Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatments
2.2. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) Analysis
2.3. Transcriptomic Analysis
3. Results
3.1. Effects of Cu2+ and Zn2+ on Growth of P. tricornutum and C. fusiformis
3.2. Effects of Cu2+ and Zn2+ on Cell Morphology of P. tricornutum and C. fusiformis
3.3. Accumulation of Cu2+ and Zn2+ on Biosilica Shell of P. tricornutum and C. fusiformis
3.4. Effects of Cu2+ and Zn2+ on Gene Transcription in P. tricornutum
3.4.1. Annotation of P. tricornutum Transcriptome
3.4.2. Identification and Functional Enrichment Analysis of Different Express Genes (DEGs) in P. tricornutum upon Cu2+ Treatment
3.4.3. Effects of Zn2+ on Gene Transcription in P. tricornutum
3.5. Effects of Cu2+ and Zn2+ on Gene Transcription in C. fusiformis
3.5.1. Annotation of C. fusiformis Transcriptome
3.5.2. Effects of Cu2+ on Gene Transcription in C. fusiformis
3.5.3. Effects of Zn2+ on gene transcription in C. fusiformis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larned, S.T. A prospectus for periphyton: Recent and future ecological research. J. N. Am. Benthol. Soc. 2010, 29, 182–206. [Google Scholar] [CrossRef]
- Butcher, R.W. Studies in the Ecology of Rivers: VII. The Algae of Organically Enriched Waters. J. Ecol. 1947, 35, 186–191. [Google Scholar] [CrossRef]
- Tudesque, L.; Grenouillet, G.; Gevrey, M.; Khazraie, K.; Brosse, S. Influence of small-scale gold mining on French Guiana streams: Are diatom assemblages valid disturbance sensors? Ecol. Indic. 2012, 14, 100–106. [Google Scholar] [CrossRef]
- Sbihi, K.; Cherifi, O.; Bertrand, M. Toxicity and biosorption of chromium from aqueous solutions by the diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot. Am. J. Sci. 2012, 3, 27–38. [Google Scholar] [CrossRef]
- De Stefano, L.; Rotiroti, L.; De Stefano, M.; Lamberti, A.; Lettieri, S.; Setaro, A.; Maddalena, P. Marine diatoms as optical biosensors. Biosens. Bioelectron. 2009, 24, 1580–1584. [Google Scholar] [CrossRef]
- Marie, M.; Kirsten, H.; Pamela, Q.; Negri, A.P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar. Pollut. Bull. 2010, 60, 1978–1987. [Google Scholar]
- Satoh, A.; Vudikaria, L.Q.; Kurano, N.; Miyachi, S. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environ. Int. 2005, 31, 713–722. [Google Scholar] [CrossRef]
- Rimet, F. Recent views on river pollution and diatoms. Hydrobiologia 2012, 683, 1–24. [Google Scholar] [CrossRef]
- Masmoudi, S.; Nguyen-Deroche, N.; Caruso, A.; Ayadi, H.; Morant-Manceau, A.; Tremblin, G.; Bertrand, M.; Schoefs, B. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell—A review. Cryptogam. Algol. 2013, 34, 185–225. [Google Scholar] [CrossRef]
- Owens, T.G.; Wold, E.R. Light-Harvesting Function in the Diatom Phaeodactylum tricornutum: I. Isolation and Characterization of Pigment-Protein Complexes. Plant Physiol. 1986, 80, 732. [Google Scholar] [CrossRef]
- Patil, V.; Reitan, K.I.; Knutsen, G.; Mortensen, L.M.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Microalgae as source of polyunsaturated fatty acids for aquaculture. Curr. Top. Plant Biol. 2005, 6, 57–65. [Google Scholar]
