Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. RUSLE Model
2.3.2. OPGD Model
3. Results
3.1. Spatial and Temporal Distribution of Soil Erosion in the YRB
3.2. Factor Detection Results
3.3. Interaction Detection Results
4. Discussion
4.1. Validation of the Model Results
4.2. Discussion of Soil Erosion and Its Influencing Factors
4.3. Uncertainty Analysis and Future Perspectives
5. Conclusions
- In 2000, 2005, 2010, 2015, and 2020, the soil erosion modulus in the YRB were 1877.69, 1641.59, 1485.25, 844.84, and 832.07 t·km−2·a−1, respectively. The soil erosion modulus of YRB showed a downward trend as a whole, and the downward trend was the most obvious from 2010 to 2015.
- From 2000 to 2020, the areas with severe soil erosion in the YRB were mainly concentrated in the three provinces of Gansu, Shanxi, and Shaanxi, and generally showed a northeast-southwest trend, and were distributed in the hilly areas and loess tableland in the middle of the Loess Plateau.
- The overall q value of soil erosion drivers in the YRB showed a decrease trend, but the ranking of LU/LC in the influencing factors kept rising. From the YRB scale to the county scale, the q values of the influencing factors tend to increase, and human activities can have a greater impact on soil erosion at smaller scales.
- Soil erosion in the YRB was most affected by FVC, Landform, and LU/LC. The FVC explained about 15% of soil erosion, and the interaction between FVC and Landform explained up to 35% of soil erosion.
- The increasing ability of human activities to influence soil erosion is more pronounced at small scales. Therefore, the governance of soil erosion should strengthen the governance of small areas and give more play to the positive impact of human activities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilahun, M.; Singh, A.; Apindi, E.; Shaure, M.; Libera, J.; Lund, G. The Economics of Land Degradation Neutrality in Asia: Empirical Analyses and Policy Implications for the Sustainable Development Goals; German Federal Ministry for Economic Cooperation and Development (BMZ): Bonn, Germany, 2018.
- Panagos, P.; Katsoyiannis, A. Soil erosion modelling: The new challenges as the result of policy developments in Europe. Environ. Res. 2019, 172, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Pravalie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Rosca, B.; Dumitrascu, M.; Nita, I.A.; Savulescu, I.; Birsan, M.V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Nie, X.J.; Zhang, H.B.; Su, Y.Y. Soil carbon and nitrogen fraction dynamics affected by tillage erosion. Sci. Rep. 2019, 9, 16601. [Google Scholar] [CrossRef] [PubMed]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the global rate of soil erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Xiao, H.B.; Li, Z.W.; Chang, X.F.; Huang, B.; Nie, X.D.; Liu, C.; Liu, L.; Wang, D.Y.; Jiang, J.Y. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma 2018, 329, 73–81. [Google Scholar] [CrossRef]
- Guo, L.J.; Liu, R.M.; Men, C.; Wang, Q.R.; Miao, Y.X.; Shoaib, M.; Wang, Y.F.; Jiao, L.J.; Zhang, Y. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Sci. Total Environ. 2021, 779, 146474. [Google Scholar] [CrossRef]
- Li, H.C.; Guan, Q.Y.; Sun, Y.F.; Wang, Q.Z.; Liang, L.S.; Ma, Y.R.; Du, Q.Q. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model. Catena 2022, 212, 106081. [Google Scholar] [CrossRef]
- Hu, T.; Wu, J.S.; Li, W.F. Assessing relationships of ecosystem services on multi-scale: A case study of soil erosion control and water yield in the Pearl River Delta. Ecol. Indic. 2019, 99, 193–202. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Wang, L.; Zuo, Q.; Yi, S.Q.; Liu, J.Y.; Su, X.P.; Xu, T.; Jiang, Y. The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China. Int. J. Environ. Res. Public Health 2021, 18, 11044. [Google Scholar] [CrossRef] [PubMed]
