Discharge and Water Quality of the River Moselle from 1990 to 2020 as Related to Climatic Changes and De-Industrialization
Abstract
:1. Introduction
2. Materials and Methods
- River quality data (yearly averages) from seven water quality stations in Lorraine (2008 to 2016) from the SIERM Water Information System Rhine-Meuse operated by the Agence de l’eau Rhin-Meuse and EauFrance (http://rhin-meuse.eaufrance.fr/ accessed on 1 October 2022);
- River quality data from Kanzem, Fankel and Koblenz (2011 to 2015) and Palzem (fortnightly means from 1975 to 1989) from Landesamt für Umwelt Rheinland-Pfalz (LfU, https://lfu.rlp.de/de/wasserwirtschaft/ accessed on 1 October 2022);
- River quality data and water temperature data from Palzem (daily means from 1990 to present) from Landesamt für Umwelt Rheinland-Pfalz (LfU, https://lfu.rlp.de/de/wasserwirtschaft/ accessed on 1 October 2022);
- Discharge data from Perl (French–German border) as daily means from 1975 to present from Wasserstraßen und Schifffahrtsverwaltung des Bundes (WSV), made available from Bundesanstalt für Gewässerkunde (BfG, https://www.bafg.de/ accessed on 1 October 2022);
- Climate data (daily means) from the French military airport at Nancy-Ochey (WMO station 7181, daily means from 1975 to 2020) downloaded via the KNMI climate explorer (https://climexp.knmi.nl/getstations.cgi, accessed on 1 October 2022);
- Climate data (daily means) from Trier-Petrisberg (daily means from 1975 to 2021 from Deutscher Wetterdienst (DWD, http://www.dwd.de, accessed on 1 October 2022);
- Data on chloride emissions into the water from the largest soda factories at the Meurthe from the European Pollutant Release and Transfer Register (E-PRTR, http://prtr.ec.europa.eu/#/home, accessed on 15 July 2020) for 2001 to 2016.
3. Results and Discussion
3.1. Effects of Climate on Water Temperatures
3.2. River Discharge
3.3. Industrial Discharges and Water Quality
4. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Freshwater—State and impacts (Luxembourg). SOER Common Environmental Theme from Luxembourg–Freshwater. European Environment Agency. 2015. Available online: https://www.eea.europa.eu/soer/countries/lu/freshwater-state-and-impacts-luxembourg (accessed on 15 July 2020).
- Collon, P.; Fabriol, R.; Buès, M. Modelling the evolution of water quality in abandoned mines of the Lorraine Iron Basin. J. Hydrol. 2006, 328, 620–634. [Google Scholar] [CrossRef]
- Corbel, S.; Kaiser, J.; Vicentin, S. Coal Mine Flooding in the Lorraine-Saar Basin: Experience from the French Mines. In Proceedings of the International Mine Water Association (IMWA) 13th International Mine Water Association Congress–Mine Water & Circular Economy, Lappeenranta, Finland, 25–30 June 2017; pp. 161–166. Available online: http://www.imwa.info/docs/imwa_2017/IMWA_2017_Volume_1.pdf (accessed on 1 October 2022).
- Garcier, R. La Pollution Industrielle de la Moselle Française: Naissance, Devéloppement et Gestiojn d´un Problème Environnemental 1850–2000. Thèse Université Lumière Lyon2. 2005, p. 487. Available online: https://tel.archives-ouvertes.fr/tel-00119367 (accessed on 1 October 2022).
- Garcier, R.J. Rivers we can’t bring ourselves to clean-historical insights into the pollution of the Moselle River (France), 1850–2000. Hydrol. Earth Syst. Sci. 2007, 11, 1731–1745. [Google Scholar] [CrossRef] [Green Version]
- Cordier, S.; Lauer, T.; Harmand, D.; Frechen, M.; Brkojewitch, G. Fluvial response to climatic and anthropogenic forcing in the Moselle drainage basin (NE France) during historical periods: Evidence from OSL dating. Earth Surf. Process. Landforms 2012, 37, 1167–1175. [Google Scholar] [CrossRef]
- IKSMS. Entwicklung der Wasserbeschaffenheit von Mosel und Saar 1990–2010. Arbeitsgruppe A: Bewertung der Oberflächengewässer. Internationale Kommissionen zum Schutze der Mosel und der Saar, Trier, 76 S. 2012. Available online: http://www.iksms-cipms.org/ (accessed on 15 July 2022).
