Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview
Abstract
:1. Introduction
- Water data catalog: data sources and ontologies, further discussed in Section 2.2 and Section 6.1;
- Water data enrichment: data modeling and advanced processing, e.g., AI methods, further discussed in Section 5;
2. Water Infrastructure Management in Smart Cities
- Services, applications and features;
- IoT and sensing technologies involved;
- Real-world case studies.
2.1. Technologies
2.2. Frameworks
- Water Levels of Rivers and Lakes—Hydroweb (LEGOS/GOHS- Laboratoire d’Etudes en Géophysique et Océanographie Spatiales/Géophysique, Océanographie et Hydrologie Spatiales) [46].
- Global Reservoirs and Lakes Monitor—G-REALM (USDA/FAS—U.S. Department of Agriculture/Foreign Agricultural Service, IPAD—International Product Assessment Division) [47].
- Database for Hydrological Time Series of Inland Waters (DGFI TUM—Deutsches Geodätisches Forschungsinstitut der Technischen Universität München) [48].
- Dynamic Surface Water Extent (U.S. Department of the Interior) [49].
- Self-calibrating Palmer Drought Severity Index (CRU UEA—Climatic Research Unit from the University of East Anglia) [50].
- Global Land Precipitation (CRU UEA—Climatic Research Unit from the University of East Anglia) [51].
- AQUASTAT Core Database (FAO—Food and Agriculture Organization) [52].
- Precipitation (ANM—Romanian National Weather Administration) [53].
3. IoT in Water Infrastructure Monitoring
3.1. Technologies
3.2. Frameworks
4. Big Data Methods in Water Infrastructures
4.1. Big Data Solutions
4.2. Big Data and Blockchain Solutions
5. Data Analysis in Water Infrastructures
5.1. Data Preprocessing
- Missing data—the number of recorded values in a period of time is smaller than the expected one;
- Duplicate data—there is more than one value with the same timestamp (duplicates are removed from the dataset);
- Irregular time steps—a data record does not respect the expected time interval between consecutive data records (values will be filled in by interpolation);
- Sensor failure data—faulty sensors will generate erroneous data that will appear as outliers in a dataset.
5.2. Anomaly Detection Techniques
5.2.1. Water Quality
- Detection of water contamination in rivers;
- Detection of water contamination in water distribution systems.
5.2.2. Water Consumption
5.2.3. Cyber Security
5.3. Water Demand Models and Forecasting
- Understanding the factors that influence water demand;
- Providing models and discovering patterns for water consumption;
- Being able to detect and handle changes in water consumption patterns.
5.3.1. Factors That Influence Water Demand
5.3.2. Water Consumption Patterns
5.3.3. Analyzing Water Consumption Changes
5.3.4. Water Demand Forecasting
- Short-term forecasting: estimate water demand over the coming hours, days and weeks to optimize the operation of water systems focusing on customer behavior;
- Intermediate-term forecasting: estimate water use over 1 to 10 years to be able to foresee the variability of water consumption by a fixed or slowly changing customer base while considering changes in weather, economic cycles and customer profiles;
- Long-term forecasting: estimate water use over horizons of 20–30 years to plan and build long-lifespan water supply infrastructures.
5.4. Pipe Failure Prediction in Water Supply Networks
- Failure prediction models, which include pipe break prediction and pipe rate failure assessment methods;
- Risk analysis models that describe structural deterioration due to age, pipe–soil interaction and other factors;
- Models for water quality failure due to pipe deterioration;
- Condition monitoring and assessment models;
- Remaining useful life models;
- Leak detection and prioritization models.
6. Water Infrastructure and Decision Support Systems
6.1. Ontologies
6.2. Decision Support Systems
6.3. Deep Learning Solutions
6.4. Predicting Water Consumption
6.5. Drinking Water and Health Risks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jan, F.; Min-Allah, N.; Düştegör, D. IoT Based Smart Water Quality Monitoring: Recent Techniques, Trends and Challenges for Domestic Applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Saeed, S.; Iqbal, S.Z.; Ahmed, R. IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks. Water 2022, 14, 309. [Google Scholar] [CrossRef]
- Danilenko, A.; Dickson, E.; Jacobsen, M. Climate Change and Urban Water Utilities: Challenges and Opportunities; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Advisory Committee on Water Information Open Water Data Initiative Overview. Available online: https://acwi.gov/spatial/owdi/ (accessed on 25 June 2022).
- Commission, E. INSPIRE. Available online: https://inspire.ec.europa.eu/ (accessed on 25 June 2022).
- Commission, E. INSPIRE CONFERENCE 2021: Towards a Common European Green Deal Data Space for Environment and Sustainability. Available online: https://inspire.ec.europa.eu/conference2021 (accessed on 25 June 2022).