- Alipanah, L.; Rohloff, J.; Winge, P.; Bones, A.M.; Brembu, T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 2015, 66, 6281–6296. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Siaut, M.; Heijde, M.; Mangogna, M.; Montsant, A.; Coesel, S.; Allen, A.; Manfredonia, A.; Falciatore, A.; Bowler, C. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 2007, 406, 23–35. [Google Scholar] [CrossRef]
- De Risco, V.; Raniello, R.; Maumus, F.; Rogato, A.; Bowler, C.; Falciatore, A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res. 2009, 37, 96. [Google Scholar] [CrossRef]
- Stukenberg, D.; Zauner, S.; Dell’Aquila, G.; Maier, U.G. Optimizing CRISPR/Cas9 for the Diatom Phaeodactylum tricornutum. Front. Plant Sci. 2018, 9, 740. [Google Scholar] [CrossRef]
- Kawamura, T.; Roberts, R.D.; Nicholson, C.M. Factors affecting the food value of diatom strains for post-larval abalone Haliotis iris. Aquaculture 1998, 160, 81–88. [Google Scholar] [CrossRef]
- Gallardo, W.G.; Buen, S.M.A. Evaluation of mucus, Navicula, and mixed diatoms as larval settlement inducers for the tropical abalone Haliotis asinina. Aquaculture 2003, 221, 357–364. [Google Scholar] [CrossRef]
- Cid, A.; Torres, E.; Herrero, C.; Abalde, J.E. Disorders provoked by copper in the marine diatom Phaeodactylum tricornutum in short-time exposure assays. Cah. Biol. Mar. 1997, 38, 201–206. [Google Scholar]
- Guillard, R. Culture of Marine Invertebrate Animals, 1st ed.; Springer: New York, NY, USA, 1975; pp. 29–60. [Google Scholar]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mende, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Peers, G.; Price, N.M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 2006, 441, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Peers, G.; Quesnel, S.A.; Price, N.M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 2005, 50, 1149–1158. [Google Scholar] [CrossRef]
- Maldonado, M.T.; Allen, A.E.; Chong, J.S.; Lin, K.; Leus, D.; Karpenko, N.; Harris, S.L. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 2006, 51, 1729–1743. [Google Scholar] [CrossRef]
- Cox, E.H.; McLendon, G.L.; Morel, F.M.M.; Lane, T.W.; Prince, R.C.; Pickering, I.J.; George, G.N. The Active Site Structure of Thalassiosira weissflogii Carbonic Anhydrase 1. Biochemistry 2000, 39, 12128–12130. [Google Scholar] [CrossRef]
- Rayko, E.; Maumus, F.; Maheswari, U.; Jabbari, K.; Bowler, C. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol. 2010, 188, 52–66. [Google Scholar] [CrossRef]
- Rijstenbil, J.W.; Derksen, J.W.M.; Gerringa, L.J.A.; Poortvliet, T.C.W.; Sandee, A.; Berg, M.; Drie, J.; Wijnholds, J.A. Oxidative stress induced by copper: Defense and damage in the marine planktonic diatom Ditylum brightwellii, grown in continuous cultures with high and low zinc levels. Mar. Biol. 1994, 119, 583–590. [Google Scholar] [CrossRef]
- Buhmann, M.T.; Schulze, B.; Foerderer, A.; Schleheck, D.; Kroth, P.G. Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. J. Phycol. 2016, 52, 463–474. [Google Scholar] [CrossRef]
- Willis, A.; Chiovitti, A.; Dugdale, T.M.; Wetherbee, R. Characterization of the extracellular matrix of Phaeodactylum tricornutum (Bacillariophyceae): Structure, composition, and adhesive characteristics. J. Phycol. 2013, 49, 937–949. [Google Scholar] [CrossRef]
- Tong, C.Y.; Derek, C.J.C. The role of substrates towards marine diatom Cylindrotheca fusiformis adhesion and biofilm development. J. Appl. Phycol 2021, 33, 2845–2862. [Google Scholar] [CrossRef]
