



# Article Differential Response of *Phaeodactylum tricornutum* and *Cylindrotheca fusiformis* to High Concentrations of Cu<sup>2+</sup> and Zn<sup>2+</sup>

Aiyou Huang <sup>1,2,3,4,†</sup>, Yujue Wang <sup>1,2,3,4,†</sup>, Jiawen Duan <sup>1,2,3,5</sup>, Shiyi Guo <sup>1,2,3,4</sup> and Zhenyu Xie <sup>1,2,3,4,\*</sup>

- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
- <sup>2</sup> Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou 570228, China
- <sup>3</sup> Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- <sup>4</sup> College of Marine Sciences, Hainan University, Haikou 570228, China
- <sup>5</sup> School of Life Sciences, Hainan University, Haikou 570228, China
- \* Correspondence: xiezyscuta@163.com; Tel.: +86-136-4866-9016
- + These authors contribute equally to this work.

Abstract: Diatoms can be used as biosensors to assess aquatic environment quality, because they are widely distributed in almost all aquatic environments and show varied sensitivities toward heavy metal ions. The marine planktonic diatoms Phaeodactylum tricornutum (P. tricornutum) and Cylindrotheca fusiformis (C. fusiformis) are typical representatives of planktonic diatoms and benthic diatoms, respectively. C. fusiformis is very sensitive to changes in the concentration of heavy metal ions, and can be used as an indicator of the quality of the sedimental environment, while P. tricornutum can tolerate higher concentrations of heavy metal ions. To explore the potential difference in responses to heavy metal ions between planktonic and benthic diatoms, we compared the transcriptome of *P. tricornutum* and *C. fusiformis* under  $Cu^{2+}$  and  $Zn^{2+}$  treatment. The results indicated that P. tricornutum has several genes involved in ion transmembrane transport and ion homeostasis, which are significantly downregulated under  $Cu^{2+}$  and  $Zn^{2+}$  treatment. However, this enrichment of ion transmembrane transport- and ion homeostasis-related genes was not observed in C. fusiformis under Cu<sup>2+</sup> and Zn<sup>2+</sup> treatment. Additionally, genes related to heavy metal ion stress response such as peroxiredoxin, peroxidase, catalase, glutathione metabolism, phytochelatin, oxidative stress and disulfide reductase, were upregulated in *P. tricornutum* under  $Cu^{2+}$  and  $Zn^{2+}$ treatment, whereas most of them were downregulated in C. fusiform is under  $Cu^{2+}$  and  $Zn^{2+}$  treatment. This difference in gene expression may be responsible for the difference in sensitivity to heavy metals between P. tricornutum and C. fusiformis.

Keywords: diatom; Phaeodactylum tricornutum; Cylindrotheca fusiformis; heavy metals; biological indicator

## 1. Introduction

The distribution and composition of biological communities are controlled or influenced by environmental variations such as disturbances, stressors, and biotic interactions and change in resources and hydraulic conditions [1]; therefore, such biological communities can be used as indicators of environmental conditions. Diatoms, for example, can be used as biosensors to assess aquatic environment quality, because diatoms are widely distributed in almost all aquatic environments [2], and different species of diatoms show varying sensitivities toward heavy metal ions [3]. Therefore, their species and distribution can be used as an indicator of the degree of heavy metal pollution in aquatic environments [4–7].



**Citation:** Huang, A.; Wang, Y.; Duan, J.; Guo, S.; Xie, Z. Differential Response of *Phaeodactylum tricornutum* and *Cylindrotheca fusiformis* to High Concentrations of Cu<sup>2+</sup> and Zn<sup>2+</sup>. *Water* **2022**, *14*, 3305. https://doi.org/10.3390/w14203305

Academic Editor: Jun Yang

Received: 18 August 2022 Accepted: 13 October 2022 Published: 19 October 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Since the relationship between diatoms and river pollution was revealed 70 years ago, the suitability of diatoms as bioassessment indicators for monitoring river quality has been demonstrated [8]. The sensitivity of diatoms to heavy metal ions is closely related to their response mechanisms [9]. Under high concentrations of heavy metal ions, diatoms tend to increase the synthesis of antioxidants or/and metal chelators, maintain ion balance through transporters, and increase extracellular carbohydrate production [9]. Moreover, it is reported that motile diatoms can tolerate higher concentrations of heavy metal ions than non-motile diatoms [2], indicating that there might be differences in response mechanisms between planktonic and benthic diatoms.

The marine planktonic diatom *Phaeodactylum tricornutum* (*P. tricornutum*) is rich in polyunsaturated fatty acids, lipids, and fucoxanthin [10]. Therefore, it can be used as a food for aquaculture animals and as raw materials for biodiesel and health products [11,12]. Additionally, due to its clear genomic background [13], universal molecular toolbox [14], and stable transgene expression system [15,16], *P. tricornutum* is also considered as a model single-cell organism for studying physiology, evolution, and biochemistry in microalgae. *Cylindrotheca fusiformis* (*C. fusiformis*) is a benthic diatom with a weakly silicificated cell wall, and is rich in nutrients which can induce the attachment and metamorphosis of benthic animal seedlings; thus, it can be used as open bait for sea cucumbers, abalones, sea urchins, and other marine treasure seedlings [17,18]. *C. fusiformis* grows rapidly under aerated conditions, and sinks to the bottom quickly after stopping aerating, making it very easy to be collected. In addition, the suitable temperature for most diatoms ranges from 10 to 25 °C, whereas the optimum temperature for *C. fusiformis* is approximately 30 °C. This can ensure the supply of seedling bait in the high-temperature season.

Therefore, *P. tricornutum* and *C. fusiformis* are typical representatives of planktonic and benthic diatoms, respectively. A comparative analysis of *P. tricornutum* and *C. fusiformis* will help to understand the different response mechanisms of planktonic and benthic diatoms. It is reported that *C. fusiformis* is very sensitive to changes in the concentration of heavy metals, and can be used as an indicator of the quality of the sedimental environment, while *P. tricornutum* can tolerate higher concentrations of heavy metal ions [4,6,19]. We propose that this may be related to their varying response mechanisms.

In this study, we aimed to explore the potential differential responses to heavy metal ions between planktonic and benthic diatoms. We compared the growth of *P. tricornutum* and *C. fusiformis* under different  $Cu^{2+}$  and  $Zn^{2+}$  concentrations, and transcriptome analyses were conducted. Moreover, we explored the mechanisms by which *P. tricornutum* responds to heavy metal ions, and why *C. fusiformis* is more sensitive to heavy metal ions.

#### 2. Materials and Methods

## 2.1. Cell Culture and Treatments

*P. tricornutum* and *C. fusiformis* were obtained from the Microalgae Culture Center at the Ocean University of China. For *P. tricornutum* and *C. fusiformis*, algal cells were cultured using sterilized artificial seawater supplemented with f/2 nutrients at 20 °C and with four times of f/2 nutrients (2f) at 25 °C, respectively [20]. All cultures were grown under a 12:12 dark:light cycle under cool white fluorescent light (approximately 100 µmol m<sup>-2</sup> s<sup>-1</sup>). Cell growth was detected by measuring the absorbance at 730 nm using a UV/visible spectrophotometer (UV-1800, Shimadzu, Tokyo, Japan).

For treatment with high concentrations of Cu<sup>2+</sup> and Zn<sup>2+</sup>, *P. tricornutum* and *C. fusiformis* cells were treated with Cu<sup>2+</sup> or Zn<sup>2+</sup> at final concentrations of 30  $\mu$ M and 60  $\mu$ M. Control cells were cultured in f/2 (for *P. tricornutum*) or 2f medium (for *C. fusiformis*). Each treatment was performed in triplicate in 250 mL flasks. Cell growth was detected on days 0, 1, 3, 5 and 7.