- Pamidimukkala, A.; Kermanshachi, S.; Adepu, N.; Safapour, E. Resilience in Water Infrastructures: A Review of Challenges and Adoption Strategies. Sustainability 2021, 13, 2986. [Google Scholar] [CrossRef]
- Predescu, A.; Mocanu, M. A data driven survey of video games. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Predescu, A.; Arsene, D.; Pahonțu, B.; Mocanu, M.; Chiru, C. A Serious Gaming Approach for Crowdsensing in Urban Water Infrastructure with Blockchain Support. Appl. Sci. 2021, 11, 1449. [Google Scholar] [CrossRef]
- Stübinger, J.; Schneider, L. Understanding Smart City—A Data-Driven Literature Review. Sustainability 2020, 12, 8460. [Google Scholar] [CrossRef]
- Bellini, P.; Nesi, P.; Pantaleo, G. IoT-Enabled Smart Cities: A Review of Concepts, Frameworks and Key Technologies. Appl. Sci. 2022, 12, 1607. [Google Scholar] [CrossRef]
- Oberascher, M.; Rauch, W.; Sitzenfrei, R. Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustain. Cities Soc. 2022, 76, 103442. [Google Scholar] [CrossRef]
- Hardware and Software Techniques for Pipeline Integrity and Leak Detection Monitoring, Vol. All Days, SPE Offshore Europe Conference and Exhibition, SPE-23044-MS. 1991. Available online: https://onepetro.org/SPEOE/proceedings-pdf/91OE/All-91OE/SPE-23044-MS/2002568/spe-23044-ms.pdf (accessed on 12 April 2022).
- Geiger, I.G. Principles of leak detection. Fundam. Leak Detection. KROHNE Oil Gas 2005, 2005, 3–6. [Google Scholar]
- Sharma, S.L.; Qavi, A.; Kumari, K. Oil pipelines/water pipeline crawling robot for leakage detection/cleaning of pipes. Glob. J. Res. Eng. 2014, 14, 30–38. [Google Scholar]
- Choi, C. Robot Design for Leak Detection in Water-Pipe Systems. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Oven, S. Leak Detection in Pipelines by the Use of State and Parameter Estimation. Master’s Thesis, Institutt for Teknisk Kybernetikk, Trondheim, Norway, 2014. [Google Scholar]
- Lupu, C.; Chirita, D.; Iftime, S.; Miclaus, R. Consideration on leak/fault detection system in mass transfer networks. Energy Procedia 2017, 112, 58–66. [Google Scholar] [CrossRef]
- Isermann, R. Process fault detection based on modeling and estimation methods—A survey. Automatica 1984, 20, 387–404. [Google Scholar] [CrossRef]
- Predescu, A.; Mocanu, M.; Lupu, C. Modeling the effects of leaks on measured parameters in a water distribution system. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 29–31 May 2017; pp. 585–590. [Google Scholar]
- Predescu, A.; Mocanu, M.; Lupu, C. Real time implementation of IoT structure for pumping stations in a water distribution system. In Proceedings of the 2017 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19–21 October 2017; pp. 529–534. [Google Scholar]
- Predescu, A.; Negru, C.; Mocanu, M.; Lupu, C.; Candelieri, A. A multiple-layer clustering method for real-time decision support in a water distribution system. In Lecture Notes in Business Information Processing, Proceedings of the International Conference on Business Information Systems, Berlin, Germany, 18–20 July 2018; Springer: Cham, Switzerland, 2018; pp. 485–497. [Google Scholar]
- Predescu, A.; Negru, C.; Mocanu, M.; Lupu, C. Real-time clustering for priority evaluation in a water distribution system. In Proceedings of the 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 24–26 May 2018; pp. 1–6. [Google Scholar]
- Moglia, M.; Burn, S.; Meddings, S. Decision support system for water pipeline renewal prioritisation. J. Inf. Technol. Constr. (ITcon) 2006, 11, 237–256. [Google Scholar]
- Predescu, A.; Mocanu, M.; Lupu, C. A modern approach for leak detection in water distribution systems. In Proceedings of the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018; pp. 486–491. [Google Scholar]
- Candelieri, A. Clustering and support vector regression for water demand forecasting and anomaly detection. Water 2017, 9, 224. [Google Scholar] [CrossRef]
- Candelieri, A.; Soldi, D.; Archetti, F. Short-term forecasting of hourly water consumption by using automatic metering readers data. Procedia Eng. 2015, 119, 844–853. [Google Scholar] [CrossRef]
- Ganti, R.K.; Ye, F.; Lei, H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag. 2011, 49, 32–39. [Google Scholar] [CrossRef]
- Rojko, A. Industry 4.0 concept: Background and overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, A. Digital Success: A Holistic Approach to Digital Transformation for Enterprise and Manufacturing. 2018. Available online: https://www.amazon.com/Digital-Success-Transformation-Enterprise-Manufacturing/dp/1730850235 (accessed on 8 April 2022).
