Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Collection
2.3. Data Processing
3. Results
3.1. MCDA Results
3.2. Deviations from the Prescribed Limit Values
4. Discussion
- The water is least polluted with total phosphorus (P), total N, and NO3-N at Smederevo site, while the concentration of ammonium ion (NH4-N) is still elevated at this location;
- The Bezdan site shows lower concentrations of nitrite (NO2-N) and orthophosphates (PO4-P) while retaining the highest levels of total nitrogen (N), nitrate (NO3-N), and total phosphorus (P);
- Comparing Bezdan and Radujevac locations, as entry and exit points of the river flow, respectively, lower level of nitrates (NO3-N) can be found at the Radujevac location than at the location of Bezdan;
- Both Zemun and Novi Sad locations show elevated concentrations of total N and NO3-N in the water.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Union Strategy for the Danube Region-Action Plan. European Commission: Brussels SEC (2010) 1489/3. Available online: https://www.danubecommission.org (accessed on 20 August 2022).
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Culhane, F.; Teixeira, H.; Nogueira, A.J.; Borgwardt, F.; Trauner, D.; Lillebø, A.; Piet, G.; Kuemmerlen, M.; McDonald, H.; O’higgins, T.; et al. Risk to the supply of ecosystem services across aquatic ecosystems. Sci. Total Environ. 2019, 660, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Højberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.; Ptak, E.; Peterson, H.; et al. Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America. Sustainability 2018, 10, 1634. [Google Scholar] [CrossRef]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; de Roo, A. Impact of a changing climate, land use, and water usage on Europe’s water resources. In A Model Simulation Study; Joint Research Centre (JRC), Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Salas, E.A.L.; Subburayalu, S.K. Analysis of Phosphorus and Nitrogen Concentrations in the Great Miami and Little Miami Basins in Ohio, USA from 2015 to 2017. River Res. Appl. 2020, 36, 1345–1352. [Google Scholar] [CrossRef]
- Trodd, W.; O’Boyle, S. Water Quality in 2019: An Indicators Report; EPA: Murntown, Ireland, 2020. [Google Scholar]
- OECD. Diffuse Pollution, Degraded Waters: Emerging Policy Solutions—Policy Highlights; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Patterson, J.J.; Smith, C.; Bellamy, J. Enabling and Enacting ‘Practical Action’ in Catchments: Responding to the ‘Wicked Problem’ of Nonpoint Source Pollution in Coastal Subtropical Australia. Environ. Manag. 2015, 55, 479–495. [Google Scholar] [CrossRef]
- Thornton, J.A.; Harding, W.R.; Dent, M.; Hart, R.C.; Lin, H.; Rast, C.L.; Rast, W.; Ryding, S.O.; Slawski, T.M. Eutrophication as a “wicked” problem. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2013, 18, 298–316. [Google Scholar] [CrossRef]
- Kristensen, P.; Whalley, C.; Klancnik, K. European Waters: Assessment of Status and Pressures 2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Craig, R.K.; Roberts, A. When Will Governments Regulate Nonpoint Source Pollution? A Comparative Perspective. Boston Coll. Environ. Aff. Law Rev. 2015, 42, 1. [Google Scholar]
- Wiering, M.; Boezeman, D.; Crabbé, A. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water 2020, 12, 1447. [Google Scholar] [CrossRef]
- ICPDR. Nitrogen Pollution in the Danube Basin; Danube Watch 3-4/2015; International Commission for the Protection of the Danube River (ICPDR): Austria, Vienna, 2015; Available online: https://www.icpdr.org (accessed on 18 May 2022).