- Zisopoulou, K.; Zisopoulos, D.; Panagoulia, D. Water Economics: An In-Depth Analysis of the Connection of Blue Water with Some Primary Level Aspects of Economic Theory I. Water 2022, 14, 103. [Google Scholar] [CrossRef]
- Zarris, D.; Vlastara, M.; Panagoulia, D. Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment. Water Resour. Manag. 2011, 25, 3785–3803. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Fu, S.H.; Shi, X.N.; Chen, Y.; Jagirani, M.D.; Zeng, C. Assessment of soil erosion risk and its response to climate change in the mid-Yarlung Tsangpo River region. Environ. Sci. Pollut. Res. 2020, 27, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.F.; Liang, Z.Z.; Chen, S.C.; Liu, Y.; Rossel, R.A.V.; Chappell, A.; Yu, W.; Shi, Z. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.J.; Shao, Q.Q. Spatial Pattern of Soil Erosion Drivers and the Contribution Rate of Human Activities on the Loess Plateau from 2000 to 2015: A Boundary Line from Northeast to Southwest. Remote Sens. 2019, 11, 2429. [Google Scholar] [CrossRef]
- Zhao, G.J.; Gao, P.; Tian, P.; Sun, W.Y.; Hu, J.F.; Mu, X.M. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena 2020, 185, 104284. [Google Scholar] [CrossRef]
- Yu, S.C.; Wang, F.; Qu, M.; Yu, B.H.; Zhao, Z. The Effect of Land Use/Cover Change on Soil Erosion Change by Spatial Regression in Changwu County on the Loess Plateau in China. Forests 2021, 12, 1209. [Google Scholar] [CrossRef]
- Xia, L.; Bi, R.T.; Song, X.Y.; Lv, C.J. Dynamic changes in soil erosion risk and its driving mechanism: A case study in the Loess Plateau of China. Eur. J. Soil Sci. 2021, 72, 1312–1331. [Google Scholar] [CrossRef]
- Zhu, D.Y.; Xiong, K.N.; Xiao, H. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China 1960–2017. Catena 2021, 197, 104977. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method. Acta Geogr. Sin. 2018, 73, 1674–1686. Available online: http://www.geog.com.cn/CN/10.11821/dlxb201809005 (accessed on 8 June 2021).
- Liang, S.Z.X.; Fang, H.Y. Quantitative analysis of driving factors in soil erosion using geographic detectors in Qiantang River catchment, Southeast China. J. Soils Sediments 2021, 21, 134–147. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Basak, A. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena 2019, 172, 408–420. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effects of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef]
- Fotheringham, A.; Charlton, M.; Brunsdon, C. Geographically weighted regression. Technometrics 2006, 48. [Google Scholar]
- Stein, C.; Morris, N.; Nock, N. Structural Equation Modeling. Methods Mol. Biol. 2012, 850, 495–512. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. Available online: http://www.geog.com.cn/EN/10.11821/dlxb201701010 (accessed on 10 December 2021).
- Meng, X.Y.; Gao, X.; Lei, J.Q.; Li, S. Development of a multiscale discretization method for the geographical detector model. Int. J. Geogr. Inf. Sci. 2021, 35, 1650–1675. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Ren, Z.G.; Tian, Z.H.; Wei, H.T.; Liu, Y.; Yu, Y.P. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Yellow River Conservancy Commission of the Ministry of Water Resources. Soil and Water Conservation Bulletin in Yellow River Basin(2020). 2022. Available online: http://www.yrcc.gov.cn/sylm/2022stbcgb/2022stbcgbgb/202201/P020220128314295348360.pdf (accessed on 20 May 2022).