- Keitsch, M. Structuring ethical interpretations of the sustainable development goals—Concepts, implications and progress. Sustainability 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Manion, M. Ethics, engineering, and sustainable development. IEEE Technol. Soc. Mag. 2002, 21, 39–48. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Radu, L.D. Disruptive Technologies in Smart Cities: A Survey on Current Trends and Challenges. Smart Cities 2020, 3, 1022–1038. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-khah, M.; Siano, P.; Loia, V.; Tommasetti, A.; Catalão, J.P.S. A Review of Smart Cities Based on the Internet of Things Concept. Energies 2017, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Voda, A.I.; Radu, L.D. Chapter 12—How can artificial intelligence respond to smart cities challenges. In Smart Cities: Issues and Challenges; Visvizi, A., Lytras, M.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 199–216. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Beck, R.; Avital, M.; Rossi, M.; Thatcher, J. Blockchain Technology in Business and Information Systems Research. Bus. Inf. Syst. Eng. 2017, 59, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Pule, M.; Yahya, A.; Chuma, J. Wireless sensor networks: A survey on monitoring water quality. J. Appl. Res. Technol. 2017, 15, 562–570. [Google Scholar] [CrossRef]
- Esri India. Cover Story: GIS for Smart Cities. Available online: https://www.esri.in/esri-news/publication/vol9-issue1/articles/gis-for-smart-cities (accessed on 8 April 2022).
- Sultana, Q. Design of Water Supply Distribution System: A Case Study. Int. J. Sci. Res. Rev. 2021, 7, 434–453. [Google Scholar]
- ENERGY STAR. Available online: https://www.energystar.gov/ (accessed on 8 April 2022).
- EPA, Environmental Protection Agency. Available online: https://www.epa.gov/watersense/water-score-multifamily-housing (accessed on 8 April 2022).
- Water Levels of Rivers and Lakes (Hydroweb). 2022. Available online: https://www.theia-land.fr/en/product/water-levels-of-rivers-and-lakes-hydroweb/ (accessed on 8 April 2022).
- Global Reservoirs and Lakes Monitor (G-REALM). 2022. Available online: https://ipad.fas.usda.gov/cropexplorer/global_reservoir/gr_regional_chart.aspx (accessed on 8 April 2022).
- Database for Hydrological Time Series of Inland Waters. 2013. Available online: https://dahiti.dgfi.tum.de/en/ (accessed on 8 April 2022).
- Dynamic Surface Water Extent. 2015. Available online: https://eros.usgs.gov/doi-remote-sensing-activities/2015/usgs/dynamic-surface-water-extent (accessed on 8 April 2022).
- Self-Calibrating Palmer Drought Severity Index (scPDSI). 2021. Available online: https://crudata.uea.ac.uk/cru/data/drought/ (accessed on 8 April 2022).
- CRU Hulme Global Land Precipitation Data. 2015. Available online: https://crudata.uea.ac.uk/cru/data/precip/ (accessed on 8 April 2022).
- AQUASTAT Core Database. 2017. Available online: https://www.fao.org/aquastat/en/databases/maindatabase (accessed on 8 April 2022).
- The Romanian Stations Dataset and Their Main Meteorological Observations. 2020. Available online: https://inspire.meteoromania.ro/geonetwork/srv/api/records/b7e35875-272e-416e-bf85-8f3789c48198 (accessed on 8 April 2022).
- Negru, C.; Pop, F.; Chinnici, M. Data Science and Big Data Analytics in Smart Environments; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Pérez-Padillo, J.; García Morillo, J.; Ramirez-Faz, J.; Torres Roldán, M.; Montesinos, P. Design and Implementation of a Pressure Monitoring System Based on IoT for Water Supply Networks. Sensors 2020, 20, 4247. [Google Scholar] [CrossRef]
- Bruno, F.; De Marchis, M.; Milici, B.; Saccone, D.; Traina, F. A Pressure Monitoring System for Water Distribution Networks Based on Arduino Microcontroller. Water 2021, 13, 2321. [Google Scholar] [CrossRef]
- Quintiliani, C.; Vertommen, I.; Laarhoven, K.V.; Vliet, J.V.D.; Thienen, P.V. Optimal Pressure Sensor Locations for Leak Detection in a Dutch Water Distribution Network. Environ. Sci. Proc. 2020, 2, 40. [Google Scholar] [CrossRef]
- EDUCBA. IoT Boards. Available online: https://www.educba.com/iot-boards/ (accessed on 8 April 2022).
- Dhruva, A.; Babu, S.; Chakraborty, A.S. Computing Boards for Internet of Things: A Comparative Survey. Available online: https://www.techrxiv.org/articles/preprint/Computing_Boards_for_Internet_of_Things_A_Comparative_Survey/18517235 (accessed on 8 April 2022).
- Che Soh, Z.H.; Shafie, M.S.; Shafie, M.A.; Noraini Sulaiman, S.; Ibrahim, M.N.; Afzal Che Abdullah, S. IoT Water Consumption Monitoring & Alert System. In Proceedings of the 2018 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 19–20 September 2018; pp. 168–172. [Google Scholar] [CrossRef]
- Liu, A.; Giurco, D.; Mukheibir, P. Advancing household water-use feedback to inform customer behaviour for sustainable urban water. Water Supply 2016, 17, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Mazhelis, O.; Tyrväinen, P. A framework for evaluating Internet-of-Things platforms: Application provider viewpoint. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 147–152. [Google Scholar]
- Perry, M.J. Evaluating and Choosing an IoT Platform; O’Reilly Media: Newton, MA, USA, 2016. [Google Scholar]
- Tech, K. IoT Platform Evaluation—Investigating the Right Analogy. Available online: https://www.kelltontech.com/kellton-tech-white-paper/iot-platform-evaluation-investigating-right-analogy (accessed on 8 April 2022).