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquaculture 2016, 459, 26–35. [Google Scholar] [CrossRef]
- Geng, G.; Wardlaw, R. Application of Multi-Criterion Decision Making Analysis to Integrated Water Resources Management. Water Resour. Manag. 2013, 27, 3191–3207. [Google Scholar] [CrossRef]
- Alamanos, A.; Mylopoulos, N.; Loukas, A.; Gaitanaros, D. An Integrated Multicriteria Analysis Tool for Evaluating Water Resource Management Strategies. Water 2018, 10, 1795. [Google Scholar] [CrossRef]
- Crnković, D.M.; Antanasijević, D.Z.; Pocajt, V.V.; Perić-Grujić, A.A.; Antonović, D.; Ristić, M.Ð. Unsupervised classification and multi-criteria decision analysis as chemometric tools for the assessment of sediment quality: A case study of the Danube and Sava River. Catena 2016, 144, 11–22. [Google Scholar] [CrossRef]
- Wang, X.-K.; Wang, Y.-T.; Wang, J.-Q.; Cheng, P.-F.; Li, L. A TODIM-PROMETHEE II Based Multi-Criteria Group Decision Making Method for Risk Evaluation of Water Resource Carrying Capacity under Probabilistic Linguistic Z-Number Circumstances. Mathematics 2020, 8, 1190. [Google Scholar] [CrossRef]
- Salehi, S.; Ghazizadeh, J.M.; Tabesh, M. A comprehensive criteria-based multi-attribute decision-making model for rehabilitation of water distribution systems. Struct. Infrastruct. Eng. 2017, 14, 743–765. [Google Scholar] [CrossRef]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Odu, G.; Charles-Owaba, O. Review of multi-criteria optimization methods-theory and applications. IOSR J. Eng. 2013, 3, 1–14. [Google Scholar] [CrossRef]
- Mladenović-Ranisavljević, I. Multi-Criteria Analysis of the Danube Water Quality in Serbia. Ph.D. Thesis, University of Belgrade, Bor, Serbia, 2012. [Google Scholar]
- Mladenović-Ranisavljević, I.; Takić, L.; Nikolić, Ð. Water Quality Assessment Based on Combined Multi-Criteria Descision Making Method with Index Method. Water Resour. Manag. 2018, 32, 2261–2276. [Google Scholar] [CrossRef]
- Walker, D.; Jakovljević, D.; Savić, D.; Radovanović, M. Multi-criterion water quality analysis of the Danube River in Serbia: A visualisation approach. Water Res. 2015, 79, 158–172. [Google Scholar] [CrossRef]
- FAO. Regulation on Limit Values of Pollutants in Surface and Ground Water and Sediments with Deadlines for Their Achievement; “Official Gazette of RS” No. 50/2012; FAO: Rome, Italy, 2012. [Google Scholar]
- Ministry of Environmental Protection—Serbian Environmental Protection Agency. Results on Testing the Quality of Surface and Groundwater for 2017; Ministry of Environmental Protection—Serbian Environmental Protection Agency: Belgrade, Serbia, 2018. Available online: http://www.sepa.gov.rs/download/KvalitetVoda2017.pdf (accessed on 6 September 2021).
- Brans, J.P.; Mareschal, B.; Vincke, P.H. PROMETHEE: A new family of outranking methods in multi-criteria analysis. In Operational Research’84; Brans, J.P., Ed.; North-Holland: Amsterdam, The Netherlands, 1984; pp. 477–490. [Google Scholar]
- Brans, J.P.; Mareschal, B. Promethee methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2005; pp. 163–195. [Google Scholar]
- Brans, J.P.; Mareschal, B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar]
- Marttunen, M.; Mustajoki, J.; Lehtoranta, V.; Saarikoski, H. Complementary use of the Ecosystem Service Concept and Multi-criteria Decision Analysis in Water Management. Environ. Manag. 2022, 69, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Schuwirth, N.; Honti, M.; Logar, I.; Stamm, C. Multi-criteria decision analysis for integrated water quality assessment and management support. Water Res. X 2018, 1, 1100010. [Google Scholar] [CrossRef] [PubMed]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer: Boston, MA, USA, 2002. [Google Scholar]
- Scholten, L.; Schuwirth, N.; Reichert, P.; Lienert, J. Tackling uncertainty in multi-criteria decision analysis—An application to water supply infrastructure planning. Eur. J. Oper. Res. 2015, 242, 243–260. [Google Scholar] [CrossRef]
- Raju, K.S.; Duckstein, L.; Arondel, C. Multicriterion Analysis for Sustainable Water Resources planning: A case study in Spain. Water Resour. Manag. 2000, 14, 435–456. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Chen, H.; Ji, Z. Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2020, 17, 587. [Google Scholar] [CrossRef]
- Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K. Multi-criteria decision analysis: A strategic planning tool for water loss management. Water Resour. Manag. 2011, 25, 3947–3969. [Google Scholar] [CrossRef]
- Nemery, P.; Ishizaka, A.; Camargo, M.; Morel, L. Enriching descriptive information in ranking and sorting problems with visualizations techniques. J. Model. Manag. 2012, 7, 130–147. [Google Scholar] [CrossRef]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis: Methods and Software; Wiley: New Delhi, India, 2013. [Google Scholar]
- Mareschal, B.; Brans, J.P. Geometrical representations for MCDA. The GAIA module. Eur. J. Oper. Res. 1988, 34, 69–77. [Google Scholar] [CrossRef]
- Nikolić, Ð.; Milošević, N.; Mihajlović, I.; Živković, Ž.; Tasić, V.; Kovačević, R.; Petrović, N. Multi-criteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water Air Soil Pollut. 2010, 206, 369–383. [Google Scholar] [CrossRef][Green Version]
- Rulebook on the National List of Environmental Indicators; “Official Gazette of RS” No. 37/2011; Ministry of Environment, Mining and Spatial Planning: Belgrade, Serbia, 2011; Available online: http://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2011/37/3/reg (accessed on 24 February 2014).