- Tong, C.Y.; Derek, C.J.C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. Algal Res. 2021, 55, 102260. [Google Scholar] [CrossRef]
Gene_id | fc | Regulate | nr | Paths | Swissprot |
---|---|---|---|---|---|
Pt04g03550 | 5.7 | up | XP_002181744.1 (predicted protein) | map00480 (Glutathione metabolism); map00053 (Ascorbate and aldarate metabolism) | Probable L-ascorbate peroxidase 8 |
Pt05g02260 | 2.1 | up | XP_002186090.1 (catalase-peroxidase) | map00360 (Phenylalanine metabolism); map00380 (Tryptophan metabolism) | Catalase-peroxidase |
Pt08g02130 | 30.8 | up | XP_002179007.1 (predicted protein) | map00480 (Glutathione metabolism) | Probable cytosol aminopeptidase |
Pt14g00980 | 0.3 | down | XP_002181057.1 (predicted protein) | ||
Pt02g05550 | 3.3 | up | XP_002177701.1 (predicted protein) | map00480 (Glutathione metabolism) | |
Pt03g03150 | 0.4 | down | XP_002185216.1 (glyoxalase) | map00620 (Pyruvate metabolism) | Hydroxyacylglutathione hydrolase |
Pt02g03960 | 2.8 | up | XP_002177790.1 (predicted protein) | ||
Pt07g01050 | 0.4 | down | XP_002185856.1 (predicted protein) | map00620 (Pyruvate metabolism) | |
Pt15g02690 | 9.6 | up | XP_002182163.1 (predicted protein) | ||
Pt12g00930 | 2.7 | up | XP_002180005.1 (predicted protein) | map00480 (Glutathione metabolism) | Glutathione S-transferase DHAR2 |
Pt01g09200 | 0.5 | down | XP_002177254.1 (predicted protein, partial) | Glutathione gamma-glutamylcysteinyltransferase | |
Pt11g01900 | 10.3 | up | XP_002182079.1 (predicted protein) | ||
Pt14g03650 | 2.1 | up | XP_002180739.1 (glutathione peroxidase, partial) | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Phospholipid hydroperoxide glutathione peroxidase |
Pt05g02470 | 2.2 | up | XP_002186390.1 (predicted protein) | ||
Pt11g01090 | 5.9 | up | XP_002182079.1 (predicted protein) | ||
Pt07g04170 | 5.1 | up | XP_002176312.1 (peroxidase domain-containing protein) | Putative heme-binding peroxidase | |
Pt11g03130 | 17.5 | up | XP_002181851.1 (predicted protein) | ||
Pt14g03650 | 2.1 | up | XP_002180739.1 (glutathione peroxidase, partial) | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Phospholipid hydroperoxide glutathione peroxidase |
Pt21g01220 | 0.3 | down | XP_002183862.1 (predicted protein) |
Gene_id | fc | Regulate | nr | Paths | Swissprot |
---|---|---|---|---|---|
Pt04g03550 | 6.91 | up | XP_002181744.1 (predicted protein) | map00480 (Glutathione metabolism); map00053 (Ascorbate and aldarate metabolism) | Probable L-ascorbate peroxidase 8 |
Pt20g01650 | 2.55 | up | XP_002182954.1 (catalase) | map00630 (Glyoxylate and dicarboxylate metabolism); map00380 (Tryptophan metabolism); map04146 (Peroxisome) | Catalase |
Pt13g01910 | 0.50 | down | XP_002180671.1 (predicted protein) | ||
Pt23g00220 | 2.22 | up | XP_002184868.1 (predicted protein) | Peroxiredoxin-6 | |
Pt10g01030 | 0.03 | down | XP_002179508.1 (predicted protein) | map00480 (Glutathione metabolism) | Glutathione S-transferase |
Pt05g04280 | 9.78 | up | XP_002186195.1 (UDP-glucose 6-dehydrogenase) | map00520 (Amino sugar and nucleotide sugar metabolism); map00040 (Pentose and glucuronate interconversions); map00053 (Ascorbate and aldarate metabolism) | UDP-glucose 6-dehydrogenase 1 |