- Cominola, A.; Nguyen, K.; Giuliani, M.; Stewart, R.A.; Maier, H.R.; Castelletti, A. Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data. Water Resour. Res. 2019, 55, 9315–9333. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Zhang, H.; Stewart, R.A.; Nguyen, K. Enhancing Residential Water End Use Pattern Recognition Accuracy Using Self-Organizing Maps and K-Means Clustering Techniques: Autoflow v3.1. Water 2018, 10, 1221. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Baz, M.; Gehlot, A.; Rashid, M.; Khurana, M.; Akram, S.V.; Alshamrani, S.S.; AlGhamdi, A.S. Water Quality Monitoring and Management of Building Water Tank Using Industrial Internet of Things. Sustainability 2021, 13, 8452. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In Proceedings of the 2nd International Workshop on Mobile and Pervasive Internet of Things, PERIOT 2018, Part of International Conference on Pervasive Computing and Communications, PerCom2018, Athens, Greece, 19–23 March 2018. [Google Scholar]
- Singh, R.K.; Puluckul, P.P.; Berkvens, R.; Weyn, M. Energy Consumption Analysis of LPWAN Technologies and Lifetime Estimation for IoT Application. Sensors 2020, 20, 4794. [Google Scholar] [CrossRef]
- Pointl, M.; Fuchs-Hanusch, D. Assessing the Potential of LPWAN Communication Technologies for Near Real-Time Leak Detection in Water Distribution Systems. Sensors 2021, 21, 293. [Google Scholar] [CrossRef]
- Gautam, G.; Sharma, G.; Magar, B.T.; Shrestha, B.; Cho, S.; Seo, C. Usage of IoT Framework in Water Supply Management for Smart City in Nepal. Appl. Sci. 2021, 11, 5662. [Google Scholar] [CrossRef]
- Gonçalves, R.; Soares, J.M.; Lima, M.F.R. An IoT-Based Framework for Smart Water Supply Systems Management. Future Internet 2020, 12, 114. [Google Scholar] [CrossRef]
- Karafiloski, E.; Mishev, A. Blockchain solutions for big data challenges: A literature review. In Proceedings of the IEEE EUROCON 2017-17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 763–768. [Google Scholar] [CrossRef]
- Adamala, S. An Overview of Big Data Applications in Water Resources Engineering. Mach. Learn. Res. 2017, 2, 10–18. [Google Scholar] [CrossRef]
- Ponce Romero, J.M.; Hallett, S.H.; Jude, S. Leveraging Big Data Tools and Technologies: Addressing the Challenges of the Water Quality Sector. Sustainability 2017, 9, 2160. [Google Scholar] [CrossRef] [Green Version]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Applying Big Data in Water Treatment Industry: A New Era of Advance. Int. J. Adv. Appl. Sci. 2018, 5, 89–97. [Google Scholar] [CrossRef]
- Es-Samaali, A.O.J.L.H.; Van, N.; Kodama, R.N.T.T.S. A Blockchain-based Access Control for Big Data. J. Comput. Netw. Commun. 2017, 5, 137–147. [Google Scholar]
- Drăgulinescu, A.M.; Constantin, F.; Orza, O.; Bosoc, S.; Streche, R.; Negoita, A.; Osiac, F.; Balaceanu, C.; Suciu, G. Smart Watering System Security Technologies using Blockchain. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Haider, N.; Imran, M.; Alkatheiri, M.S. Industrial Wastewater Management using Blockchain Technology: Architecture, Requirements, and Future Directions. IEEE Internet Things Mag. 2020, 3, 38–43. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Sinnott, R.O. Decentralized Big Data Auditing for Smart City Environments Leveraging Blockchain Technology. IEEE Access 2019, 7, 6288–6296. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E. Big-Crypto: Big Data, Blockchain and Cryptocurrency. Big Data Cogn. Comput. 2018, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Silva, E.S. Big Data: A big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev. 2018, 42, 74–89. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E. Digitalisation and Big Data Mining in Banking. Big Data Cogn. Comput. 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Huang, X.; Ghodsi, M. Big Data and Causality. Ann. Data Sci. 2018, 5, 133–156. [Google Scholar] [CrossRef]
- Hassani, H.; Silva, E. Forecasting with Big Data: A Review. Ann. Data Sci. 2015, 2, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Bandara, E.; Ng, W.K.; De Zoysa, K.; Fernando, N.; Tharaka, S.; Maurakirinathan, P.; Jayasuriya, N. Mystiko—Blockchain Meets Big Data. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3024–3032. [Google Scholar] [CrossRef]