- IKSMS. Entwicklung der Wasserbeschaffenheit von Mosel und Saar 2000–2015. Internationale Kommissionen zum Schutze der Mosel und der Saar, Konz, 100 S. 2018. Available online: http://www.iksms-cipms.org/ (accessed on 15 July 2020).
- Beisel, J.N.; Peltre, M.-C.; Usseglio-Polatera, P. Einfluss der Salzbelastung auf die Aquatische Biozönose der Mosel. Abschlussbericht im Auftrag der Internationalen Kommission zum Schutz der Mosel und der Saar (IKSMS); Laboratoire Interactions Ecotoxicologie, Biodiversité et Ècosystèmes, Université de Metz: Metz, France, 2011; p. 63. [Google Scholar]
- Ehlscheid, T.; Meid, M.; Thrun, I. Gewässergüte der Mosel in Rheinland-Pfalz 1964–2000. Landesamt für Wasserwirtschaft. LFW-BERICHT NR. 202/02. 2002, p. 124. Available online: https://lfu.rlp.de/fileadmin/lfu/Standorte/Moselbericht_2000_Endversion_05.06.02_V2.pdf (accessed on 15 July 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.R-project.org/.2013 (accessed on 3 December 2021).
- ICPR. Development of Rhine Water Temperatures Based on Validated Temperature Measurements between 1978 and 2011. International Commission for the Protection of the Rhine (ICPR) Koblenz, Report 209. 2013, p. 29. Available online: https://www.iksr.org/fileadmin/user_upload/DKDM/Dokumente/Fachberichte/EN/rp_En_0209.pdf (accessed on 15 July 2020).
- Markovic, D.; Scharfenberger, U.; Schmutz, S.; Pletterbauer, F.; Wolter, C. Variability and alterations of water temperatures across the Elbe and Danube River Basins. Clim. Change 2013, 119, 375–389. [Google Scholar] [CrossRef]
- Arora, R.; Tockner, K.; Venohr, M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Process. 2016, 30, 3084–3096. [Google Scholar] [CrossRef]
- Jonkers, A.R.T.; Sharkey, K.J. The Differential Warming Response of Britain’s Rivers (1982–2011). PLoS ONE 2016, 11, e0166247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, M.T.; Franssen, W.H.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Hardenbicker, P.; Viergutz, C.; Becker, A.; Kirchesch, V.; Nilson, E.; Fischer, H. Water temperature increases in the river Rhine in response to climate change. Reg. Environ. Change 2016, 17, 299–308. [Google Scholar] [CrossRef]
- BUND. BUND-Studie Abwärmelast Rhein. Bund für Umwelt und Naturschutz Deutschland (BUND) Landesverbände Baden-Württemberg, Bayern, Hessen, Nordrhein-Westfalen und Rheinland-Pfalz, 72 S. 2009. Available online: http://www.bund-rlp.de/uploads/media/bund_waerme_lang_bild.pdf (accessed on 15 July 2020).
- EDF. Jahresbericht zur Information der Öffentlichkeit über die Kerntechnischen Anlagen in Cattenom, 56 S. 2016. Available online: https://www.edf.fr/sites/default/files/contrib/groupe-edf/producteur-industriel/carte-des-implantations/centrale-cattenom/surete-et-environnement/Rapport%20TSN/Allemand/edf_rapports_nucleaires_cattenom_allemand_exe_v3bd.pdf (accessed on 15 July 2020).
- Krause, W.J.; Jost, W.; Lüllwitz, T. Determination of flow times, flow velocities, and longitudinal dispersion in the River Mosel using 3HHO as a tracer. Hydrol. Wasserbewirtsch. 2009, 53, 360–379. Available online: http://www.kliwas.de/SharedDocs/Publikationen/G/krause_hywa_2009_06.pdf?__blob=publicationFile (accessed on 15 July 2020).