- Wang, Z.L. Analysis of Affecting Factors of Soil Erosion and Its Harms in China. Trans. Chin. Soc. Agric. Eng. 2000, 16, 32–36. [Google Scholar]
- Wang, Y.; Liu, X.R.; Zhou, X.H.; Guo, X.Y. Consideration on Construction of Disaster Prevention System in Urban Underground Space afer Heavy. Chin. J. Undergr. Space Eng. 2022, 18, 28–34. [Google Scholar]
- Deng, L.; Kim, D.G.; Li, M.Y.; Huang, C.B.; Liu, Q.Y.; Cheng, M.; Shangguan, Z.P.; Peng, C.H. Land-use changes driven by ‘Grain for Green’ program reduced carbon loss induced by soil erosion on the Loess Plateau of China. Glob. Planet. Change 2019, 177, 101–115. [Google Scholar] [CrossRef]
- Chen, T.D.; Jiao, J.; Wang, H.L.; Zhao, C.J.; Lin, H. Progress in Research on Soil Erosion in Qinghai-Tibet Plateau. Acta Pedol. Sin. 2020, 57, 547–564. [Google Scholar]
- Shangguan, W.; Dai, Y.J. A China Soil Characteristics Dataset (2010). 2019. Available online: https://data.tpdc.ac.cn/en/data/8333eed3-dd42-4c9f-90a0-6255cb94ce4f/ (accessed on 17 April 2022).
- Shangguan, W.; Dai, Y.J.; Liu, B.Y.; Ye, A.Z.; Yuan, H. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma 2012, 171, 85–91. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Siol Map Based Harmonized World Soil Database (v1.2). 2018. Available online: https://data.tpdc.ac.cn/en/data/844010ba-d359-4020-bf76-2b58806f9205/?q=HWSD (accessed on 17 April 2022).
- Zhang, W.; Xie, Y.; Liu, B. Estimation of rainfall erosivity using rainfall amount and rainfall intensity. Geogr. Res. 2002, 21, 384–390. [Google Scholar]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Tian, P.; Zhu, Z.L.; Yue, Q.M.; He, Y.; Zhang, Z.Y.; Hao, F.H.; Guo, W.Z.; Chen, L.; Liu, M.X. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Lin, J.K.; Guan, Q.Y.; Tian, J.; Wang, Q.Z.; Tan, Z.; Li, Z.J.; Wang, N. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena 2020, 195, 104756. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, B.Y.; Zhang, W.B. Study on standard of erosive rainfall. J. Soil Water Conserv. 2000, 14, 6–11. [Google Scholar]
- Wang, B.; Zheng, F.L.; Guan, Y.H. Improved USLE-K factor prediction: A case study on water erosion areas in China. Int. Soil Water Conserv. Res. 2016, 4, 168–176. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A modelling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 1984, 27, 129–144. [Google Scholar] [CrossRef]
- Zhang, K.; Li, S.; Peng, W.; Yu, B. Erodibility of agricultural soils on the Loess Plateau of China. Soil Tillage Res. 2004, 76, 157–165. [Google Scholar] [CrossRef]
- Zhang, K.L.; Shu, A.P.; Xu, X.L.; Yang, Q.K.; Yu, B. Soil erodibility and its estimation for agricultural soils in China. J. Arid. Environ. 2008, 72, 1002–1011. [Google Scholar] [CrossRef]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope Gradient Effects on Soil Loss for Steep Slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Lufafa, A.; Tenywa, M.M.; Isabirye, M.; Majaliwa, M.J.G.; Woomer, P.L. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agric. Syst. 2003, 76, 883–894. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhao, W.W.; Chen, L.D.; Zhang, Q.J.; Lü, Y.H.; Gulinck, H.; Poesen, J. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degrad. Dev. 2005, 16, 73–85. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, B.; Lu, Y.F.; Zhang, R.; Zhang, D.F.; Zhen, X.Y.; Chen, S.T.; Wu, H.W.; Wei, C.X.; Yang, L.A.; et al. Spatial-temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: Impacts of natural factors and land use change. Geomat. Nat. Hazards Risk 2021, 12, 103–122. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, H. Dynamic Changes of Soil Erosion in the Taohe River Basin Using the RUSLE Model and Google Earth Engine. Water 2020, 12, 1293. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. SL190-2007 Standards of Classification of Soil Erosion; Soil and Water Conservation Division: Beijing, China, 2007.