- Sahoo, M.; Baruah, P.K. HBasechainDB—A Scalable Blockchain Framework on Hadoop Ecosystem. In Lecture Notes in Computer Science, Proceedings of the Asian Conference on Supercomputing Frontiers, Singapore, 26–29 March 2018; Springer: Cham, Switzerland, 2018; pp. 18–29. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.B.; Kanellopoulos, D.; Pintelas, P.E. Data preprocessing for supervised leaning. Int. J. Comput. Sci. 2006, 1, 111–117. [Google Scholar]
- Wu, Z.Y.; He, Y.; Li, Q. Comparing deep learning with statistical control methods for anomaly detection. In Proceedings of the WDSA/CCWI Joint Conference Proceedings, Kingston, ON, Canada, 23–25 July 2018; Volume 1. [Google Scholar]
- Kofinas, D.T.; Spyropoulou, A.; Laspidou, C.S. A methodology for synthetic household water consumption data generation. Environ. Model. Softw. 2018, 100, 48–66. [Google Scholar] [CrossRef]
- Patabendige, S.; Cardell-Oliver, R.; Wang, R.; Liu, W. Detection and interpretation of anomalous water use for non-residential customers. Environ. Model. Softw. 2018, 100, 291–301. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.K.; Olier, I.; Hashim, K.S.; Al-Bdairi, N.S.S.; Kot, P. A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water 2020, 12, 1628. [Google Scholar] [CrossRef]
- Abu-Bakar, H.; Williams, L.; Hallett, S.H. Quantifying the impact of the COVID-19 lockdown on household water consumption patterns in England. NPJ Clean Water 2021, 4, 13. [Google Scholar] [CrossRef]
- Wang, L.; El-Gohary, N.M. Understanding the water-energy nexus in urban areas: A cluster analysis of urban water and energy consumption. In Proceedings of the Annual Conference—Canadian Society for Civil Engineering, Laval, QC, Canada, 12–15 June 2019; pp. 1–10. [Google Scholar]
- Leigh, C.; Alsibai, O.; Hyndman, R.J.; Kandanaarachchi, S.; King, O.C.; McGree, J.M.; Neelamraju, C.; Strauss, J.; Talagala, P.D.; Turner, R.D.; et al. A framework for automated anomaly detection in high frequency water-quality data from in situ sensors. Sci. Total Environ. 2019, 664, 885–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raciti, M.; Cucurull, J.; Nadjm-Tehrani, S. Anomaly detection in water management systems. In Critical Infrastructure Protection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 98–119. [Google Scholar]
- Burbeck, K.; Nadjm-Tehrani, S. Adaptive real-time anomaly detection with incremental clustering. Inf. Secur. Tech. Rep. 2007, 12, 56–67. [Google Scholar] [CrossRef]
- Dogo, E.M.; Nwulu, N.I.; Twala, B.; Aigbavboa, C. A survey of machine learning methods applied to anomaly detection on drinking-water quality data. Urban Water J. 2019, 16, 235–248. [Google Scholar] [CrossRef]
- Dogo, E.M.; Nwulu, N.I.; Twala, B.; Aigbavboa, C. Accessing imbalance learning using dynamic selection approach in water quality anomaly detection. Symmetry 2021, 13, 818. [Google Scholar] [CrossRef]
- Shalyga, D.; Filonov, P.; Lavrentyev, A. Anomaly detection for water treatment system based on neural network with automatic architecture optimization. arXiv 2018, arXiv:1807.07282. [Google Scholar]
- Muharemi, F.; Logofătu, D.; Leon, F. Machine learning approaches for anomaly detection of water quality on a real-world data set. J. Inf. Telecommun. 2019, 3, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Vercruyssen, V.; Meert, W.; Verbruggen, G.; Maes, K.; Baumer, R.; Davis, J. Semi-supervised anomaly detection with an application to water analytics. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; Volume 2018, pp. 527–536. [Google Scholar]
- Fuentes, H.; Mauricio, D. Smart water consumption measurement system for houses using IoT and cloud computing. Environ. Monit. Assess. 2020, 192, 602. [Google Scholar] [CrossRef] [PubMed]
- Ramotsoela, D.; Abu-Mahfouz, A.; Hancke, G. A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study. Sensors 2018, 18, 2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MR, G.R.; Somu, N.; Mathur, A.P. A multilayer perceptron model for anomaly detection in water treatment plants. Int. J. Crit. Infrastruct. Prot. 2020, 31, 100393. [Google Scholar]
- Abu-Bakar, H.; Williams, L.; Hallett, S.H. A review of household water demand management and consumption measurement. J. Clean. Prod. 2021, 292, 125872. [Google Scholar] [CrossRef]