- Collas, F.P.L.; Buijse, A.D.; Hendriks, A.J.; van der Velde, G.; Leuven, R.S.E.W. Sensitivity of native and alien freshwater bivalve species in Europe to climate-related environmental factors. Ecosphere 2018, 9, e02184. [Google Scholar] [CrossRef]
- Patra, R.W.; Chapman, J.C.; Lim, R.P.; Gehrke, P.C.; Sunderam, R.M. Interactions between water temperature and contaminant toxicity to freshwater fish. Environ. Toxicol. Chem. 2015, 34, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Zobrist, J.; Schoenenberger, U.; Figura, S.; Hug, S.J. Long-term trends in Swiss rivers sampled continuously over 39 years reflect changes in geochemical processes and pollution. Environ. Sci. Pollut. Res. 2018, 25, 16788–16809. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.C.; Pötter, L.; Steiger, A.; Kruppert, S.; Frost, U.; Tollrian, R. Rising pCO2 in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced Defenses in Daphnia. Curr. Biol. 2018, 28, 327–332.e3. [Google Scholar] [CrossRef] [Green Version]
- Brienen, S.; Kapala, A.; Mächel, H.; Simmer, C. Regional centennial precipitation variability over Germany from extended observation records. Int. J. Clim. 2012, 33, 2167–2184. [Google Scholar] [CrossRef]
- Murawski, A.; Zimmer, J.; Merz, B. High spatial and temporal organization of changes in precipitation over Germany for 1951–2006. Int. J. Clim. 2015, 36, 2582–2597. [Google Scholar] [CrossRef] [Green Version]
- Fenicia, F.; Savenije, H.H.G.; Avdeeva, Y. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management? Hydrol. Earth Syst. Sci. 2009, 13, 1727–1737. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, A.J.; Woytowitz, E.; Majcher, E.; Rosi, E.; Belt, K.T.; Duncan, J.M.; Kaushal, S.S.; Groffman, P.M. Changes in long-term water quality of Baltimore streams are associated with both gray and green infrastructure. Limnol. Oceanogr. 2018, 64, S60–S76. [Google Scholar] [CrossRef] [Green Version]
- Thirel, G.; Gerlinger, K.; Perrin, C.; Drogue, G.; Renard, B.; Wagner, J.-P. Evolutions des débits futurs sur le bassin du Rhin en contexte de changement climatique.Une évaluation actualisée avec les simulations climatiques du 5e rapport du GIEC. 2018. Available online: https://webgr.irstea.fr/wp-content/uploads/2018/04/Rapport_final_MOSARH21_v2_1.pdf (accessed on 3 September 2022).
- Thirel, G.; Gerlinger, K.; Perrin, C.; Drogue, G.; Renard, B.; Wagner, J.-P. Quels futurs possibles pour les débits des affluents français du Rhin (Moselle, Sarre, Ill)? La Houille Blanche 2019, 105, 140–149. [Google Scholar] [CrossRef]
- Gaume, E.; Payrastre, O. Enseignements des inondations exceptionnelles des 21 et 22 mai 2012 à Nancy. Houille Blanche 2020, 106, 17–24. [Google Scholar] [CrossRef]
- Sartor, J.; Zimmer, K.-H.; Busch, N. Historical Flooding Events in the German Mosel. Wasser Abfall 2010, 12, 46–51. Available online: https://www.researchgate.net/publication/297797564_Historical_flooding_events_in_the_German_Mosel (accessed on 15 July 2020). [CrossRef]
- François, D.; Delus, C.; Drogue, G.; Lebaut, S.; Gille, E. Reconstitution des Étiages de la Moselle Depuis 1871. La Houille Blanche 2020, 106, 13–21. [Google Scholar] [CrossRef]
- Harsch, N.; Brandenburg, M.; Klemm, O. Large-scale lysimeter site St. Arnold, Germany: Analysis of 40 years of precipitation, leachate and evapotranspiration. Hydrol. Earth Syst. Sci. 2009, 13, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P.A. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, E.; Lucas, Y.; Viville, D.; Chabaux, F.; Ackerer, P.; Goddéris, Y.; Pierret, M.-C. Hydrological and vegetation response to climate change in a forested mountainous catchment. Model. Earth Syst. Environ. 2016, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sjerps, R.M.A.; ter Laak, T.L.; Zwolsman, G.J.J.G. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective. Sci. Total Environ. 2017, 601–602, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.; van Vliet, M.T. Impact of the 2018 drought on pharmaceutical concentrations and general water quality of the Rhine and Meuse rivers. Sci. Total Environ. 2021, 778, 146182. [Google Scholar] [CrossRef]
