Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection
2.3. Data Processing
3. Results
3.1. MCDA Results
3.2. Deviations from the Prescribed Limit Values
4. Discussion
- The water is least polluted with total phosphorus (P), total N, and NO3-N at Smederevo site, while the concentration of ammonium ion (NH4-N) is still elevated at this location;
- The Bezdan site shows lower concentrations of nitrite (NO2-N) and orthophosphates (PO4-P) while retaining the highest levels of total nitrogen (N), nitrate (NO3-N), and total phosphorus (P);
- Comparing Bezdan and Radujevac locations, as entry and exit points of the river flow, respectively, lower level of nitrates (NO3-N) can be found at the Radujevac location than at the location of Bezdan;
- Both Zemun and Novi Sad locations show elevated concentrations of total N and NO3-N in the water.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Union Strategy for the Danube Region-Action Plan. European Commission: Brussels SEC (2010) 1489/3. Available online: https://www.danubecommission.org (accessed on 20 August 2022).
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Culhane, F.; Teixeira, H.; Nogueira, A.J.; Borgwardt, F.; Trauner, D.; Lillebø, A.; Piet, G.; Kuemmerlen, M.; McDonald, H.; O’higgins, T.; et al. Risk to the supply of ecosystem services across aquatic ecosystems. Sci. Total Environ. 2019, 660, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Højberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.; Ptak, E.; Peterson, H.; et al. Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America. Sustainability 2018, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; de Roo, A. Impact of a changing climate, land use, and water usage on Europe’s water resources. In A Model Simulation Study; Joint Research Centre (JRC), Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Salas, E.A.L.; Subburayalu, S.K. Analysis of Phosphorus and Nitrogen Concentrations in the Great Miami and Little Miami Basins in Ohio, USA from 2015 to 2017. River Res. Appl. 2020, 36, 1345–1352. [Google Scholar] [CrossRef]
- Trodd, W.; O’Boyle, S. Water Quality in 2019: An Indicators Report; EPA: Murntown, Ireland, 2020. [Google Scholar]
- OECD. Diffuse Pollution, Degraded Waters: Emerging Policy Solutions—Policy Highlights; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Patterson, J.J.; Smith, C.; Bellamy, J. Enabling and Enacting ‘Practical Action’ in Catchments: Responding to the ‘Wicked Problem’ of Nonpoint Source Pollution in Coastal Subtropical Australia. Environ. Manag. 2015, 55, 479–495. [Google Scholar] [CrossRef]
- Thornton, J.A.; Harding, W.R.; Dent, M.; Hart, R.C.; Lin, H.; Rast, C.L.; Rast, W.; Ryding, S.O.; Slawski, T.M. Eutrophication as a “wicked” problem. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2013, 18, 298–316. [Google Scholar] [CrossRef]
- Kristensen, P.; Whalley, C.; Klancnik, K. European Waters: Assessment of Status and Pressures 2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Craig, R.K.; Roberts, A. When Will Governments Regulate Nonpoint Source Pollution? A Comparative Perspective. Boston Coll. Environ. Aff. Law Rev. 2015, 42, 1. [Google Scholar]
- Wiering, M.; Boezeman, D.; Crabbé, A. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water 2020, 12, 1447. [Google Scholar] [CrossRef]
- ICPDR. Nitrogen Pollution in the Danube Basin; Danube Watch 3-4/2015; International Commission for the Protection of the Danube River (ICPDR): Austria, Vienna, 2015; Available online: https://www.icpdr.org (accessed on 18 May 2022).