## 2.2. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) Analysis

For SEM-EDS analysis, *P. tricornutum* and *C. fusiformis* cells were treated with Cu<sup>2+</sup> at a final concentration of 5  $\mu$ M (PTCu and CFCu) and Zn<sup>2+</sup> at a final concentration of 30  $\mu$ M

(PTZn and CFZn). Control cells were cultured in f/2 (for *P. tricornutum*, PTC) or 2f medium (for *C. fusiformis*, CFC). Each treatment was performed in triplicate in 2 L flasks. After 48 h, cell pellets were collected, further washed using distilled sea water, and centrifuged at  $5000 \times g$  for 4 min. The pellets were fixed with 2.5% glutaraldehyde (4 °C) overnight and sequentially dehydrated for 15 min each in 30%, 50%, 70%, 80%, 90%, 100% and 100% EtOH, followed by CO<sub>2</sub> critical point drying. Dried cells were placed on a conductive silicone rubber plate and treated with Gold sputtering, then viewed under the SEM (Hitachi's TM4000 Plus, Hitachi Limited, Tokyo, Japan). EDS was performed with IXRF's TM4-EDS.

#### 2.3. Transcriptomic Analysis

For transcriptomic analysis, *P. tricornutum* and *C. fusiformis* cells were treated with  $Cu^{2+}$  at a final concentration of 5  $\mu$ M (PTCu and CFCu) and Zn<sup>2+</sup> at a final concentration of 30  $\mu$ M (PTZn and CFZn). Control cells were cultured in f/2 (for *P. tricornutum*, PTC) or 2f medium (for *C. fusiformis*, CFC). Each treatment was performed in triplicate in 2 L flasks. After 48 h, cell pellets were collected, further washed using distilled sea water, and centrifuged at  $5000 \times g$  for 4 min. The pellets were frozen in liquid nitrogen and stored at  $-80 \,^\circ$ C.

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. High-quality total RNA (OD260/280 = 1.8–2.2, OD260/230  $\geq$  2.0, RIN  $\geq$  6.5, 28S:18S  $\geq$  1.0, >2 µg) was used to construct cDNA libraries for high-throughput RNA sequencing. Overall, 1 µg of total RNA was used to construct an RNA-seq transcriptome library, using the TruSeqTM RNA sample preparation Kit from Illumina (Illumina, San Diego, CA, USA) as per the manufacturer's instructions. Furthermore, cDNA libraries were selected for cDNA target fragments of 200–300 base pairs in 2% low-range ultra-agarose, and further amplified using Phusion DNA polymerase (New England Biolabs (Beijing), Beijing, China). The amplified cDNA libraries were loaded into a NovaSeq 6000 sequencing system Illumina (Illumina, San Diego, CA, USA).

To generate clean reads, raw sequence reads were trimmed using SeqPrep (https: //github.com/jstjohn/SeqPrep accessed on 5 October 2016), and the quality of the raw reads was controlled using Sickle (https://github.com/najoshi/sickle accessed on 15 March 2015) with default parameters. The clean reads were annotated according to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups of proteins (COG), the NCBI non-redundant protein sequences database (NR), Swiss-Prot, and Pfam databases. The mapped reads were further normalized using the reads per kb per million methods for the identification of differentially expressed genes (DEGs). Abundant genes were quantified using RSEM (http://deweylab.biostat.wisc.edu/rsem/accessed on 14 February 2020) [21]. Differential gene expression was determined using the "edgeR" package in R (http://www.bioconductor.org/packages/2.12/bioc/html/edgeR. html accessed on 9 May 2018), based on the following threshold parameters: log2 fold-change > 2 and *p*-value < 0.05 [22]. Functional annotation and enrichment analyses were performed and classified using the GO and KEGG databases.

### 3. Results

## 3.1. Effects of $Cu^{2+}$ and $Zn^{2+}$ on Growth of P. tricornutum and C. fusiformis

To investigate the effect of  $Cu^{2+}$ ,  $Zn^{2+}$  on *P. tricornutum* and *C. fusiformis*, we compared the growth rates of *P. tricornutum* and *C. fusiformis* at different concentrations (0, 30 and 60 µM Cu<sup>2+</sup> and 0, 30 and 60 µM Zn<sup>2+</sup>). The results showed that 60 µM Cu<sup>2+</sup> significantly decreased the growth of *P. tricornutum* (*p*-value < 0.05), while the influence of 30 µM Cu<sup>2+</sup> was not significant (*p*-value > 0.05), although there was also a tendency to decrease compared with that of the control group (Figure 1a). Both 30 µM and 60 µM Cu<sup>2+</sup> significantly decreased the growth of *C. fusiformis* (Figure 1b). Neither 30 nor 60 µM Zn<sup>2+</sup> significantly influenced the growth of *P. tricornutum* (Figure 1a), while 60 µM Zn<sup>2+</sup> decreased the growth of *C. fusiformis on* day 5 (Figure 1b). As both 30 µM and 60 µM Cu<sup>2+</sup> significantly decreased the growth of *C. fusiformis*, the concentration of Cu<sup>2+</sup> for the transcriptomic analysis was set to a lower level (5  $\mu$ M). As 30  $\mu$ M Zn<sup>2+</sup> did not significantly influence the growth of both *P. tricornutum* and *C. fusiformis*, the concentration of Zn<sup>2+</sup> for the transcriptomic analysis was set to 30  $\mu$ M.



**Figure 1.** Growth of *P. tricornutum* (**a**) and *C. fusiformis* (**b**) under different  $Cu^{2+}$  or  $Zn^{2+}$  concentrations (0, 30 and 60  $\mu$ M). Data points are the means of triplicates, and error bars represent the standard deviation.

## 3.2. Effects of $Cu^{2+}$ and $Zn^{2+}$ on Cell Morphology of P. tricornutum and C. fusiformis

To investigate the effect of  $Cu^{2+}$  and  $Zn^{2+}$  on cell morphology of *P. tricornutum* and *C. fusiformis*, we observed the cells with SEM. The results showed that both  $Cu^{2+}$  and  $Zn^{2+}$  did not significantly change the cell morphology of *P. tricornutum* (Figure 2a–c), while both  $Cu^{2+}$  and  $Zn^{2+}$  significantly changed the cell morphology of *C. fusiformis* (Figure 2d–f). This





**Figure 2.** Cell morphology of P. tricornutum (**a**–**c**) and C. fusiformis (**d**–**f**) under different Cu<sup>2+</sup> or Zn<sup>2+</sup> concentrations (control, 5  $\mu$ M Cu<sup>2+</sup>, and 30  $\mu$ M Zn<sup>2+</sup>) recorded on TM4000 Plus SEM. The scale represents 10  $\mu$ m.