- De Souza Groppo, G.; Costa, M.A.; Libânio, M. Predicting water demand: A review of the methods employed and future possibilities. Water Supply 2019, 19, 2179–2198. [Google Scholar] [CrossRef]
- Rinaudo, J.D. Long-term water demand forecasting. Underst. Manag. Urban Water Transit. 2015, 15, 239–268. [Google Scholar]
- Kossieris, P.; Makropoulos, C. Exploring the statistical and distributional properties of residential water demand at fine time scales. Water 2018, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Alvi, M.S.Q.; Mahmood, I.; Javed, F.; Malik, A.W.; Sarjoughian, H. Dynamic behavioural modeling, simulation and analysis of household water consumption in an urban area: A hybrid approach. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 2411–2422. [Google Scholar]
- Dzimińska, P.; Drzewiecki, S.; Ruman, M.; Kosek, K.; Mikołajewski, K.; Licznar, P. The use of cluster analysis to evaluate the impact of COVID-19 pandemic on daily water demand patterns. Sustainability 2021, 13, 5772. [Google Scholar] [CrossRef]
- Abu-Bakar, H.; Williams, L.; Hallett, S.H. An empirical water consumer segmentation and the characterisation of consumption patterns underpinning demand peaks. Resour. Conserv. Recycl. 2021, 174, 105792. [Google Scholar] [CrossRef]
- Rahim, M.S.; Nguyen, K.A.; Stewart, R.A.; Ahmed, T.; Giurco, D.; Blumenstein, M. A clustering solution for analyzing residential water consumption patterns. Knowl.-Based Syst. 2021, 233, 107522. [Google Scholar] [CrossRef]
- Lüdtke, D.U.; Luetkemeier, R.; Schneemann, M.; Liehr, S. Increase in daily household water demand during the first wave of the covid-19 pandemic in germany. Water 2021, 13, 260. [Google Scholar] [CrossRef]
- Kalbusch, A.; Henning, E.; Brikalski, M.P.; de Luca, F.V.; Konrath, A.C. Impact of coronavirus (COVID-19) spread-prevention actions on urban water consumption. Resour. Conserv. Recycl. 2020, 163, 105098. [Google Scholar] [CrossRef] [PubMed]
- Padulano, R.; Giudice, G.D.; Giugni, M.; Fontana, N.; Uberti, G.S.D. Identification of annual water demand patterns in the City of Naples. Proceedings 2018, 2, 587. [Google Scholar]
- Benítez, R.; Ortiz-Caraballo, C.; Preciado, J.C.; Conejero, J.M.; Sánchez Figueroa, F.; Rubio-Largo, A. A short-term data based water consumption prediction approach. Energies 2019, 12, 2359. [Google Scholar] [CrossRef] [Green Version]
- Boudhaouia, A.; Wira, P. A Real-Time Data Analysis Platform for Short-Term Water Consumption Forecasting with Machine Learning. Forecasting 2021, 3, 682–694. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Z.; Xue, H. ARIMA-M: A New Model for Daily Water Consumption Prediction Based on the Autoregressive Integrated Moving Average Model and the Markov Chain Error Correction. Water 2020, 12, 760. [Google Scholar] [CrossRef] [Green Version]
- Koo, K.M.; Han, K.H.; Jun, K.S.; Lee, G.; Kim, J.S.; Yum, K.T. Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea. Sustainability 2021, 13, 6056. [Google Scholar] [CrossRef]
- Dawood, T.; Elwakil, E.; Novoa, H.M.; Delgado, J.F.G. Artificial intelligence for the modeling of water pipes deterioration mechanisms. Autom. Constr. 2020, 120, 103398. [Google Scholar] [CrossRef]
- Giraldo-González, M.M.; Rodríguez, J.P. Comparison of statistical and machine learning models for pipe failure modeling in water distribution networks. Water 2020, 12, 1153. [Google Scholar] [CrossRef] [Green Version]
- Robles-Velasco, A.; Cortés, P.; Muñuzuri, J.; Onieva, L. Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliab. Eng. Syst. Saf. 2020, 196, 106754. [Google Scholar] [CrossRef]
- Amiri-Ardakani, Y.; Najafzadeh, M. Pipe break rate assessment while considering physical and operational factors: A methodology based on global positioning system and data-driven techniques. Water Resour. Manag. 2021, 35, 3703–3720. [Google Scholar] [CrossRef]
- Joshi, B. Novel Water Sustainability Technologies: Key Projects and Opportunities, Financing, and Venture Capital, Transactions and Trends. BCC Research 2019. Available online: https://www.researchandmarkets.com/reports/4846706/novel-water-sustainability-technologies-key (accessed on 8 April 2022).
