Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Available Data
2.3. Methodology
2.3.1. Application of the Hydrological Model
2.3.2. Projection of Climate Change
2.3.3. Projection of Climate Change Impacts on Runoff
3. Results
3.1. Projected Changes in Annual and Monthly Temperature and Precipitation
3.2. Simulated Changes in Annual and Monthly Runoff
3.3. Projected Changes in Extreme Monthly Runoff
3.4. Projected Changes in Floods
4. Discussion
4.1. Hydrological Cycle to Global Warming
4.2. Runoff to Changing Climate
4.3. The Link between Rainfall and Flooding
4.4. Uncertainties of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Caretta, M.A.; Mukherji, A.; Arfanuzzaman, M.; Betts, R.A.; Gelfan, A.; Hirabayashi, Y.; Lissner, T.K.; Liu, J.; Lopez, G.E.; Morgan, R.; et al. Water. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; in press. [Google Scholar]
- Wei, W.; Chang, Y.; Dai, Z. Streamflow changes of the Changjiang (Yangtze) River in the recent 60years: Impacts of the East Asian summer monsoon, ENSO, and human activities. Quatern. Int. 2014, 336, 98–107. [Google Scholar] [CrossRef]
- Xia, J.; Wang, M.L. Runoff Changes and Distributed Hydrologic Simulation in the Upper Reaches of Yangtze River. Resour. Sci. 2008, 30, 962–967. (In Chinese) [Google Scholar]
- Li, L.; Wang, Z.Y.; Qin, N.S.; Ma, Y.C. Analysis of the relationship between runoff amount and its impacting factor in the upper Yangtze River. J. Nat. Resour. 2004, 6, 694–700. (In Chinese) [Google Scholar]
- Qin, N.X.; Jiang, T.; Chong, Y. Trends and abruption analysis on the discharge in the Yangtze Basin. Resour. Environ. Yangtze Basin 2005, 5, 589–594. (In Chinese) [Google Scholar]
- Xu, J.J.; Yang, D.W.; Yi, Y.H.; Lei, Z.; Chen, J.; Yang, W. Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quatern. Int. 2008, 186, 32–42. [Google Scholar] [CrossRef]
- Sun, J.; Lei, X.; Tian, Y.; Liao, W.; Wang, Y. Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin. Quatern. Int. 2013, 304, 62–74. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Ding, Y.; Wang, X.; Jiang, Y.; Song, X.; Lei, X. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes. Quatern. Int. 2015, 380–381, 187–196. [Google Scholar] [CrossRef]
- Birkinshaw, S.J.; Guerreiro, S.B.; Nicholson, A.; Liang, Q.; Quinn, P.; Zhang, L.; He, B.; Yin, J.; Fowler, H.J. Climate change impacts on Yangtze River discharge at the Three Gorges Dam. Hydrol. Earth Syst. Sci. 2017, 21, 1911–1927. [Google Scholar] [CrossRef] [Green Version]
- Su, B.D.; Huang, J.L.; Zeng, X.F.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the upper Yangtze River basin. Climatic. Chang. 2017, 141, 533–546. [Google Scholar] [CrossRef]
- Chang, Y.J.; Zhu, D.M. Urban water security of China’s municipalities: Comparison, features and challenges. J. Hydrol. 2020, 587, 125023. [Google Scholar] [CrossRef]
- Zhang, H.G.; Guo, H.J.; Ou, Y.J. Research on composition and encounter laws of flood in Yangtze River Basin. Yangtze River 2013, 10, 62–65. (In Chinese) [Google Scholar]
- Cao, L.J.; Dong, W.J.; Zhang, Y. Estimation of the effect of climate change on extreme streamflow over the Yellow River and Yangtze River Basins. Chin. J. Atmos. Sci. 2013, 3, 634–644. [Google Scholar]
- Gemmer, M.; Jiang, T.; Su, B.D.; Kundzewicz, Z.W. Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China. Quatern. Int. 2008, 186, 12–21. [Google Scholar] [CrossRef]
- Yong, W.; Hongmei, X.; Bingyan, C.; Dapeng, H.; Yunting, T.; Yong, L. Impacts of precipitation change on the runoff change in Fujiang River basin during the period of 1951–2012. Adv. Clim. Chang. Res. 2014, 10, 127–134. [Google Scholar]
- Wang, G.Q.; Li, M.; Jin, J.L.; Li, H.B.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Variation trend of runoff in Fujiang River Catchment and its responses to climate change. J. Chin. Hydrol. 2012, 32, 22–28. (In Chinese) [Google Scholar]
- Xu, H.M.; Liu, L.L.; Wang, Y.; Wang, S.; Hao, Y.; Ma, J.J.; Jiang, T. Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming. Hydrol. Earth Syst. Sci. 2019, 23, 4219–4231. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Wei, L.; Xin, X.; Li, Q.; Wu, Y.; Tang, H.; Li, Y.; Yang, B. Simulation and projection of climate extremes in China by multiple Coupled Model Intercomparison Project Phase 6 models. Int. J. Climatol. 2022, 1–21. [Google Scholar] [CrossRef]
- Ran, Y.H. Land Cover Products of China. National Cryosphere Desert Data Center. 2019. Available online: http://www.ncdc.ac.cn (accessed on 11 October 2021).