## 3.3. Accumulation of $Cu^{2+}$ and $Zn^{2+}$ on Biosilica Shell of P. tricornutum and C. fusiformis

To investigate the accumulation of Cu<sup>2+</sup> and Zn<sup>2+</sup> on the biosilica shell of *P. tricornutum* and C. fusiformis, EDS was conducted to analyze the concentration of Si, Cu and Zn on the cell surface of *P. tricornutum* and *C. fusiformis*. The results showed that in the control group (containing 0.04  $\mu$ M Cu<sup>2+</sup> and 0.08  $\mu$ M Zn<sup>2+</sup> in the medium) of *P. tricornutum*, the content of Cu and Zn was 16.72% and 13.76% (Figure 3a), respectively. In the Cu<sup>2+</sup> group (containing 5  $\mu$ M Cu<sup>2+</sup> and 0.08  $\mu$ M Zn<sup>2+</sup> in the medium) of *P. tricornutum*, the content of Cu and Zn was 18.70% and 13.75% (Figure 3b), respectively. In the Zn<sup>2+</sup> group (containing 0.04  $\mu$ M Cu<sup>2+</sup> and 30  $\mu$ M Zn<sup>2+</sup> in the medium) of *P. tricornutum* (Figure 3c), the content of Cu and Zn was 6.53% and 17.76%, respectively. While in the control group (containing 0.16 µM Cu<sup>2+</sup> and 0.32 µM Zn<sup>2+</sup> in the medium) of *C. fusiformis*, the content of Cu and Zn was 0% (Figure 3d). In the Cu<sup>2+</sup> group (containing 5  $\mu$ M Cu<sup>2+</sup> and 0.32  $\mu$ M Zn<sup>2+</sup> in the medium) of C. fusiformis, the content of Cu and Zn was 23.53% and 14.58% (Figure 3e), respectively. In the  $Zn^{2+}$  group (containing 0.16  $\mu$ M Cu<sup>2+</sup> and 30  $\mu$ M Zn<sup>2+</sup> in the medium) of C. fusiformis, the content of Cu and Zn was 9.92% and 20.81% (Figure 3f), respectively. These results indicated that both P. tricornutum and C. fusiformis accumulated Cu and Zn on the cell surface.



**Figure 3.** EDS analysis of P. tricornutum (**a**–**c**) and C. fusiformis (**d**–**f**) under different Cu<sup>2+</sup> or Zn<sup>2+</sup> concentrations (control, 5  $\mu$ M Cu<sup>2+</sup>, and 30  $\mu$ M Zn<sup>2+</sup>) recorded on TM4-EDS. The box in the figure indicates the area scanned by EDS. The data in the figure reflects the percentage of Si, Cu, and Zn elements.

3.4. Effects of  $Cu^{2+}$  and  $Zn^{2+}$  on Gene Transcription in P. tricornutum 3.4.1. Annotation of P. tricornutum Transcriptome

To investigate the potential effect of  $Cu^{2+}$  and  $Zn^{2+}$  on gene transcription in *P. tricornutum*, we analyzed the transcriptome of *P. tricornutum* exposed to 5  $\mu$ M Cu<sup>2+</sup> (PTCu) and 30  $\mu$ M Zn<sup>2+</sup> (PTZn) for 48 h, with control (PTC) with no treatment of heavy metals. An average of 46,069,016 raw reads and 45,693,261 clean reads were generated from the total RNA extracted from *P. tricornutum*. A total of 98.39% of the clean read bases had a Q-value  $\geq$  20, and 94.99% of the clean read bases had a Q-value  $\geq$  30 (Table S1). De novo assembly generated 10,754 unigenes, including 10,167 known genes and 587 new genes. Figure 4 shows the length distribution of unigenes in *P. tricornutum*.



Figure 4. Length distribution of transcripts in *P. tricornutum*.

The acquired unigenes were annotated according to the GO, KEGG, COG, NR, Swiss-Prot, and Pfam databases. Of all the assembled unigenes, 82.28%, 46.02%, 72.75%, 99.19%, 56.1%, and 74.18% were annotated by GO, KEGG, COG, NR, Swiss-Prot, and Pfam, respectively (Figure 5, Table S2).



Figure 5. Functional annotation of unigenes in P. tricornutum.

3.4.2. Identification and Functional Enrichment Analysis of Different Express Genes (DEGs) in *P. tricornutum* upon Cu<sup>2+</sup> Treatment

Transcriptome analysis of DEGs in *P. tricornutum* exposed to  $5 \,\mu M \,Cu^{2+}$  was performed, using high-throughput RNA sequencing. A total of 2006 genes, including 1119 up- and 887 downregulated genes were detected to be significantly regulated (p < 0.05) under Cu<sup>2+</sup> treatment, with a 2-fold change in abundance considered as the criterion of biologically significant difference (Table S3). DEGs were classified into three main functional categories of GO terms: molecular function (MF), biological process (BP), and cellular component (CC; Figure 6). The GO enrichment analysis for upregulated genes is shown in Figure 6a, in which only 20 annotation categories with the most significantly enriched DEPs are shown. For BP, DEGs were assigned to 13 subcategories involved in photosynthesis, carbon metabolism, and energy metabolism, with the three most abundant clusters being 'protein-chromophore linkage', 'photosynthesis, light harvesting in photosystem I', and 'photosynthesis, light harvesting'. For CC, DEGs were classified into five subcategories involved in photosynthesis, 'thylakoid membrane', 'chloroplast thylakoid membrane', 'plastid thylakoid membrane', 'photosynthetic membrane', and 'light-harvesting complex'. In the MF category, DEGs were divided into the two subcategories 'chlorophyll-binding' and 'tetrapyrrole binding'. The GO enrichment analysis for downregulated genes is shown in Figure 6b, in which only 20 annotation categories with the most significantly enriched DEPs are shown. For BP, DEGs were assigned to 11 subcategories involved in metal ion homeostasis, cation homeostasis, and ion transport. For CC, DEGs were classified into four subcategories involved in the integral component of (plasma) membrane and intrinsic component of (plasma) membrane. In the MF category, the DEGs were divided into four subcategories involved in (inorganic) cation and inorganic molecular entity transmembrane transporter activity.

Overall, 19 DEGs involved in heavy metal ion stress response are listed in Table 1. These genes were mainly related to antioxidants such as peroxiredoxin, peroxidase, catalase, glutathione metabolism, phytochelatin, oxidative stress, and disulfide reductase. Most (14

а protein-chromophore linkage photosynthesis, light harvesting in photosystem I photosynthesis, light harvesting generation of precursor metabolites and energy ATP metabolic process response to light stimulus carboxylic acid metabolic process biological-process organic acid metabolic process cellular-component phylum level name ribose phosphate metabolic process molecular-function response to radiation oxoacid metabolic process ribonucleotide metabolic process purine nucleotide metabolic process thylakoid membrane chloroplast thylakoid membrane plastid thylakoid membrane photosynthetic membrane light-harvesting complex chlorophyll binding tetrapyrrole binding 0.5 1.5 2 2.5 3.5 0 -log10(Padjust) b metal ion homeostasis cellular metal ion homeostasis transmembrane transport inorganic ion homeostasis ion homeostasis cation homeostasis cellular cation homeostasis cellular ion homeostasis phylum level name cellular chemical homeostasis divalent metal ion transport ion transport integral component of membrane intrinsic component of membrane integral component of plasma membrane intrinsic component of plasma membrane inorganic cation transmembrane transporter activity cation transmembrane transporter activity metal ion transmembrane transporter activity divalent inorganic cation transmembrane transporter activity inorganic molecular entity transmembrane transporter activity 0.5 1.5 2.5 0 1 2 3 -log10(Padjust)

out of 19) of these genes were upregulated, indicating their important roles in response to the high concentration of heavy metal ions.