- Zhou, J.; Fu, B.J.; Gao, G.Y.; Lü, Y.H.; Liu, Y.; Lü, N.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Wu, H.W.; Guo, B.; Xue, H.R.; Zang, W.Q.; Han, B.M.; Yang, F.; Lu, Y.F.; Wei, C.X. What are the dominant influencing factors on the soil erosion evolution process in the Yellow River Basin? Earth Sci. Inform. 2021, 14, 1899–1915. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.P.; Yan, S.J.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Gao, H.D.; Li, Z.B.; Jia, L.L.; Li, P.; Xu, G.C.; Ren, Z.P.; Pang, G.W.; Zhao, B.H. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. J. Geogr. Sci. 2016, 26, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Li, Y.; Li, B.L.; Han, W.Y.; Liu, D.B.; Gan, X.Z. Nitrogen and phosphorus losses by runoff erosion: Field data monitored under natural rainfall in Three Gorges Reservoir Area, China. Catena 2016, 147, 797–808. [Google Scholar] [CrossRef]
- Teng, M.J.; Huang, C.B.; Wang, P.C.; Zeng, L.X.; Zhou, Z.X.; Xiao, W.F.; Huang, Z.L.; Liu, C.F. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China. Sci. Total Environ. 2019, 697, 134164. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Liu, Y.; Shi, Z.H.; López Vicente, M.; Wu, G.L. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena 2020, 195, 104787. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. China River Sediment Gazette. Beijing. Available online: http://xxzx.mwr.gov.cn/xxgk/gbjb/zghlnsgb/ (accessed on 10 May 2022).
- Gao, F.; Li, S.; Tan, Z.Z.; Wu, Z.F.; Zhang, X.M.; Huang, G.P.; Huang, Z.W. Understanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors. Int. J. Geogr. Inf. Sci. 2021, 35, 1905–1925. [Google Scholar] [CrossRef]
- Swarnkar, S.; Malini, A.; Tripathi, S.; Sinha, R. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrol. Earth Syst. Sci. 2018, 22, 2471–2485. [Google Scholar] [CrossRef] [Green Version]
LU/LC | p Value |
---|---|
Farmland [55,56] | 0.2 + 0.03 × s |
Forest [43,45] | 1 |
Grassland [10,43] | |
Waterbody [57,58] | 0 |
Construction land [57,58] | |
Bare rock [10,45] | |
Sandy land [10,45] | 1 |
Bare land [10,45] | |
Gobi Desert [10,45] | |
Marsh [10,45] | |
Other types [10,43] |
Study Site | Study Time | Soil Erosion (t·km−2·a−1) | Results of This Estimates * | Reference Sources |
---|---|---|---|---|
Yanhe Basin | 2010 | 3227 | 2852 | Zhao et al. [19] |
Loess Plateau | 2000–2015 | 2088.56 | 1868.23 | Guo et al. [18] |
2015 | 1373.85 | 1038.79 | ||
Loess Plateau | 2000–2010 | 1520 | 1608.53 | Sun et al. [61] |
2000 | 1424 | 1124 | ||
Taohe Basin | 2000 | 1424 | 1124 | Wang et al. [58] |
2005 | 1195 | 1012 | ||
2010 | 1129 | 808 | ||
The YRB | 1981–2019 | 2255 | 1336 | Wu et al. [62] |
The Beiluo River basin | 2000 | 7408.93 | 5329.87 | Yan et al. [63] |
the upper reaches of the YRB | 1982–2019 | 205 | 895 | Li et al. [10] |
Loess Plateau | 2010 | 3355 | 1986 | Gao et al. [64] |
Changwu county | 1987–2017 | 1371.27 | 2113.47 | Yu et al. [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Chang, J.; Huang, Y. Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin. Water 2022, 14, 2658. https://doi.org/10.3390/w14172658
Yin Z, Chang J, Huang Y. Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin. Water. 2022; 14(17):2658. https://doi.org/10.3390/w14172658
Chicago/Turabian StyleYin, Zuotang, Jun Chang, and Yu Huang. 2022. "Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin" Water 14, no. 17: 2658. https://doi.org/10.3390/w14172658
APA StyleYin, Z., Chang, J., & Huang, Y. (2022). Multiscale Spatiotemporal Characteristics of Soil Erosion and Its Influencing Factors in the Yellow River Basin. Water, 14(17), 2658. https://doi.org/10.3390/w14172658