- Curry, E.; Degeler, V.; Clifford, E.; Coakley, D.; Costa, A.; Andel, S.; van de Giesen, N.; Kouroupetroglou, C.; Messervey, T.; Mink, J.; et al. Linked Water Data for Water Information Management. In Proceedings of the 11th International Conference on Hydroinformatics HIC 2014, New York, NY, USA, 17–21 October 2014. [Google Scholar]
- Blodgett, D.; Read, E.; Lucido, J.; Slawecki, T.; Young, D. An Analysis of Water Data Systems to Inform the Open Water Data Initiative. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, D.; De Antonellis, V.; Garda, M.; Melchiori, M. Exploiting Smart City Ontology and Citizens’ Profiles for Urban Data Exploration. In Proceedings of the Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, 22–26 October 2018; pp. 372–389. [Google Scholar] [CrossRef]
- Rani, M.; Alekh, S.; Bhardwaj, A.; Gupta, A.; Vyas, O. Ontology-based Classification and Analysis of non- emergency Smart-city Events. In Proceedings of the 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), New Delhi, India, 11–13 March 2016; pp. 509–514. [Google Scholar] [CrossRef] [Green Version]
- Goel, D.; Chaudhury, S.; Ghosh, H. Smart Water Management: An Ontology-Driven Context-Aware IoT Application. In Lecture Notes in Computer Science, Proceedings of the International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, 5–8 December 2017; Springer: Cham, Switzerland, 2017; pp. 639–646. [Google Scholar] [CrossRef]
- Ahmedi, L.; Jajaga, E.; Ahmedi, F. An Ontology Framework for Water Quality Management. In Proceedings of the 6th International Conference on Semantic Sensor Networks, Aachen, Germany, October 2013; Volume 1063, pp. 35–50. [Google Scholar]
- Katsiri, E.; Makropoulos, C. An ontology framework for decentralized water management and analytics using wireless sensor networks. Desalin. Water Treat. 2016, 57, 26355–26368. [Google Scholar] [CrossRef]
- Sánchez de Rivera, D.; Robles, T.; Lopez Morales, J.A.; Miguel, A.; Navarro, M.; Sofía, M.; Gómez, I.; Martinez, J.; Skarmeta, A. Adaptation of ontology sets for water related scenarios management with IoT systems for a more productive and sustainable agriculture systems. In Proceedings of the SEMANTiCS 2017 Workshops Proceedings: SIS-IoT, Amsterdam, The Netherlands, 11–14 September 2017. [Google Scholar]
- Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, 11–15 November 2007; Volume 6, pp. 722–735. [Google Scholar] [CrossRef] [Green Version]
- Tanon, T.; Vrandečić, D.; Schaffert, S.; Steiner, T.; Pintscher, L. From Freebase to Wikidata: The Great Migration. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Rebele, T.; Suchanek, F.; Hoffart, J.; Biega, J.; Kuzey, E.; Weikum, G. YAGO: A Multilingual Knowledge Base from Wikipedia, Wordnet, and Geonames. In Proceedings of the 15th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Kobe, Japan, 17–21 October 2016; pp. 177–185. [Google Scholar] [CrossRef]
- Faerber, M.; Bartscherer, F.; Menne, C.; Rettinger, A. Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 2017, 9, 1–53. [Google Scholar] [CrossRef]
- Portal, E.D. Re-Using Open Data. 2017. Available online: https://data.europa.eu/sites/default/files/re-using_open_data.pdf (accessed on 8 May 2022).
- Tennison, J. The RDF Data Cube Vocabulary. 2014. Available online: https://www.w3.org/TR/vocab-data-cube/ (accessed on 8 May 2022).
- Russo, T.; Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, Y.; Liang, W.; Ma, J.; Jin, Q. Variational LSTM Enhanced Anomaly Detection for Industrial Big Data. IEEE Trans. Ind. Inform. 2020, 17, 3469–3477. [Google Scholar] [CrossRef]
- Fullerton, T.; Ceballos, A.; Walke, A. Short-Term Forecasting Analysis for Municipal Water Demand. J.-Am. Water Work. Assoc. 2016, 108, E27–E38. [Google Scholar] [CrossRef]
- Pacchin, E.; Gagliardi, F.; Alvisi, S.; Franchini, M. A Comparison of Short-Term Water Demand Forecasting Models. Water Resour. Manag. 2019, 33, 1481–1497. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Wang, K.; Wang, H.; Yang, L.; Jin, Q. Deep Learning Enhanced Human Activity Recognition for Internet of Healthcare Things. IEEE Internet Things J. 2020, 7, 6429–6438. [Google Scholar] [CrossRef]
- Guo, Z.; Shen, Y.; Bashir, A.; Imran, M.; Kumar, N.; Zhang, D.; Yu, K. Robust Spammer Detection Using Collaborative Neural Network in Internet of Thing Applications. IEEE Internet Things J. 2020, 8, 9549–9558. [Google Scholar] [CrossRef]
- Yueming, Z.; Chen, Y.P.; Guo, J.S.; Shen, Y.; Yan, P.; Yang, J. Recycling of orange waste for single cell protein production and the synergistic and antagonistic effects on production quality. J. Clean. Prod. 2018, 213, 384–392. [Google Scholar] [CrossRef]
- Yin, Z.; Jia, B.; Wu, S.; Dai, J.; Tang, D. Comprehensive Forecast of Urban Water-Energy Demand Based on a Neural Network Model. Water 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Alamanos, A.; Sfyris, S.; Fafoutis, C.; Mylopoulos, N. Urban water demand assessment for sustainable water resources management, under climate change and socioeconomic changes. Water Supply 2019, 20, 679–687. [Google Scholar] [CrossRef]