| Gene_id    | fc   | Regulate | nr                                                 | Paths                                                                                    | Swissprot                                          |
|------------|------|----------|----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|
| Pt04g03550 | 5.7  | up       | XP_002181744.1<br>(predicted protein)              | map00480 (Glutathione<br>metabolism); map00053<br>(Ascorbate and aldarate<br>metabolism) | Probable L-ascorbate<br>peroxidase 8               |
| Pt05g02260 | 2.1  | up       | XP_002186090.1<br>(catalase-<br>peroxidase)        | map00360<br>(Phenylalanine metabolism);<br>map00380 (Tryptophan<br>metabolism)           | Catalase-peroxidase                                |
| Pt08g02130 | 30.8 | up       | XP_002179007.1<br>(predicted protein)              | map00480 (Glutathione<br>metabolism)                                                     | Probable cytosol<br>aminopeptidase                 |
| Pt14g00980 | 0.3  | down     | XP_002181057.1<br>(predicted protein)              |                                                                                          |                                                    |
| Pt02g05550 | 3.3  | up       | XP_002177701.1<br>(predicted protein)              | map00480 (Glutathione<br>metabolism)                                                     |                                                    |
| Pt03g03150 | 0.4  | down     | XP_002185216.1<br>(glyoxalase)                     | map00620 (Pyruvate<br>metabolism)                                                        | Hydroxyacylglutathione<br>hydrolase                |
| Pt02g03960 | 2.8  | up       | XP_002177790.1<br>(predicted protein)              |                                                                                          |                                                    |
| Pt07g01050 | 0.4  | down     | XP_002185856.1<br>(predicted protein)              | map00620 (Pyruvate<br>metabolism)                                                        |                                                    |
| Pt15g02690 | 9.6  | up       | XP_002182163.1<br>(predicted protein)              |                                                                                          |                                                    |
| Pt12g00930 | 2.7  | up       | XP_002180005.1<br>(predicted protein)              | map00480 (Glutathione<br>metabolism)                                                     | Glutathione S-transferase<br>DHAR2                 |
| Pt01g09200 | 0.5  | down     | XP_002177254.1<br>(predicted protein,              |                                                                                          | Glutathione gamma-<br>glutamylcysteinyltransferase |
| Pt11g01900 | 10.3 | up       | XP_002182079.1<br>(predicted protein)              | map00590 (Arashidonis asid                                                               | Phospholinid                                       |
| Pt14g03650 | 2.1  | up       | (glutathione<br>perovidase partial)                | metabolism); map00480<br>(Glutathione metabolism)                                        | hydroperoxide glutathione                          |
| Pt05g02470 | 2.2  | up       | XP_002186390.1<br>(predicted protein)              | (Chandhore measonshi)                                                                    | perovidade                                         |
| Pt11g01090 | 5.9  | up       | XP_002182079.1<br>(predicted protein)              |                                                                                          |                                                    |
| Pt07g04170 | 5.1  | up       | XP_002176312.1<br>(peroxidase<br>domain-containing |                                                                                          | Putative heme-binding peroxidase                   |
| Pt11g03130 | 17.5 | up       | XP_002180720 1                                     |                                                                                          | Dhaan halinid                                      |
| Pt14g03650 | 2.1  | up       | (glutathione<br>peroxidase partial)                | map00090 (Arachidonic acid<br>metabolism); map00480<br>(Glutathione metabolism)          | hydroperoxide glutathione                          |
| Pt21g01220 | 0.3  | down     | XP_002183862.1<br>(predicted protein)              | (Siduatione metabolish)                                                                  | peroxidase                                         |

**Table 1.** DEGs involved in heavy metal stress response in *P. tricornutum* under Cu<sup>2+</sup>.

3.4.3. Effects of Zn<sup>2+</sup> on Gene Transcription in *P. tricornutum* 

Transcriptome analysis of differential gene expression in *P. tricornutum* exposed to  $30 \ \mu M \ Zn^{2+}$  was performed, using high-throughput RNA sequencing. A total of 4043 genes, including 2184 up- and 1859 downregulated genes were detected to be significantly regulated (p < 0.05) under Zn<sup>2+</sup> treatment (Table S4). The GO enrichment analysis for DEGs in *P. tricornutum* under Zn<sup>2+</sup> treatment is shown in Figure 7, in which only 20 annotation categories with the most significantly enriched DEGs are shown. The GO enrichment for DEGs in *P. tricornutum* under Zn<sup>2+</sup> treatment was similar to that under Cu<sup>2+</sup> treatment, in which the upregulated genes were mainly involved in photosynthesis (Figure 7a), whereas

10 of 20

the downregulated genes were mainly involved in ion homeostasis, cation homeostasis, and ion transport (Figure 7b).





Overall, 24 DEGs involved in heavy metal ion stress response are listed in Table 2. These genes were mainly related to antioxidants such as peroxidase, catalase, peroxiredoxin, glutathione metabolism, phytochelatin biosynthetic process, oxidative stress, mutase superoxide dismutase, and disulfide reductase. Most (17 out of 24) of these genes were upregulated, indicating their important roles in response to the high concentration of heavy metal ions.

| Gene_id    | fc    | Regulate | nr                                                                            | Paths                                                                                                                                            | Swissprot                                                        |  |
|------------|-------|----------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Pt04g03550 | 6.91  | up       | XP_002181744.1<br>(predicted protein)                                         | map00480 (Glutathione<br>metabolism); map00053<br>(Ascorbate and aldarate<br>metabolism)                                                         | Probable L-ascorbate<br>peroxidase 8                             |  |
| Pt20g01650 | 2.55  | up       | XP_002182954.1<br>(catalase)                                                  | map00630 (Glyoxylate and<br>dicarboxylate metabolism);<br>map00380 (Tryptophan<br>metabolism); map04146<br>(Peroxisome)                          | Catalase                                                         |  |
| Pt13g01910 | 0.50  | down     | XP_002180671.1<br>(predicted protein)                                         | (1 210,220,110)                                                                                                                                  |                                                                  |  |
| Pt23g00220 | 2.22  | up       | XP_002184868.1<br>(predicted protein)                                         |                                                                                                                                                  | Peroxiredoxin-6                                                  |  |
| Pt10g01030 | 0.03  | down     | XP_002179508.1<br>(predicted protein)                                         | map00480 (Glutathione<br>metabolism)                                                                                                             | Glutathione S-transferase                                        |  |
| Pt05g04280 | 9.78  | up       | XP_002186195.1<br>(UDP-glucose<br>6-dehydrogenase)                            | map00520 (Amino sugar and<br>nucleotide sugar metabolism);<br>map00040 (Pentose and<br>glucuronate interconversions);<br>map00053 (Ascorbate and | UDP-glucose<br>6-dehydrogenase 1                                 |  |
| Pt14g01270 | 0.24  | down     | XP_002180872.1<br>(l-ascorbate<br>peroxidase, partial)                        | map00480 (Glutathione<br>metabolism); map00053<br>(Ascorbate and aldarate<br>metabolism)                                                         | Putative heme-binding peroxidase                                 |  |
| Pt16g00880 | 6.11  | up       | XP_002179589.1<br>(nad-dependent<br>epimerase/dehydratase)                    | map00520 (Amino sugar and<br>nucleotide sugar metabolism);<br>map00053 (Ascorbate and<br>aldarate metabolism)                                    | GDP-mannose<br>3,5-epimerase                                     |  |
| Pt08g03190 | 5.92  | up       | XP_002178726.1<br>(predicted protein)                                         | map00460 (Cyanoamino acid<br>metabolism); map00480<br>(Glutathione metabolism);<br>map00430 (Taurine and<br>hypotaurine metabolism)              | Glutathione hydrolase-like<br>YwrD proenzyme                     |  |
| Pt04g01510 | 0.39  | down     | XP_002183098.1<br>(glutathione<br>peroxidase<br>domain-containing<br>protein) | map00590 (Arachidonic acid<br>metabolism); map00480<br>(Glutathione metabolism)                                                                  | Probable phospholipid<br>hydroperoxide glutathione<br>peroxidase |  |
| Pt02g03960 | 2.85  | up       | XP_002177790.1<br>(predicted protein)                                         |                                                                                                                                                  |                                                                  |  |
| Pt12g00930 | 4.58  | up       | XP_002180005.1<br>(predicted protein)                                         | map00480 (Glutathione<br>metabolism)                                                                                                             | Glutathione S-transferase<br>DHAR2                               |  |
| Pt21g02200 | 25.23 | up       | XP_002183815.1<br>(predicted protein)                                         | map02010 (ABC transporters)                                                                                                                      | Glutathione-binding protein<br>GsiB                              |  |
| Pt18g02190 | 6.06  | up       | XP_002185391.1<br>(predicted protein)                                         |                                                                                                                                                  |                                                                  |  |
| Pt05g02470 | 2.74  | up       | XP_002186390.1 (predicted protein)                                            |                                                                                                                                                  |                                                                  |  |
| Pt23g01150 | 8.11  | up       | XP_002184892.1<br>(predicted protein)                                         |                                                                                                                                                  | Glutathione gamma-<br>glutamylcysteinyltransferase<br>2          |  |
| Pt08g02730 | 0.47  | down     | GAX19067.1<br>(hypothetical protein<br>FisN_8Hh293<br>[Fistulifera solaris])  |                                                                                                                                                  | –<br>ABC transporter G family<br>member 1                        |  |