- FAO; IIASA; ISRIC; ISS-CAS; JRC. Harmonized World Soil Database (Version 1.0); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2008. [Google Scholar]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 4, 1102–1111. [Google Scholar]
- Liu, L.; Wei, L.; Xu, Y.; Xin, X.; Xiao, C. Projection of climate change impacts on ecological flow in the Yellow River basin. Adv. Water Sci. 2021, 32, 824–833. (In Chinese) [Google Scholar]
- Wei, L.; Liu, L.; Jing, C.; Wu, Y.; Xin, X.; Yang, B.; Tang, H.; Li, Y.; Wang, Y.; Zhang, T.; et al. Simulation and Projection of Climate extremes in China by a set of statistical downscaled data. Int. J. Environ. Res. Public Health 2022, 19, 6398. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Nicholls, Z.R.J.; Armour, K.; Collins, W.; Forster, P.; Meinshausen, M.; Palmer, M.D.; Watanabe, M. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Available online: https://www.ipcc.ch/ (accessed on 20 September 2022).
- Nash, J.E.; Suttcliffe, J.V. River flow forecasting through conceptual models, Part I. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Hong, X.D.; Gosling, S.N.; Grillakis, M.G.; Koutroulis, A.G.; Leonard, M.; Liu, J.; Müller Schmied, H.; Papadimitriou, L.; et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.C.; Xu, H.M.; Liu, M.; Du, L.M.; Xiao, C.; Liu, L.L. Climate change impacts on runoff in the upper Yangtze River basin. J. Hydrol. 2019, 4, 405–415. [Google Scholar]
- Shang, H.; Xu, M.; Zhao, F.; Tijjani, S.B. Spatial and temporal variations in precipitation amount, frequency, intensity, and persistence in China, 1973–2016. J. Hydrometeorol. 2019, 20, 2215–2227. [Google Scholar] [CrossRef]
- Hayat, H.; Saifullah, M.; Ashraf, M.; Liu, S.; Muhammad, S.; Khan, R.; Tahir, A.A. Flood hazard mapping of rivers in snow- and glacier-fed basins of different hydrological regimes using a hydrodynamic model under RCP scenarios. Water 2021, 13, 2806. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, G.; Wang, J.; Ju, Q.; Yang, C.; Fan, C. Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 693–707. [Google Scholar] [CrossRef]
- Hattermann, F.; Krysanova, V.; Gosling, S.N.; Danker, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Su, B.D.; et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic. Chang. 2017, 141, 561–576. [Google Scholar] [CrossRef] [Green Version]
No. | Model | Resolution (Latitude × Longitude) | ECS (°C) |
---|---|---|---|
1 | ACCESS-CM2 | 1.2° × 1.8° | 4.72 |
2 | ACCESS-ESM1-5 | 1.2° × 1.8° | 3.87 |
3 | BCC-CSM2-MR | 1.1° × 1.1° | 3.16 |
4 | CCCma-CanESM5 | 2.8° × 2.8° | 5.62 |
5 | CNRM-CM6-1 | 1.4° × 1.4° | 4.83 |
6 | CNRM-ESM2-1 | 1.4° × 1.4° | 4.76 |
7 | GFDL-CM4 | 1.0° × 1.3° | * |
8 | HadGEM3-GC31-LL | 1.3° × 1.9° | 5.55 |
9 | INM-CM4-8 | 1.5° × 2.0° | 1.83 |
10 | INM-CM5-0 | 1.3° × 2.5° | 1.92 |
11 | IPSL-CM6A-LR | 1.3° × 2.5° | 4.56 |
12 | MIROC6 | 1.4° × 1.4° | 2.61 |
13 | MPI-ESM1-2-HR | 0.9° × 0.9° | 2.98 |