- Hájek, M.; Jiménez-Alfaro, B.; Hájek, O.; Brancaleoni, L.; Cantonati, M.; Carbognani, M.; Dedić, A.; Dítě, D.; Gerdol, R.; Hájková, P.; et al. A European map of groundwater pH and calcium. Earth Syst. Sci. Data 2021, 13, 1089–1105. [Google Scholar] [CrossRef]
- Cano-Paoli, K.; Chiogna, G.; Bellin, A. Convenient use of electrical conductivity measurements to investigate hydrological processes in Alpine headwaters. Sci. Total Environ. 2019, 685, 37–49. [Google Scholar] [CrossRef]
- Friedrich, G.; Pohlmann, M. Long-term plankton studies at the lower Rhine/Germany. Limnologica 2009, 39, 14–39. [Google Scholar] [CrossRef] [Green Version]
- Umweltbundesamt. Entwicklung des pH-Wertes im Niederschlag an den Messstationen des UBA-Luftmessnetzes. 2022. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/2_abb_entw-ph-wert_2020-06-29.pdf (accessed on 3 September 2022).
- Wolkersdorfer, C.; Bowell, R. Contemporary Reviews of Mine Water Studies in Europe, Part 2. Mine Water Environ. 2005, 23, 162–182. [Google Scholar] [CrossRef]
- Montarges-Pelletier, E.; Duriez, C.; Ghanbaja, J.; Jeanneau, L.; Falkenberg, G.; Michot, L.J. Microscale investigations of the fate of heavy metals associated to iron-bearing particles in a highly polluted stream. Environ. Sci. Pollut. Res. 2013, 21, 2744–2760. [Google Scholar] [CrossRef] [PubMed]
- Assaad, A.; Pontvianne, S.; Pons, M.-N. Assessment of organic pollution of an industrial river by synchronous fluorescence and UV–vis spectroscopy: The Fensch River (NE France). Environ. Monit. Assess. 2017, 189, 229. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, M.; Montargès-Pelletier, E.; Bauer, A.; Gley, R.; Migot, S.; Barres, O.; Delus, C.; Villiéras, F. Characterization of suspended particulate matter in the Moselle River (Lorraine, France): Evolution along the course of the river and in different hydrologic regimes. J. Soils Sediments 2015, 16, 1625–1642. [Google Scholar] [CrossRef]
- Férard, J.F.; Pérez, K.F.B.; Blaise, C.; Péry, A.; Sutthivaiyakit, P.; Gagné, F. Microscale Ecotoxicity Testing of Moselle River Watershed (Lorraine Province, France) Sediments. J. Xenobiotics 2015, 5, 5125. [Google Scholar] [CrossRef] [Green Version]
- Fliedner, A.; Lohmann, N.; Rüdel, H.; Teubner, D.; Wellmitz, J.; Koschorreck, J. Current levels and trends of selected EU Water Framework Directive priority substances in freshwater fish from the German environmental specimen bank. Environ. Pollut. 2016, 216, 866–876. [Google Scholar] [CrossRef]
- LUA Saar. Ergebnisse der Chemischen und Ökotoxikologischen Analytik von Grubenwässern und von Grubenwasser Beaufschlagten Kleineren Bächen Rechts der Saar. Landesamt für Umwelt und Arbeitsschutz des Saarlands. 2018. Available online: https://www.saarland.de/dokumente/res_umwelt/LUA_2018_PCB-2018-01_V3.pdf (accessed on 15 July 2020).
- LUA Saar. Hintergrundpapier Bergbau. zum 2. Bewirtschaftungsplan 2016–2021 zur Umsetzung der EG-Wasserrahmenrichtlinie (2000/60/EG) im Saarland, Landesamt für Umwelt und Arbeitsschutz des Saarlands, 58 S. 2018. Available online: https://www.saarland.de/dokumente/res_umwelt/Hintergrundpapier_Bergbau_201805.pdf (accessed on 3 September 2022).