**Table 2.** DEGs involved in heavy metal stress response in *P. tricornutum* under  $Zn^{2+}$ .

| Gene_id    | fc    | Regulate | nr                                                                                  | Paths                                | Swissprot                        |
|------------|-------|----------|-------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|
| Pt12g03160 | 0.48  | down     | XP_002180322.1<br>(glutathione reductase)<br>XP_002177253.1                         | map00480 (Glutathione<br>metabolism) | Glutathione reductase            |
| PtUn01s113 | 5.37  | up       | (mutase superoxide<br>dismutase)<br>XP_002180497.1                                  | map04146 (Peroxisome)                | Superoxide dismutase             |
| Pt13g02930 | 12.70 | up       | (precursor of mutase<br>superoxide dismutase<br>[Fe/Mn], partial)<br>XP 002177253 1 | map04146 (Peroxisome)                | Superoxide dismutase             |
| Pt01g09190 | 7.47  | up       | (mutase superoxide<br>dismutase<br>XP_002186201.1                                   | map04146 (Peroxisome)                | Superoxide dismutase             |
| Pt05g04470 | 0.40  | down     | (5'-Nucleotidase or<br>metallophospho-<br>esterase)<br>XP 002176312.1               |                                      |                                  |
| Pt07g04170 | 2.73  | up       | (peroxidase<br>domain-containing<br>protein)                                        |                                      | Putative heme-binding peroxidase |
| Pt20g01220 | 2.27  | up       | XP_002182845.1<br>(predicted protein)                                               | map04146 (Peroxisome)                | Peroxiredoxin-2C                 |

Table 2. Cont.

3.5. Effects of  $Cu^{2+}$  and  $Zn^{2+}$  on Gene Transcription in C. fusiformis

3.5.1. Annotation of C. fusiformis Transcriptome

To investigate the potential effect of  $Cu^{2+}$  and  $Zn^{2+}$  treatment on transcription in *C. fusiformis*, we analyzed the transcriptome of *C. fusiformis* exposed to 5  $\mu$ M Cu<sup>2+</sup> (CFCu) and 30  $\mu$ M Zn<sup>2+</sup> (CFZn) for 48 h, with no addition of heavy metal ions as the control (CFC). An average of 43,832,802 raw reads and 43,323,647 clean reads were generated from total RNA extracted from *C. fusiformis*. A total of 98.25% of the clean read bases had a Q-value  $\geq$  20, and 94.64% of the clean read bases had a Q-value  $\geq$  30 (Table S5). De novo assembly generated 26,146 unigenes. Figure 8 shows the length distribution of unigenes.



Figure 8. Length distribution of transcripts in C. fusiformis.



The acquired unigenes were annotated according to GO, KEGG, COG, NR, Swiss-Prot, and Pfam databases. Of all the assembled unigenes, 36.72%, 35.9%, 56.07%, 38.88%, 39.87%, and 55.78% were annotated by GO, KEGG, COG, NR, Swiss-Prot, and Pfam, respectively (Figure 9, Table S6).

Figure 9. Functional annotation of unigenes in C. fusiformis.

3.5.2. Effects of Cu<sup>2+</sup> on Gene Transcription in *C. fusiformis* 

Transcriptome analysis of differential gene expression in *C. fusiformis* exposed to 5  $\mu$ M Cu<sup>2+</sup> was performed, using high-throughput RNA sequencing. A total of 1133 genes, including 315 up- and 818 downregulated genes were detected to be significantly regulated (p < 0.05) under Cu<sup>2+</sup> treatment (Table S7). The GO enrichment analysis for upregulated genes is shown in Figure 10a, in which only 20 annotation categories with the most significantly enriched DEPs are shown. For BP, DEGs were assigned to 17 subcategories involved in signal transduction, nucleotide biosynthetic, organophosphate biosynthetic, etc. For CC, DEGs were classified into 1 subcategories, 3',5'-cyclic-nucleotide phosphodiesterase activity, and cyclic-nucleotide phosphodiesterase activity. The GO enrichment analysis for CC, DEGs were classified into 2 subcategories as an intrinsic component of the membrane and integral component of the membrane. In the MF category, the unigenes were divided into 2 subcategories as an intrinsic component of the membrane and integral component of the membrane. In the MF category, the unigenes were divided into 2 subcategories as an intrinsic component of the membrane and integral component of the membrane. In the MF category, the unigenes were divided into 3 subcategories, phospholipid transporter, glutamyl-tRNA reductase, and lipase activities.

Overall, 8 DEGs involved in antioxidants are listed in Table 3, including 1 peroxiredoxin, 1 glutathione synthetase, 1 glutathione S-transferase, 1 glutathione peroxidase, 1 hydroxyacylglutathione hydrolase, 1 deaminated glutathione amidase, and 1 peroxinectin. In total, 7 out of 8 genes were downregulated, indicating considerable differences between *C. fusiformis* and *P. tricornutum* in response to the high concentration of heavy metal ions.



**Figure 10.** Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) in *C. fusiformis* under Cu<sup>2+</sup> treatment. (**a**) Upregulated genes in CFCu/CFC. (**b**) Downregulated genes in CFCu/CFC.