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquaculture 2016, 459, 26–35. [Google Scholar] [CrossRef]
- Geng, G.; Wardlaw, R. Application of Multi-Criterion Decision Making Analysis to Integrated Water Resources Management. Water Resour. Manag. 2013, 27, 3191–3207. [Google Scholar] [CrossRef]
- Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated Multicriteria Analysis Tool for Evaluating Water Resource Management Strategies. Water 2018, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Crnković, D.M.; Antanasijević, D.Z.; Pocajt, V.V.; Perić-Grujić, A.A.; Antonović, D.; Ristić, M.Ð. Unsupervised classification and multi-criteria decision analysis as chemometric tools for the assessment of sediment quality: A case study of the Danube and Sava River. Catena 2016, 144, 11–22. [Google Scholar] [CrossRef]
- Wang, X.-K.; Wang, Y.-T.; Wang, J.-Q.; Cheng, P.-F.; Li, L. A TODIM-PROMETHEE II Based Multi-Criteria Group Decision Making Method for Risk Evaluation of Water Resource Carrying Capacity under Probabilistic Linguistic Z-Number Circumstances. Mathematics 2020, 8, 1190. [Google Scholar] [CrossRef]
- Salehi, S.; Ghazizadeh, J.M.; Tabesh, M. A comprehensive criteria-based multi-attribute decision-making model for rehabilitation of water distribution systems. Struct. Infrastruct. Eng. 2017, 14, 743–765. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Odu, G.; Charles-Owaba, O. Review of multi-criteria optimization methods-theory and applications. IOSR J. Eng. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Mladenović-Ranisavljević, I. Multi-Criteria Analysis of the Danube Water Quality in Serbia. Ph.D. Thesis, University of Belgrade, Bor, Serbia, 2012. [Google Scholar]
- Mladenović-Ranisavljević, I.; Takić, L.; Nikolić, Ð. Water Quality Assessment Based on Combined Multi-Criteria Descision Making Method with Index Method. Water Resour. Manag. 2018, 32, 2261–2276. [Google Scholar] [CrossRef]
- Walker, D.; Jakovljević, D.; Savić, D.; Radovanović, M. Multi-criterion water quality analysis of the Danube River in Serbia: A visualisation approach. Water Res. 2015, 79, 158–172. [Google Scholar] [CrossRef]
- FAO. Regulation on Limit Values of Pollutants in Surface and Ground Water and Sediments with Deadlines for Their Achievement; “Official Gazette of RS” No. 50/2012; FAO: Rome, Italy, 2012. [Google Scholar]
- Ministry of Environmental Protection—Serbian Environmental Protection Agency. Results on Testing the Quality of Surface and Groundwater for 2017; Ministry of Environmental Protection—Serbian Environmental Protection Agency: Belgrade, Serbia, 2018. Available online: http://www.sepa.gov.rs/download/KvalitetVoda2017.pdf (accessed on 6 September 2021).
- Brans, J.P.; Mareschal, B.; Vincke, P.H. PROMETHEE: A new family of outranking methods in multi-criteria analysis. In Operational Research’84; Brans, J.P., Ed.; North-Holland: Amsterdam, The Netherlands, 1984; pp. 477–490. [Google Scholar]
- Brans, J.P.; Mareschal, B. Promethee methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2005; pp. 163–195. [Google Scholar]
- Brans, J.P.; Mareschal, B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar]
- Marttunen, M.; Mustajoki, J.; Lehtoranta, V.; Saarikoski, H. Complementary use of the Ecosystem Service Concept and Multi-criteria Decision Analysis in Water Management. Environ. Manag. 2022, 69, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Schuwirth, N.; Honti, M.; Logar, I.; Stamm, C. Multi-criteria decision analysis for integrated water quality assessment and management support. Water Res. X 2018, 1, 1100010. [Google Scholar] [CrossRef] [PubMed]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer: Boston, MA, USA, 2002. [Google Scholar]
- Scholten, L.; Schuwirth, N.; Reichert, P.; Lienert, J. Tackling uncertainty in multi-criteria decision analysis—An application to water supply infrastructure planning. Eur. J. Oper. Res. 2015, 242, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.S.; Duckstein, L.; Arondel, C. Multicriterion Analysis for Sustainable Water Resources planning: A case study in Spain. Water Resour. Manag. 2000, 14, 435–456. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Chen, H.; Ji, Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2020, 17, 587. [Google Scholar] [CrossRef] [Green Version]
- Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K. Multi-criteria decision analysis: A strategic planning tool for water loss management. Water Resour. Manag. 2011, 25, 3947–3969. [Google Scholar] [CrossRef]
- Nemery, P.; Ishizaka, A.; Camargo, M.; Morel, L. Enriching descriptive information in ranking and sorting problems with visualizations techniques. J. Model. Manag. 2012, 7, 130–147. [Google Scholar] [CrossRef]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis: Methods and Software; Wiley: New Delhi, India, 2013. [Google Scholar]
- Mareschal, B.; Brans, J.P. Geometrical representations for MCDA. The GAIA module. Eur. J. Oper. Res. 1988, 34, 69–77. [Google Scholar] [CrossRef]
- Nikolić, Ð.; Milošević, N.; Mihajlović, I.; Živković, Ž.; Tasić, V.; Kovačević, R.; Petrović, N. Multi-criteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water Air Soil Pollut. 2010, 206, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Rulebook on the National List of Environmental Indicators; “Official Gazette of RS” No. 37/2011; Ministry of Environment, Mining and Spatial Planning: Belgrade, Serbia, 2011; Available online: http://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2011/37/3/reg (accessed on 24 February 2014).