Pt14g01270 | 0.24 | down | XP_002180872.1 (l-ascorbate peroxidase, partial) | map00480 (Glutathione metabolism); map00053 (Ascorbate and aldarate metabolism) | Putative heme-binding peroxidase |
Pt16g00880 | 6.11 | up | XP_002179589.1 (nad-dependent epimerase/dehydratase) | map00520 (Amino sugar and nucleotide sugar metabolism); map00053 (Ascorbate and aldarate metabolism) | GDP-mannose 3,5-epimerase |
Pt08g03190 | 5.92 | up | XP_002178726.1 (predicted protein) | map00460 (Cyanoamino acid metabolism); map00480 (Glutathione metabolism); map00430 (Taurine and hypotaurine metabolism) | Glutathione hydrolase-like YwrD proenzyme |
Pt04g01510 | 0.39 | down | XP_002183098.1 (glutathione peroxidase domain-containing protein) | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Probable phospholipid hydroperoxide glutathione peroxidase |
Pt02g03960 | 2.85 | up | XP_002177790.1 (predicted protein) | ||
Pt12g00930 | 4.58 | up | XP_002180005.1 (predicted protein) | map00480 (Glutathione metabolism) | Glutathione S-transferase DHAR2 |
Pt21g02200 | 25.23 | up | XP_002183815.1 (predicted protein) | map02010 (ABC transporters) | Glutathione-binding protein GsiB |
Pt18g02190 | 6.06 | up | XP_002185391.1 (predicted protein) | ||
Pt05g02470 | 2.74 | up | XP_002186390.1 (predicted protein) | ||
Pt23g01150 | 8.11 | up | XP_002184892.1 (predicted protein) | Glutathione gamma-glutamylcysteinyltransferase 2 | |
Pt08g02730 | 0.47 | down | GAX19067.1 (hypothetical protein FisN_8Hh293 [Fistulifera solaris]) | ABC transporter G family member 1 | |
Pt12g03160 | 0.48 | down | XP_002180322.1 (glutathione reductase) | map00480 (Glutathione metabolism) | Glutathione reductase |
PtUn01s113 | 5.37 | up | XP_002177253.1 (mutase superoxide dismutase) | map04146 (Peroxisome) | Superoxide dismutase |
Pt13g02930 | 12.70 | up | XP_002180497.1 (precursor of mutase superoxide dismutase [Fe/Mn], partial) | map04146 (Peroxisome) | Superoxide dismutase |
Pt01g09190 | 7.47 | up | XP_002177253.1 (mutase superoxide dismutase | map04146 (Peroxisome) | Superoxide dismutase |
Pt05g04470 | 0.40 | down | XP_002186201.1 (5′-Nucleotidase or metallophosphoesterase) | ||
Pt07g04170 | 2.73 | up | XP_002176312.1 (peroxidase domain-containing protein) | Putative heme-binding peroxidase | |
Pt20g01220 | 2.27 | up | XP_002182845.1 (predicted protein) | map04146 (Peroxisome) | Peroxiredoxin-2C |
Gene_id | nr_Description | fc | Regulate | Paths | Swissprot |
---|---|---|---|---|---|
TRINITY_DN14518_c0_g1 | thioredoxin-like protein | 2.68 | up | map00940 (Phenylpropanoid biosynthesis) | 1-Cys peroxiredoxin A |
TRINITY_DN1479_c0_g1 | glutathione synthetase | 0.28 | down | map00270 (Cysteine and methionine metabolism); map00480 (Glutathione metabolism) | Glutathione synthetase |
TRINITY_DN495_c0_g2 | hypothetical protein | 0.19 | down | map00480 (Glutathione metabolism) | Glutathione S-transferase |
TRINITY_DN7366_c1_g1 | glutathione peroxidase | 0.43 | down | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Hydroperoxy fatty acid reductase gpx1 |
TRINITY_DN1758_c0_g1 | hydroxyacylglutathione hydrolase | 0.45 | down | map00620 (Pyruvate metabolism); map00790 (Folate biosynthesis) | Hydroxyacylglutathione hydrolase |
TRINITY_DN3215_c0_g1 | hypothetical protein | 0.46 | down | ||