Table 3. DEGs involved in heavy metal stress response in *C. fusiformis* under Cu<sup>2+</sup>.

| Gene_id               | nr_Description                      | fc   | Regulate | Paths                                                                                     | Swissprot                                      |
|-----------------------|-------------------------------------|------|----------|-------------------------------------------------------------------------------------------|------------------------------------------------|
| TRINITY_DN14518_c0_g1 | thioredoxin-like protein            | 2.68 | up       | map00940<br>(Phenylpropanoid<br>biosynthesis)<br>map00270 (Cysteine and                   | 1-Cys peroxiredoxin A                          |
| TRINITY_DN1479_c0_g1  | glutathione synthetase              | 0.28 | down     | methionine metabolism);<br>map00480 (Glutathione                                          | Glutathione synthetase                         |
| TRINITY_DN495_c0_g2   | hypothetical protein                | 0.19 | down     | metabolism)<br>map00480 (Glutathione<br>metabolism)<br>map00590 (Arachidonic              | Glutathione<br>S-transferase                   |
| TRINITY_DN7366_c1_g1  | glutathione peroxidase              | 0.43 | down     | acid metabolism);<br>map00480 (Glutathione                                                | Hydroperoxy fatty acid<br>reductase gpx1       |
| TRINITY_DN1758_c0_g1  | hydroxyacylglutathione<br>hydrolase | 0.45 | down     | metabolism)<br>map00620 (Pyruvate<br>metabolism); map00790<br>(Folate biosynthesis)       | Hydroxyacylglutathione<br>hydrolase            |
| TRINITY_DN3215_c0_g1  | hypothetical protein                | 0.46 | down     |                                                                                           |                                                |
| TRINITY_DN2680_c0_g1  | hypothetical protein                | 0.49 | down     | map00270 (Cysteine and<br>methionine metabolism);<br>map00480 (Glutathione<br>metabolism) | Glutamate-cysteine<br>ligase catalytic subunit |
| TRINITY_DN6304_c0_g1  | hypothetical protein                | 0.38 | down     | ,                                                                                         |                                                |

3.5.3. Effects of Zn<sup>2+</sup> on gene transcription in *C. fusiformis* 

Transcriptome analysis of differential gene expression in *C. fusiformis* exposed to 30  $\mu$ M Zn<sup>2+</sup> was performed using high-throughput RNA sequencing. A total of 1900 genes, including 854 up- and 1046 downregulated genes were detected to be significantly regulated (p < 0.05) under Zn<sup>2+</sup> treatment (Table S8). The GO enrichment analysis for upregulated

genes is shown in Figure 11a. For BP, DEGs were enriched in 1 subcategory of cellular modified amino acid metabolic process. For CC, DEGs were classified into 3 subcategories, 3-oxoacyl-[acyl-carrier-protein] synthase activity, arginase activity, and cullin family protein binding. The GO enrichment analysis for downregulated genes is shown in Figure 11b, in which only 20 annotation categories with the most significantly enriched DEPs are shown. For BP, DEGs were assigned to 8 subcategories involved in the regulation of biological quality, homeostasis, posttranslational modification (amino acid modification), organelle assembly, response to topologically incorrect protein, etc. For CC, DEGs were classified into 3 subcategories as an intrinsic component of membrane, an integral component of membrane, and endoplasmic reticulum lumen. In the MF category, the unigenes were divided into 9 subcategories involved in catalytic activity, ATPase activity, tubulin (cytoskeletal protein, calcium ion, microtubule) binding, primary active transmembrane transporter activity, and protein kinase activity.



**Figure 11.** Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) in *C. fusiformis* under Zn<sup>2+</sup> treatment. (**a**) Upregulated genes in CFZn/CFC. (**b**) Downregulated genes in CFZn/CFC.

Overall, 16 DEGs involved in antioxidants are listed in Table 4, including 1 thioredoxin-like protein, 1 glutathione synthetase, 4 glutathione S-transferase, peroxiredoxin, 1 glutathionyl-hydroquinone reductase, 1 glutathione peroxidase, 2 phytochelatin biosynthesis-related genes, 1 light-harvesting complex stress-related protein, 1 thyroid peroxidase, 1 oxidative stress-related Abc1-like protein, 1 catalase-peroxidase, 1 methionine sulfoxide reductase, and 1 peroxinectin. Half of them were downregulated, and the rest were upregulated, which is different from the result under Cu<sup>2+</sup> treatment.

| Gene_id               | nr_Description                                   | fc   | Significant | Regulate | Paths                                                                                    | Swissprot                                                    |
|-----------------------|--------------------------------------------------|------|-------------|----------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| TRINITY_DN14518_c0_g1 | thioredoxin-like<br>protein                      | 3.17 | yes         | up       | map00940<br>(Phenylpropanoid<br>biosynthesis)<br>map00270 (Cystaine and                  | 1-Cys<br>peroxiredoxin<br>A                                  |
| TRINITY_DN1479_c0_g1  | glutathione<br>synthetase                        | 0.33 | yes         | down     | map00270 (Cysteme and<br>methionine metabolism);<br>map00480 (Glutathione<br>metabolism) | Glutathione<br>synthetase                                    |
| TRINITY_DN1711_c0_g1  | hypothetical<br>protein                          | 2.81 | yes         | up       | map00590 (Arachidonic<br>acid metabolism);<br>map00480 (Glutathione<br>metabolism)       | Glutathione<br>S-transferase                                 |
| TRINITY_DN1711_c0_g2  | hypothetical protein                             | 6.12 | yes         | up       | acid metabolism);<br>map00480 (Glutathione<br>metabolism)                                | Glutathione<br>S-transferase 1                               |
| TRINITY_DN2013_c0_g1  | glutathione-S-<br>transferase                    | 0.44 | yes         | down     | map00590 (Arachidonic<br>acid metabolism);<br>map00480 (Glutathione<br>metabolism)       | Glutathione<br>S-transferase                                 |
| TRINITY_DN327_c0_g2   | glutathione<br>S-transferase                     | 2.73 | yes         | up       | acid metabolism);<br>map00480 (Glutathione<br>metabolism)                                | Glutathione<br>S-transferase 1                               |
| TRINITY_DN6449_c0_g1  | hypothetical protein                             | 2.06 | yes         | up       |                                                                                          | Glutathionyl-<br>hydroquinone<br>reductase                   |
| TRINITY_DN7366_c1_g1  | glutathione<br>peroxidase                        | 0.37 | yes         | down     | map00590 (Arachidonic<br>acid metabolism);<br>map00480 (Glutathione<br>metabolism)       | Hydroperoxy<br>fatty acid<br>reductase                       |
| TRINITY_DN2338_c0_g3  | hypothetical<br>protein                          | 0.40 | yes         | down     |                                                                                          | DEP domain-<br>containing<br>mTOR-<br>interacting<br>protein |
| TRINITY_DN3_c0_g4     | mercuric reductase                               | 0.43 | yes         | down     |                                                                                          | L-amino<br>acid-binding<br>periplasmic<br>protein Aap        |
| TRINITY_DN17353_c0_g1 | LhcSR                                            | 2.98 | yes         | up       | map00196<br>(Photosynthesis—<br>Antenna<br>proteins)                                     | harvesting<br>complex<br>stress-related                      |
| TRINITY_DN1775_c0_g1  | hypothetical protein                             | 0.30 | yes         | down     | ÷ '                                                                                      | protein<br>Thyroid<br>peroxidase<br>Protein                  |
| TRINITY_DN319_c0_g1   | oxidative<br>stress-related<br>Abc1-like protein | 2.10 | yes         | up       |                                                                                          | ACTIVITY OF<br>BC1 COMPLEX<br>KINASE 8                       |

**Table 4.** DEGs involved in heavy metal stress response in *C. fusiformis* under  $Zn^{2+}$ .

|                      | iubic i. com.                          |      |             |          |                                                                                                                                  |                                                 |
|----------------------|----------------------------------------|------|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Gene_id              | nr_Description                         | fc   | Significant | Regulate | Paths                                                                                                                            | Swissprot                                       |
| TRINITY_DN3894_c1_g1 | catalase peroxidase                    | 2.40 | yes         | up       | map00940<br>(Phenylpropanoid<br>biosynthesis); map00380<br>(Tryptophan<br>metabolism); map00360<br>(Phenylalanine<br>metabolism) | Catalase-<br>peroxidase                         |
| TRINITY_DN5279_c0_g2 | methionine<br>sulfoxide reductase<br>B | 0.45 | yes         | down     |                                                                                                                                  | Peptide<br>methionine<br>sulfoxide<br>reductase |
| TRINITY_DN6304_c0_g1 | hypothetical protein                   | 0.39 | yes         | down     |                                                                                                                                  | Peroxinectin A                                  |