14 | MRI-ESM2-0 | 1.1° × 1.1° | 3.15 |
Timescale | Period | Ens | PBIAS (%) | R2 |
---|---|---|---|---|
Monthly | Calibration (1961–1990) | 0.91 | 1.3 | 0.92 |
Verification (1991–2012) | 0.92 | 0.4 | 0.92 | |
Daily | Calibration (1961–1990) | 0.68 | −0.2 | 0.79 |
Verification (1991–2012) | 0.55 | 1.0 | 0.77 |
RCPs | 2021–2060 | ||||
---|---|---|---|---|---|
TMP 1 (°C) | PRE 2 (%, mm) | AMR 3 (%, m3/s) | Q05 4 (%, m3/s) | Q95 5 (%, m3/s) | |
SSP2-4.5 | 1.9 [1.1, 2.9] 6 | 4.3 (42.4) [−2.6, 15.2] | 4.4 (20.3) [−6.7, 22.6] | 5.4 (68.3) [−14.5, 42.7] | 12.3 (9.0) [−7.3, 37.3] |
SSP5-8.5 | 2.5 [1.4, 3.9] | 5.3 (52.3) [−2.9, 14.9] | 6.0 (27.3) [−9.1, 23.3] | 5.5 (68.1) [−26.8, 37.3] | 21.1 (15.3) [−0.8, 56.6] |
RCPs | 2061–2100 | ||||
SSP2-4.5 | 3.0 [1.9, 4.3] | 9.3 (91.9) [−11.6, 24.0] | 13.8 (63.4) (63.4) [−14.6, 36.7] | 15.5 (217.2) [−14.5, 60.8] | 31.6 (23.0) [−15.3, 69.7] |
SSP5-8.5 | 4.8 [3.2, 6.9] | 13.9 (137.5) [−4.7, 36.6] | 21.5 (99.0) [−2.7, 61.3] | 22.1 (305.4) [−11.0, 74.0] | 45.5 (33.1) [−10.3, 94.7] |
Scenario | Flood | Return Period (Years) | |
---|---|---|---|
2021–2060 | 2061–2100 | ||
SSP2-4.5 | 1-day | 30.6 (4.2, 86.6) 1 | 31.9 (3.5, 101.6) |
3-day | 29.7 (4.1, 109.7) | 29.5 (3.3, 106.8) | |
7-day | 27.5 (3.6, 100.3) | 22.2 (3.0, 93.3) | |
15-day | 58.1 (3.2, 226.8) | 21.3 (2.6, 79.4) | |
SSP5-8.5 | 1-day | 27.2 (6.1, 85.8) | 17.0 (2.5, 71.1) |
3-day | 25.8 (6.2, 82.7) | 14.9 (2.7, 59.4) | |
7-day | 29.2 (5.1, 135.7) | 12.3 (2.5, 49.2) | |
15-day | 32.1 (4.7, 93.5) | 11.3 (2.1, 24.4) |
Scenario | Flood | Changes in 30-Year Return Value (%) | |
---|---|---|---|
2021–2060 | 2061–2100 | ||
SSP2-4.5 | 1-day | 5.6 (−29.4, 52.7) 1 | 13.6 (−30.7, 67.2) |
3-day | 8.3 (−22.5, 8.9) | 15.9 (−26.1, 69.1) | |
7-day | 10.4 (−24.4, 65.0) | 22.9 (−21.0, 69.3) | |
15-day | 7.3 (−22.1, 48.8) | 22.4 (−14.3, 81.8) | |
SSP5-8.5 | 1-day | 13.0 (−22.2, 79.4) | 28.8 (−23.7, 118.7) |
3-day | 13.6 (−21.7, 72.0) | 29.0 (−17.9, 110.1) | |
7-day | 11.4 (−20.4, 55.3) | 34.3 (−11.2, 101.7) | |
15-day | 8.1 (−19.8, 55.0) | 32.0 (3.7, 114.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, H.-M.; Li, Y.-H.; Liu, L.-L.; Hu, Z.-H.; Xiao, C.; Yang, T.-T. Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water 2022, 14, 3614. https://doi.org/10.3390/w14223614
Wang Y, Xu H-M, Li Y-H, Liu L-L, Hu Z-H, Xiao C, Yang T-T. Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water. 2022; 14(22):3614. https://doi.org/10.3390/w14223614
Chicago/Turabian StyleWang, Yong, Hong-Mei Xu, Yong-Hua Li, Lyu-Liu Liu, Zu-Heng Hu, Chan Xiao, and Tian-Tian Yang. 2022. "Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model" Water 14, no. 22: 3614. https://doi.org/10.3390/w14223614
APA StyleWang, Y., Xu, H. -M., Li, Y. -H., Liu, L. -L., Hu, Z. -H., Xiao, C., & Yang, T. -T. (2022). Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model. Water, 14(22), 3614. https://doi.org/10.3390/w14223614