- Mladenović-Ranisavljević, I.; Takić, L.; Vuković, M. Nitrogen and phosphorus as indicators of changes in the Danube ecosystem in Serbia. Adv. Technol. 2017, 6, 51–55. [Google Scholar] [CrossRef]
- Radu, V.M.; Diacu, E.; Ionescu, P. Characterization of the eutrophication potential for the lower part of the Danube River. UPB Sci. Bull. Ser. B 2014, 76, 137–146. [Google Scholar]
- Radu, V.M.; Diacu, E.; Ionescu, P.; György, D. Spatio-Temporal Characterization of Nutrient Pollution in Lower Danube Area. Rev. Chim. 2015, 66, 601–606. [Google Scholar]
- Savic, R.; Stajic, M.; Blagojevic, B.; Bezdan, A.; Vranesevic, M.; Nikolic Jokanovic, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
Indicator | Total N | NO2-N | NO3-N | PO4-P | Total P | NH4-N | |
---|---|---|---|---|---|---|---|
Unit | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | |
Pref. Fn | Linear | Linear | Linear | Linear | Linear | Linear | |
P (%) | 30 | 30 | 30 | 30 | 30 | 30 | |
Q (%) | 5 | 5 | 5 | 5 | 5 | 5 | |
Weights (%) | 17 | 13 | 20 | 20 | 17 | 13 | |
Stability intervals of weights | |||||||
min | 8.91 | 0.00 | 18.12 | 9.16 | 9.85 | 0.00 | |
max | 45.55 | 27.47 | 98.83 | 22.16 | 100 | 16.26 | |
Sites | |||||||
annual | 2.3 | 0.015 | 1.95 | 0.039 | 0.188 | 0.05 | |
Bezdan | min | 1.1 | 0.008 | 1.46 | 0.010 | 0.089 | 0.02 |
max | 3.8 | 0.026 | 3.03 | 0.056 | 0.931 | 0.11 | |
annual | 2.1 | 0.017 | 1.74 | 0.046 | 0.108 | 0.06 | |
N. Sad | min | 1.0 | 0.010 | 0.61 | 0.014 | 0.081 | 0.03 |
max | 3.5 | 0.049 | 2.99 | 0.083 | 0.142 | 0.13 | |
annual | 2.1 | 0.019 | 0.73 | 0.039 | 0.090 | 0.13 | |
Zemun | min | 1.2 | 0.002 | 0.02 | 0.004 | 0.056 | 0.01 |
max | 3.1 | 0.046 | 2.28 | 0.080 | 0.140 | 0.28 | |
annual | 1.7 | 0.019 | 0.74 | 0.041 | 0.080 | 0.15 | |
Smederevo | min | 0.9 | 0.002 | 0.07 | 0.005 | 0.048 | 0.02 |
max | 3.0 | 0.045 | 1.65 | 0.080 | 0.110 | 0.38 | |
annual | 1.9 | 0.016 | 0.77 | 0.074 | 0.107 | 0.10 | |
Radujevac | min | 1.1 | 0.008 | 0.20 | 0.038 | 0.063 | 0.05 |
max | 3.5 | 0.026 | 1.60 | 0.108 | 0.223 | 0.19 | |
Prescribed limit values [28] | |||||||
Class | I | 1 | 0.01 | 1 | 0.02 | 0.05 | 0.10 |
II | 2 | 0.03 | 1 | 0.02 | 0.05 | 0.10 | |
III | 8 | 0.12 | 6 | 0.2 | 0.4 | 0.6 | |
IV | 15 | 0.3 | 15 | 0.5 | 1 | 1.5 | |
V | >15 | >0.3 | >15 | >0.5 | >1 | >1.5 |
Sites Table Header | Phi Plus | Phi Minus | Phi Net | Ranking |
---|---|---|---|---|
Bezdan | 0.2353 | 0.4010 | −0.1658 | 5 |
Zemun | 0.2688 | 0.1725 | 0.0962 | 2 |
Radujevac | 0.2641 | 0.3293 | −0.0652 | 3 |
Smederevo | 0.3776 | 0.1504 | 0.2272 | 1 |
N. Sad | 0.2222 | 0.3147 | −0.0925 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović-Ranisavljević, I.; Vuković, M.; Stefanović, V.; Takić, L. Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water 2022, 14, 3810. https://doi.org/10.3390/w14233810
Mladenović-Ranisavljević I, Vuković M, Stefanović V, Takić L. Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water. 2022; 14(23):3810. https://doi.org/10.3390/w14233810
Chicago/Turabian StyleMladenović-Ranisavljević, Ivana, Milovan Vuković, Violeta Stefanović, and Ljiljana Takić. 2022. "Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water" Water 14, no. 23: 3810. https://doi.org/10.3390/w14233810
APA StyleMladenović-Ranisavljević, I., Vuković, M., Stefanović, V., & Takić, L. (2022). Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water, 14(23), 3810. https://doi.org/10.3390/w14233810