TRINITY_DN2680_c0_g1 | hypothetical protein | 0.49 | down | map00270 (Cysteine and methionine metabolism); map00480 (Glutathione metabolism) | Glutamate--cysteine ligase catalytic subunit |
TRINITY_DN6304_c0_g1 | hypothetical protein | 0.38 | down |
Gene_id | nr_Description | fc | Significant | Regulate | Paths | Swissprot |
---|---|---|---|---|---|---|
TRINITY_DN14518_c0_g1 | thioredoxin-like protein | 3.17 | yes | up | map00940 (Phenylpropanoid biosynthesis) | 1-Cys peroxiredoxin A |
TRINITY_DN1479_c0_g1 | glutathione synthetase | 0.33 | yes | down | map00270 (Cysteine and methionine metabolism); map00480 (Glutathione metabolism) | Glutathione synthetase |
TRINITY_DN1711_c0_g1 | hypothetical protein | 2.81 | yes | up | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Glutathione S-transferase |
TRINITY_DN1711_c0_g2 | hypothetical protein | 6.12 | yes | up | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Glutathione S-transferase 1 |
TRINITY_DN2013_c0_g1 | glutathione-S-transferase | 0.44 | yes | down | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Glutathione S-transferase |
TRINITY_DN327_c0_g2 | glutathione S-transferase | 2.73 | yes | up | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Glutathione S-transferase 1 |
TRINITY_DN6449_c0_g1 | hypothetical protein | 2.06 | yes | up | Glutathionyl-hydroquinone reductase | |
TRINITY_DN7366_c1_g1 | glutathione peroxidase | 0.37 | yes | down | map00590 (Arachidonic acid metabolism); map00480 (Glutathione metabolism) | Hydroperoxy fatty acid reductase |
TRINITY_DN2338_c0_g3 | hypothetical protein | 0.40 | yes | down | DEP domain-containing mTOR-interacting protein | |
TRINITY_DN3_c0_g4 | mercuric reductase | 0.43 | yes | down | General L-amino acid-binding periplasmic protein Aap | |
TRINITY_DN17353_c0_g1 | LhcSR | 2.98 | yes | up | map00196 (Photosynthesis—Antenna proteins) | Light-harvesting complex stress-related protein |
TRINITY_DN1775_c0_g1 | hypothetical protein | 0.30 | yes | down | Thyroid peroxidase | |
TRINITY_DN319_c0_g1 | oxidative stress-related Abc1-like protein | 2.10 | yes | up | Protein ACTIVITY OF BC1 COMPLEX KINASE 8 | |
TRINITY_DN3894_c1_g1 | catalase peroxidase | 2.40 | yes | up | map00940 (Phenylpropanoid biosynthesis); map00380 (Tryptophan metabolism); map00360 (Phenylalanine metabolism) | Catalase-peroxidase |
TRINITY_DN5279_c0_g2 | methionine sulfoxide reductase B | 0.45 | yes | down | Peptide methionine sulfoxide reductase | |
TRINITY_DN6304_c0_g1 | hypothetical protein | 0.39 | yes | down | Peroxinectin A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.; Wang, Y.; Duan, J.; Guo, S.; Xie, Z. Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+. Water 2022, 14, 3305. https://doi.org/10.3390/w14203305
Huang A, Wang Y, Duan J, Guo S, Xie Z. Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+. Water. 2022; 14(20):3305. https://doi.org/10.3390/w14203305
Chicago/Turabian StyleHuang, Aiyou, Yujue Wang, Jiawen Duan, Shiyi Guo, and Zhenyu Xie. 2022. "Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+" Water 14, no. 20: 3305. https://doi.org/10.3390/w14203305
APA StyleHuang, A., Wang, Y., Duan, J., Guo, S., & Xie, Z. (2022). Differential Response of Phaeodactylum tricornutum and Cylindrotheca fusiformis to High Concentrations of Cu2+ and Zn2+. Water, 14(20), 3305. https://doi.org/10.3390/w14203305