- Engel, M. Schwebstoffe 2014. Vergleich der Untersuchungen an Schwebstoffen an den Probenahmestellen Mainz/Rhein, Palzem/Mosel, Kanzem/Saar, Grolsheim/Nahe, Lahnstein/Lahn und Ingelheim/Selz Sowie den Probenahmestellen Sayn/Saynbach und Scheuern/Mühlbach im Jahr 2014. 2016. Available online: https://lfu.rlp.de/fileadmin/lfu/Downloads/Wasserwirtschaft/Schwebstoffe2014_29032016.pdf (accessed on 15 July 2020).
- Vinot, I.; Pihan, J. Circulation of copper in the biotic compartments of a freshwater dammed reservoir. Environ. Pollut. 2005, 133, 169–182. [Google Scholar] [CrossRef]
- Masson, G.; Dembski, S.; Staffolani, F.; Wagner, P.; Valente, E.; Maazouzi, C.; Banas, D.; Poinsaint, J.-F.; Pihan, J.-C. Les populations de poissons dans le réservoir du Mirgenbach (1986–2006, CNPE Cattenom, France): Un modèle pour l’étude des effets d’un changement thermique global? Hydroécologie Appliqué 2008, 16, 135–167. [Google Scholar] [CrossRef] [Green Version]
- Popick, H.; Brinkmann, M.; McPhedran, K. Assessment of stormwater discharge contamination and toxicity for a cold-climate urban landscape. Environ. Sci. Eur. 2022, 34, 43. [Google Scholar] [CrossRef]
- Louis, P.; Messaoudene, A.; Jrad, H.; Abdoul-Hamid, B.A.; Vignati, D.A.; Pons, M.-N. Understanding Rare Earth Elements concentrations, anomalies and fluxes at the river basin scale: The Moselle River (France) as a case study. Sci. Total Environ. 2020, 742, 140619. [Google Scholar] [CrossRef]
- Kaal, J.; Pérez-Rodríguez, M.; Biester, H. Molecular Probing of DOM Indicates a Key Role of Spruce-Derived Lignin in the DOM and Metal Cycles of a Headwater Catchment: Can Spruce Forest Dieback Exacerbate Future Trends in the Browning of Central European Surface Waters? Environ. Sci. Technol. 2022, 56, 2747–2759. [Google Scholar] [CrossRef]
Nr. | Country | km | Name of Station | Data Source |
---|---|---|---|---|
1 | F | 9 | Moselle-Ramonchamp | SIERM Water Information System |
2 | F | 44 | Moselle-Archette | SIERM Water Information System |
3 | F | 119 | Moselle-Tonnoy | SIERM Water Information System |
4 | F | 169 | Moselle-Liverdun | SIERM Water Information System |
5 | F | 174 * | Meurthe-Tomblaine | SIERM Water Information System |
6 | F | 234 | Moselle-Vandieres | SIERM Water Information System |
7 | F | 298 | Moselle-Sierck | SIERM Water Information System |
8 | D | 314 | Moselle-Palzem | LfU Gewässerschutz, Rheinland-Pfalz |
9 | D | 343 * | Saar-Kanzem | LfU Gewässerschutz, Rheinland-Pfalz |
10 | D | 485 | Moselle-Fankel | LfU Gewässerschutz, Rheinland-Pfalz |
11 | D | 544 | Moselle-Koblenz | LfU Gewässerschutz, Rheinland-Pfalz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzaring, J. Discharge and Water Quality of the River Moselle from 1990 to 2020 as Related to Climatic Changes and De-Industrialization. Water 2022, 14, 3600. https://doi.org/10.3390/w14223600
Franzaring J. Discharge and Water Quality of the River Moselle from 1990 to 2020 as Related to Climatic Changes and De-Industrialization. Water. 2022; 14(22):3600. https://doi.org/10.3390/w14223600
Chicago/Turabian StyleFranzaring, Jürgen. 2022. "Discharge and Water Quality of the River Moselle from 1990 to 2020 as Related to Climatic Changes and De-Industrialization" Water 14, no. 22: 3600. https://doi.org/10.3390/w14223600
APA StyleFranzaring, J. (2022). Discharge and Water Quality of the River Moselle from 1990 to 2020 as Related to Climatic Changes and De-Industrialization. Water, 14(22), 3600. https://doi.org/10.3390/w14223600