- Mladenović-Ranisavljević, I.; Takić, L.; Vuković, M. Nitrogen and phosphorus as indicators of changes in the Danube ecosystem in Serbia. Adv. Technol. 2017, 6, 51–55. [Google Scholar] [CrossRef]
- Radu, V.M.; Diacu, E.; Ionescu, P. Characterization of the eutrophication potential for the lower part of the Danube River. UPB Sci. Bull. Ser. B 2014, 76, 137–146. [Google Scholar]
- Radu, V.M.; Diacu, E.; Ionescu, P.; György, D. Spatio-Temporal Characterization of Nutrient Pollution in Lower Danube Area. Rev. Chim. 2015, 66, 601–606. [Google Scholar]
- Savic, R.; Stajic, M.; Blagojevic, B.; Bezdan, A.; Vranesevic, M.; Nikolic Jokanovic, V.; Baumgertel, A.; Bubalo Kovačić, M.; Horvatinec, J.; Ondrasek, G. Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube. Agriculture 2022, 12, 935. [Google Scholar] [CrossRef]
Indicator | Total N | NO2-N | NO3-N | PO4-P | Total P | NH4-N | |
---|---|---|---|---|---|---|---|
Unit | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | |
Pref. Fn | Linear | Linear | Linear | Linear | Linear | Linear | |
P (%) | 30 | 30 | 30 | 30 | 30 | 30 | |
Q (%) | 5 | 5 | 5 | 5 | 5 | 5 | |
Weights (%) | 17 | 13 | 20 | 20 | 17 | 13 | |
Stability intervals of weights | |||||||
min | 8.91 | 0.00 | 18.12 | 9.16 | 9.85 | 0.00 | |
max | 45.55 | 27.47 | 98.83 | 22.16 | 100 | 16.26 | |
Sites | |||||||
annual | 2.3 | 0.015 | 1.95 | 0.039 | 0.188 | 0.05 | |
Bezdan | min | 1.1 | 0.008 | 1.46 | 0.010 | 0.089 | 0.02 |
max | 3.8 | 0.026 | 3.03 | 0.056 | 0.931 | 0.11 | |
annual | 2.1 | 0.017 | 1.74 | 0.046 | 0.108 | 0.06 | |
N. Sad | min | 1.0 | 0.010 | 0.61 | 0.014 | 0.081 | 0.03 |
max | 3.5 | 0.049 | 2.99 | 0.083 | 0.142 | 0.13 | |
annual | 2.1 | 0.019 | 0.73 | 0.039 | 0.090 | 0.13 | |
Zemun | min | 1.2 | 0.002 | 0.02 | 0.004 | 0.056 | 0.01 |
max | 3.1 | 0.046 | 2.28 | 0.080 | 0.140 | 0.28 | |
annual | 1.7 | 0.019 | 0.74 | 0.041 | 0.080 | 0.15 | |
Smederevo | min | 0.9 | 0.002 | 0.07 | 0.005 | 0.048 | 0.02 |
max | 3.0 | 0.045 | 1.65 | 0.080 | 0.110 | 0.38 | |
annual | 1.9 | 0.016 | 0.77 | 0.074 | 0.107 | 0.10 | |
Radujevac | min | 1.1 | 0.008 | 0.20 | 0.038 | 0.063 | 0.05 |
max | 3.5 | 0.026 | 1.60 | 0.108 | 0.223 | 0.19 | |
Prescribed limit values [28] | |||||||
Class | I | 1 | 0.01 | 1 | 0.02 | 0.05 | 0.10 |
II | 2 | 0.03 | 1 | 0.02 | 0.05 | 0.10 | |
III | 8 | 0.12 | 6 | 0.2 | 0.4 | 0.6 | |
IV | 15 | 0.3 | 15 | 0.5 | 1 | 1.5 | |
V | >15 | >0.3 | >15 | >0.5 | >1 | >1.5 |
Sites Table Header | Phi Plus | Phi Minus | Phi Net | Ranking |
---|---|---|---|---|
Bezdan | 0.2353 | 0.4010 | −0.1658 | 5 |
Zemun | 0.2688 | 0.1725 | 0.0962 | 2 |
Radujevac | 0.2641 | 0.3293 | −0.0652 | 3 |
Smederevo | 0.3776 | 0.1504 | 0.2272 | 1 |
N. Sad | 0.2222 | 0.3147 | −0.0925 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović-Ranisavljević, I.; Vuković, M.; Stefanović, V.; Takić, L. Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water 2022, 14, 3810. https://doi.org/10.3390/w14233810
Mladenović-Ranisavljević I, Vuković M, Stefanović V, Takić L. Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water. 2022; 14(23):3810. https://doi.org/10.3390/w14233810
Chicago/Turabian StyleMladenović-Ranisavljević, Ivana, Milovan Vuković, Violeta Stefanović, and Ljiljana Takić. 2022. "Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water" Water 14, no. 23: 3810. https://doi.org/10.3390/w14233810
APA StyleMladenović-Ranisavljević, I., Vuković, M., Stefanović, V., & Takić, L. (2022). Multicriteria Decision Analysis of Sites with Increased Nutrient Contents in Water. Water, 14(23), 3810. https://doi.org/10.3390/w14233810