#### Table 4. Cont.

## 4. Discussion

Cu<sup>2+</sup> and Zn<sup>2+</sup> are crucial micronutrients for diatoms. When Cu<sup>2+</sup> and Zn<sup>2+</sup> are present in an adequate amount, diatoms exhibit a stronger fitness and grow faster.  $Cu^{2+}$  and  $Zn^{2+}$ are components of many enzymes in algae cells. Cu<sup>2+</sup> is involved in the electron transport of photosynthesis by serving as a ligand of cytochrome oxidase and plastocyanin [23,24]. In addition,  $Cu^{2+}$  is a component of Cu-tyroninase and multicopper oxidase, which is involved in Fe-deficiency response [25,26].  $Zn^{2+}$  is an important component for carbonic anhydrases, which are involved in CO<sub>2</sub> fixation, and zinc finger transcription factors, which are involved in gene transcription [27,28]. In addition, both  $Cu^{2+}$  and  $Zn^{2+}$  are important for Cu/Zn-SOD (superoxide dismutase) which is involved in anti-oxidation [29]. However, excess  $Cu^{2+}$  or  $Zn^{2+}$  will interfere with cellular physiology and biological processes, resulting in decreased cell growth and even death. Different types of cells have different types and amounts of enzymes, thus their demands for Cu<sup>2+</sup> and Zn<sup>2+</sup> are various. Meanwhile, as the shielding and permeation properties of cell membranes for heavy metal ions are different in various species, their tolerances to heavy metal ions are also various. In this study, the growth of both *P. tricornutum* and *C. fusiformis* was inhibited at 60  $\mu$ M Cu<sup>2+</sup>, while 30  $\mu$ M  $Cu^{2+}$  decreased the growth of *C. fusiformis*, yet did not have significant effect on the growth of *P. tricornutum* (Figure 1). Neither 30 nor 60 µM Zn<sup>2+</sup> significantly influenced the growth of *P. tricornutum* (Figure 1a), while 60  $\mu$ M Zn<sup>2+</sup> decreased the growth of *C. fusiformis on* day five (Figure 1b). This indicated that P. tricornutum and C. fusiformis show different sensitivities to  $Cu^{2+}$  and  $Zn^{2+}$ .

To explore the mechanism underlying the difference in susceptibility to heavy metals between *P. tricornutum* and *C. fusiformis*, transcriptomic analysis was conducted. Ion transport is reported to be a response mechanism to the high concentration of heavy metal ions. In this study, it has been shown that under high concentrations of both  $Cu^{2+}$  and  $Zn^{2+}$ , most DEGs involved in photosynthesis were upregulated, indicating the effect of both  $Cu^{2+}$ and  $Zn^{2+}$  on photosynthesis in *P. tricornutum*. Meanwhile, most genes downregulated in *P. tricornutum* under  $Cu^{2+}$  treatment were involved in metal ion homeostasis and transmembrane ion transport. This indicated that ion homeostasis and transmembrane transport might be the main mechanisms for *P. tricornutum* to respond to high  $Cu^{2+}$  concentrations. Moreover, this enrichment of downregulated genes in metal ion transport was observed in *P. tricornutum* under  $Zn^{2+}$  treatment. However, the enrichment of downregulated genes in metal ion homeostasis-related genes did not occur under  $Zn^{2+}$  treatment, indicating a different response mechanism for  $Zn^{2+}$  to that for  $Cu^{2+}$ .

Besides genes related to metal ion homeostasis and transmembrane ion transport, some other genes were previously reported to be involved in heavy metal stress response, including genes related to catalase, antioxidation, ascorbate metabolism, glutathione metabolism, phytochelatin, and oxidative stress [9]. These genes are listed in Tables 1–4. Most of these

genes were upregulated in *P. tricornutum* under both  $Cu^{2+}$  and  $Zn^{2+}$  treatments; however, only a few were upregulated in *C. fusiformis*, indicating that the response of *C. fusiformis* to heavy metal ion stress is different from that of *P. tricornutum*. Moreover, the enrichment of DEGs in ion homeostasis and transmembrane transport-related genes was not observed in *C. fusiformis* either. It is reported that *C. fusiformis* is sensitive to heavy metal ions [4,6], whereas *P. tricornutum* is more tolerant to  $Cu^{2+}$  stress [19]. We suspect that difference in gene expression might be one of the mechanism's responses to the difference in susceptibility to heavy metals between *P. tricornutum* and *C. fusiformis*.

In addition, since the metal toxicity for cells is more related to intracellular metal bioaccumulation than to the metal concentration in water, and the fact that both *P. tricornutum* and *C. fusiformis* are widely considered biofilm-producing mixed diatoms [30–33], the role of metal ion management of the biofilm should be considered when exploring the mechanism underlying the difference in susceptibility to heavy metals between *P. tricornutum* and *C. fusiformis*. Using SEM and EDS analysis, we found that both *P. tricornutum* and *C. fusiformis* accumulated  $Cu^{2+}$  and  $Zn^{2+}$  onto the biosilica shell. In future work it would be informative to determine the intracellular concentrations of  $Cu^{2+}$  and  $Zn^{2+}$ .

#### 5. Conclusions

Transcriptome analysis of *P. tricornutum* and *C. fusiformis* under Cu<sup>2+</sup> and Zn<sup>2+</sup> treatments indicated that genes involved in metal ion homeostasis and transmembrane ion transport, and those related to catalase, antioxidation, ascorbate metabolism, glutathione metabolism, phytochelatin, and oxidative stress, might play important roles in the response of diatoms to heavy metal stress.

**Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/w14203305/s1, Table S1: Clean data statistics for Phaeodactylum tricornutum (*P. tricornutum*) transcriptome; Table S2: Annotation statistics for *P. tricornutum* transcriptome; Table S3: Annotations for differentially expressed genes (DEGs) in *P. tricornutum* under  $Cu^{2+}$  treatment; Table S4: Annotations for DEGs in *P. tricornutum* under Zn<sup>2+</sup> treatment; Table S5: Clean data statistics for Cylindrotheca fusiformis (*C. fusiformis*) transcriptome; Table S6: Annotation statistics for *C. fusiformis* transcriptome; Table S7: Annotations for DEGs in *C. fusiformis* under Cu<sup>2+</sup> treatment; Table S8: Annotations for DEGs in *C. fusiformis* under Cu<sup>2+</sup> treatment.

**Author Contributions:** Conceptualization, A.H.; methodology, A.H.; software, Y.W.; validation, Y.W., J.D. and S.G.; formal analysis, Y.W.; investigation, Y.W.; resources, J.D.; data curation, Y.W.; writing—original draft preparation, A.H. and Y.W.; writing—review and editing, A.H. and Z.X.; visualization, J.D.; supervision, A.H.; project administration, A.H.; funding acquisition, Z.X. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by the National Natural Science Foundation of China (41876158), the Natural Science Foundation of Hainan Province (420QN219), and the Scientific Research Foundation of Hainan University (KYQD(ZR)20060).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** The original contributions presented in the study are included in the article/Supplementary Materials; further inquiries can be directed to the corresponding authors.

Acknowledgments: We would like to express our thanks to Xinchun Zhang (Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute) for technical service of SEM and EDS.