- Oyebode, O. Evolutionary modelling of municipal water demand with multiple feature selection techniques. Aqua 2019, 68, 264–281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, Y.; Dai, L.; Bashir, A.; Nallanathan, A.; Shim, B. Performance analysis of FD-NOMA-based decentralized V2X systems. IEEE Trans. Commun. 2019, 67, 5024–5036. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, I.; Lee, S.U.J.; Abbas, A.; Bashir, A. Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids. IEEE Access 2017, 5, 20934–20945. [Google Scholar] [CrossRef]
- Bashir, A.; Lim, S.J.; Chauhdary, S.; Park, M.S. Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks. Sensors 2011, 11, 7004–7021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parnell, G.; Bresnick, T. Handbook of Decision Analysis; Wiley: Hoboken, NJ, USA, 2013; pp. 1–21. [Google Scholar] [CrossRef]
- Bashir, A.; Arul, R.; Basheer, S.; Raja, G.; Jayaraman, R.; Qureshi, N.M.F. An optimal multitier resource allocation of cloud RAN in 5G using machine learning. Trans. Emerg. Telecommun. Technol. 2019, 30, e3627. [Google Scholar] [CrossRef]
- Su, Y.; Gao, W.; Guan, D.; Su, W. Dynamic assessment and forecast of urban water ecological footprint based on exponential smoothing analysis. J. Clean. Prod. 2018, 195, 354–364. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Q.; Yuan, X.; Luo, X.; Liu, S. A SAFSA- and Metabolism-Based Nonlinear Grey Bernoulli Model for Annual Water Consumption Prediction. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 755–765. [Google Scholar] [CrossRef]
- Chen, G.; Long, T.; Xiong, J.; Bai, Y. Multiple Random Forests Modelling for Urban Water Consumption Forecasting. Water Resour. Manag. 2017, 31, 4715–4729. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Q. Data-Driven Solution for Optimal Pumping Units Scheduling of Smart Water Conservancy. IEEE Internet Things J. 2019, 7, 1919–1926. [Google Scholar] [CrossRef]
- Leopold, G. Nvidia’s Huang Sees AI ‘Cambrian Explosion’. 2017. Available online: https://www.datanami.com/2017/05/24/nvidias-huang-sees-ai-cambrian-explosion/ (accessed on 8 May 2022).
- Baldassi, C.; Borgs, C.; Chayes, J.; Ingrosso, A.; Lucibello, C.; Saglietti, L.; Zecchina, R. Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes. Proc. Natl. Acad. Sci. USA 2016, 113, E7655–E7662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 843–852. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2014, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Blöschl, G. The Growth of Hydrological Understanding: Technologies, Ideas and Societal Needs Shape the Field. Water Resour. Res. 2017, 53, 8137–8146. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and Managing the Food-Energy-Water Nexus—Opportunities for Water Resources Research. Adv. Water Resour. 2017, 111, 259–273. [Google Scholar] [CrossRef]
- Al-Zahrani, M.; Abo-Monasar, A. Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models. Water Resour. Manag. 2015, 29, 3651–3662. [Google Scholar] [CrossRef]
- Surendra, H.; Deka, P. Fuzzy and improved fuzzy-wavelet approach in modeling municipal residential water consumption estimation using climatic variables. Soft Comput. 2020, 24, 11213–11222. [Google Scholar] [CrossRef]
- Viñas, V.; Malm, A.; Pettersson, T. Overview of microbial risks in water distribution networks and their health consequences: Quantification, modelling, trends, and future implications. Can. J. Civ. Eng. 2018, 46, 149–159. [Google Scholar] [CrossRef]
- Hu, G.; Mian, H.; Abedin, Z.; Li, J.; Hewage, K.; Sadiq, R. Integrated probabilistic-fuzzy synthetic evaluation of drinking water quality in rural and remote communities. J. Environ. Manag. 2022, 301, 113937. [Google Scholar] [CrossRef] [PubMed]
- Sköld, N.P.; Bergion, V.; Lindhe, A.; Keucken, A.; Rosén, L. Risk-Based Evaluation of Improvements in Drinking WaterTreatment Using Cost-Benefit Analysis. Water 2022, 14, 782. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. https://doi.org/10.3390/w14142174
Hangan A, Chiru C-G, Arsene D, Czako Z, Lisman DF, Mocanu M, Pahontu B, Predescu A, Sebestyen G. Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water. 2022; 14(14):2174. https://doi.org/10.3390/w14142174
Chicago/Turabian StyleHangan, Anca, Costin-Gabriel Chiru, Diana Arsene, Zoltan Czako, Dragos Florin Lisman, Mariana Mocanu, Bogdan Pahontu, Alexandru Predescu, and Gheorghe Sebestyen. 2022. "Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview" Water 14, no. 14: 2174. https://doi.org/10.3390/w14142174
APA StyleHangan, A., Chiru, C. -G., Arsene, D., Czako, Z., Lisman, D. F., Mocanu, M., Pahontu, B., Predescu, A., & Sebestyen, G. (2022). Advanced Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water, 14(14), 2174. https://doi.org/10.3390/w14142174