.; Wu, Y.; Li, M. Relationship between soil water potential and water content of two soils. J. Drain. Irrig. Mach. Eng. 2017, 35, 351–356. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. A comparative study of soil solution chemistry associated with chlorotic and nonchlorotic soybeans in western Minnesota. J. Plant Nutr. 1984, 7, 513–531. [Google Scholar] [CrossRef]
- Boxma, R. Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands. Plant Soil 1972, 37, 233–243. [Google Scholar] [CrossRef]
- Xie, J.; Guan, W.; Cui, G.; Sun, G.; Wang, M.; Qi, Z. Soil moisture characteristics of different vegetation types in xilin gol grassland. J. Northeast For. Univ. 2009, 37, 45–48. [Google Scholar]
- Wang, H.; Li, H.; Dong, Z.; Chen, X.; Shao, S. Salinization characteristics of afforested coastal saline soil as affected by species of trees used in afforestation. Acta Pedol. Sin. 2015, 52, 706–712. [Google Scholar]
- Yang, J.; Chen, H.; Nie, Y.; Wang, K. Dynamic variations in profile soil water on karst hillslopes in Southwest China. Catena 2019, 172, 655–663. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological Feedbacks in Global Desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Berndtsson, R. Temporal patterns and spatial scale of soil water variability in a small humid catchment. J. Hydrol. 1988, 104, 111–128. [Google Scholar] [CrossRef]
- Wang, D.J.; Shen, Y.X.; Huang, J.; Li, Y.H. Rock outcrops redistribute water to nearby soil patches in karst landscapes. Environ. Sci. Pollut. Res. Int. 2016, 23, 8610–8616. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Y.; Chen, H.; Wang, S.; Wang, K. Hydraulic properties of karst fractures filled with soils and regolith materials: Implication for their ecohydrological functions. Geoderma 2016, 276, 93–101. [Google Scholar] [CrossRef]
- Plummer, L.N.; Wigley, T. The dissolution of calcite in CO2-saturated solutions at 25 °C and 1 atmosphere total pressure. Geochim. Cosmochim. Acta 1976, 40, 191–202. [Google Scholar] [CrossRef]
- Sweeting, M.M. Karst landforms. Nature 1977, 269, 840. [Google Scholar] [CrossRef]
- Qin, C.; Li, S.L.; Yue, F.J.; Xu, S.; Ding, H. Spatiotemporal variations of dissolved inorganic carbon and controlling factors in a small karstic catchment, Southwestern China. Earth Surf. Process. Landf. 2019, 44, 2423–2436. [Google Scholar] [CrossRef]
- Pu, J.; Li, J.; Zhang, T.; Xiong, X.; Yuan, D. High spatial and seasonal heterogeneity of pCO2 and CO2 emissions in a karst groundwater-stream continuum, southern China. Environ. Sci. Pollut. Res. Int. 2019, 26, 25733–25748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Conrads, H.; Zhao, C.; Ingwersen, J.; Stahr, K.; Wei, X. The effect of different temperature and pH levels on uptake of CO2 in Solonchaks. Geoderma 2019, 348, 60–67. [Google Scholar] [CrossRef]
- Jin, L.; Ogrinc, N.; Hamilton, S.K.; Szramek, K.; Kanduc, T.; Walter, L.M. Inorganic carbon isotope systematics in soil profiles undergoing silicate and carbonate weathering (Southern Michigan, USA). Chem. Geol. 2009, 264, 139–153. [Google Scholar] [CrossRef]
- Varadharajan, C.; Tinnacher, R.M.; Pugh, J.D.; Trautz, R.C.; Zheng, L.; Spycher, N.F.; Birkholzer, J.T.; Castillo-Michel, H.; Esposito, R.A.; Nico, P.S. A laboratory study of the initial effects of dissolved carbon dioxide (CO2) on metal release from shallow sediments. Int. J. Greenh. Gas Control 2013, 19, 183–211. [Google Scholar] [CrossRef]
- Saaltink, M.W.; Vilarrasa, V.; De Gaspari, F.; Silva, O.; Carrera, J.; Rötting, T.S. A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage. Adv. Water Resour. 2013, 62, 431–441. [Google Scholar] [CrossRef]
- Drysdale, R.; Lucas, S.; Carthew, K. The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream. Hydrol. Process. 2003, 17, 3421–3441. [Google Scholar] [CrossRef]
- De Montety, V.; Martin, J.B.; Cohen, M.J.; Foster, C.; Kurz, M.J. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river. Chem. Geol. 2011, 283, 31–43. [Google Scholar] [CrossRef]
- Rao, S.; Wu, Y. Root-derived bicarbonate assimilation in response to variable water deficit in Camptotheca acuminate seedlings. Photosynth. Res. 2017, 134, 59–70. [Google Scholar] [CrossRef]
- Wu, Y. Strategies to increase carbon fixation and sequestration by karst adaptable plants. Carsologica Sin. 2011, 30, 461–465. [Google Scholar] [CrossRef]
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, P.; Liu, J. One third of the abiotically-absorbed atmospheric CO2 by the loess soil is conserved in the solid phase. Geoderma 2020, 374, 114448. [Google Scholar] [CrossRef]
- Apps, J.A.; Zheng, L.; Zhang, Y.; Xu, T.; Birkholzer, J.T. Evaluation of Potential Changes in Groundwater Quality in Response to CO2 Leakage from Deep Geologic Storage. Transp. Porous Media 2010, 82, 215–246. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, D.; Zhang, C.; Jiang, Z. Karst ecosystem constrained by geological conditions in southwest China. Earth Environ. 2004, 32, 1–8. [Google Scholar] [CrossRef]
Soil Type | Particle Size/% | Nutrient Content/(g/kg) | pH | |||||
---|---|---|---|---|---|---|---|---|
<0.002 mm | 0.02~0.002 mm | 0.02~2 mm | C | N | Mg | Ca | ||
Loam | 7.62 | 39.97 | 51.81 | 26.95 | 2.10 | 1.49 | 1.48 | 7.63 |
Habitat Type | Equations and Parameters | ||||
---|---|---|---|---|---|
R2 | K | y0 | p | Equation | |
RO | 0.9943 | 0.0245 | −0.0159 | <0.0001 | = [−0.0159 + 0.0245ln (1 + P)/(1 + P)] |
NRO | 0.9730 | 0.0134 | −0.0127 | <0.0001 | = [−0.0127 + 0.01341ln (1 + P)/(1 + P)] |
ROC | 0.9815 | 5.0316 | −1.0396 | <0.0001 | = [−1.0396 + 5.0316ln (1 + P)/(1 + P)] |
NROC | 0.9906 | 3.3624 | −0.6819 | <0.0001 | = [−0.6819 + 3.3624ln (1 + P)/(1 + P)] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Wu, Y.; Li, H.; Xing, D.; Zhou, Y.; Xia, A. Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats. Water 2022, 14, 3837. https://doi.org/10.3390/w14233837
Luo L, Wu Y, Li H, Xing D, Zhou Y, Xia A. Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats. Water. 2022; 14(23):3837. https://doi.org/10.3390/w14233837
Chicago/Turabian StyleLuo, Liang, Yanyou Wu, Haitao Li, Deke Xing, Ying Zhou, and Antong Xia. 2022. "Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats" Water 14, no. 23: 3837. https://doi.org/10.3390/w14233837
APA StyleLuo, L., Wu, Y., Li, H., Xing, D., Zhou, Y., & Xia, A. (2022). Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats. Water, 14(23), 3837. https://doi.org/10.3390/w14233837