**Conflicts of Interest:** The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

## References

- 1. Larned, S.T. A prospectus for periphyton: Recent and future ecological research. J. N. Am. Benthol. Soc. 2010, 29, 182–206. [CrossRef]
- 2. Butcher, R.W. Studies in the Ecology of Rivers: VII. The Algae of Organically Enriched Waters. J. Ecol. 1947, 35, 186–191. [CrossRef]
- 3. Tudesque, L.; Grenouillet, G.; Gevrey, M.; Khazraie, K.; Brosse, S. Influence of small-scale gold mining on French Guiana streams: Are diatom assemblages valid disturbance sensors? *Ecol. Indic.* **2012**, *14*, 100–106. [CrossRef]
- 4. Sbihi, K.; Cherifi, O.; Bertrand, M. Toxicity and biosorption of chromium from aqueous solutions by the diatom *Planothidium lanceolatum* (Brébisson) Lange-Bertalot. *Am. J. Sci.* **2012**, *3*, 27–38. [CrossRef]
- 5. De Stefano, L.; Rotiroti, L.; De Stefano, M.; Lamberti, A.; Lettieri, S.; Setaro, A.; Maddalena, P. Marine diatoms as optical biosensors. *Biosens. Bioelectron.* 2009, 24, 1580–1584. [CrossRef]
- 6. Marie, M.; Kirsten, H.; Pamela, Q.; Negri, A.P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. *Mar. Pollut. Bull.* **2010**, *60*, 1978–1987.
- Satoh, A.; Vudikaria, L.Q.; Kurano, N.; Miyachi, S. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. *Environ. Int.* 2005, *31*, 713–722. [CrossRef]
- 8. Rimet, F. Recent views on river pollution and diatoms. Hydrobiologia 2012, 683, 1–24. [CrossRef]
- 9. Masmoudi, S.; Nguyen-Deroche, N.; Caruso, A.; Ayadi, H.; Morant-Manceau, A.; Tremblin, G.; Bertrand, M.; Schoefs, B. Cadmium, copper, sodium and zinc effects on diatoms: From heaven to hell—A review. *Cryptogam. Algol.* **2013**, *34*, 185–225. [CrossRef]
- Owens, T.G.; Wold, E.R. Light-Harvesting Function in the Diatom *Phaeodactylum tricornutum*: I. Isolation and Characterization of Pigment-Protein Complexes. *Plant Physiol.* **1986**, *80*, 732. [CrossRef]
- 11. Patil, V.; Reitan, K.I.; Knutsen, G.; Mortensen, L.M.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Microalgae as source of polyunsaturated fatty acids for aquaculture. *Curr. Top. Plant Biol.* **2005**, *6*, 57–65.
- 12. Alipanah, L.; Rohloff, J.; Winge, P.; Bones, A.M.; Brembu, T. Whole-cell response to nitrogen deprivation in the diatom *Phaeodactylum tricornutum. J. Exp. Bot.* 2015, *66*, 6281–6296. [CrossRef] [PubMed]
- 13. Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P. The *Phaeodactylum* genome reveals the evolutionary history of diatom genomes. *Nature* **2008**, *456*, 239–244. [CrossRef] [PubMed]
- 14. Siaut, M.; Heijde, M.; Mangogna, M.; Montsant, A.; Coesel, S.; Allen, A.; Manfredonia, A.; Falciatore, A.; Bowler, C. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. *Gene* **2007**, *406*, 23–35. [CrossRef]
- 15. De Risco, V.; Raniello, R.; Maumus, F.; Rogato, A.; Bowler, C.; Falciatore, A. Gene silencing in the marine diatom *Phaeodactylum tricornutum*. *Nucleic Acids Res.* **2009**, *37*, 96. [CrossRef]
- 16. Stukenberg, D.; Zauner, S.; Dell'Aquila, G.; Maier, U.G. Optimizing CRISPR/Cas9 for the Diatom *Phaeodactylum tricornutum*. *Front. Plant Sci.* **2018**, *9*, 740. [CrossRef]
- 17. Kawamura, T.; Roberts, R.D.; Nicholson, C.M. Factors affecting the food value of diatom strains for post-larval abalone *Haliotis iris. Aquaculture* **1998**, *160*, 81–88. [CrossRef]
- 18. Gallardo, W.G.; Buen, S.M.A. Evaluation of mucus, Navicula, and mixed diatoms as larval settlement inducers for the tropical abalone *Haliotis asinina*. *Aquaculture* **2003**, 221, 357–364. [CrossRef]
- 19. Cid, A.; Torres, E.; Herrero, C.; Abalde, J.E. Disorders provoked by copper in the marine diatom *Phaeodactylum tricornutum* in short-time exposure assays. *Cah. Biol. Mar.* **1997**, *38*, 201–206.
- 20. Guillard, R. Culture of Marine Invertebrate Animals, 1st ed.; Springer: New York, NY, USA, 1975; pp. 29-60.
- 21. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinform.* **2011**, *12*, 323. [CrossRef]
- 22. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **2010**, *26*, 139–140. [CrossRef] [PubMed]
- 23. Hänsch, R.; Mende, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). *Curr. Opin. Plant Biol.* **2009**, 12, 259–266. [CrossRef] [PubMed]
- 24. Peers, G.; Price, N.M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. *Nature* **2006**, *441*, 341–344. [CrossRef] [PubMed]
- 25. Peers, G.; Quesnel, S.A.; Price, N.M. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. *Limnol. Oceanogr.* **2005**, *50*, 1149–1158. [CrossRef]
- Maldonado, M.T.; Allen, A.E.; Chong, J.S.; Lin, K.; Leus, D.; Karpenko, N.; Harris, S.L. Copper-dependent iron transport in coastal and oceanic diatoms. *Limnol. Oceanogr.* 2006, 51, 1729–1743. [CrossRef]
- 27. Cox, E.H.; McLendon, G.L.; Morel, F.M.M.; Lane, T.W.; Prince, R.C.; Pickering, I.J.; George, G.N. The Active Site Structure of *Thalassiosira weissflogii* Carbonic Anhydrase 1. *Biochemistry* 2000, *39*, 12128–12130. [CrossRef]
- Rayko, E.; Maumus, F.; Maheswari, U.; Jabbari, K.; Bowler, C. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. *New Phytol.* 2010, 188, 52–66. [CrossRef]
- Rijstenbil, J.W.; Derksen, J.W.M.; Gerringa, L.J.A.; Poortvliet, T.C.W.; Sandee, A.; Berg, M.; Drie, J.; Wijnholds, J.A. Oxidative stress induced by copper: Defense and damage in the marine planktonic diatom *Ditylum brightwellii*, grown in continuous cultures with high and low zinc levels. *Mar. Biol.* 1994, 119, 583–590. [CrossRef]
- Buhmann, M.T.; Schulze, B.; Foerderer, A.; Schleheck, D.; Kroth, P.G. Bacteria may induce the secretion of mucin-like proteins by the diatom *Phaeodactylum tricornutum*. J. Phycol. 2016, 52, 463–474. [CrossRef]

- 31. Willis, A.; Chiovitti, A.; Dugdale, T.M.; Wetherbee, R. Characterization of the extracellular matrix of *Phaeodactylum tricornutum* (Bacillariophyceae): Structure, composition, and adhesive characteristics. *J. Phycol.* **2013**, *49*, 937–949. [CrossRef]
- 32. Tong, C.Y.; Derek, C.J.C. The role of substrates towards marine diatom *Cylindrotheca fusiformis* adhesion and biofilm development. *J. Appl. Phycol* **2021**, *33*, 2845–2862. [CrossRef]
- 33. Tong, C.Y.; Derek, C.J.C. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. *Algal Res.* **2021**, 55, 102260. [CrossRef]