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Abstract: Water-energy nexus has been a popular topic of rese arch in recent years. The relationships
between the demand for water resources and energy are intense and closely connected in urban areas.
The primary, secondary, and tertiary industry gross domestic product (GDP), the total population,
the urban population, annual precipitation, agricultural and industrial water consumption, tap water
supply, the total discharge of industrial wastewater, the daily sewage treatment capacity, total and
domestic electricity consumption, and the consumption of coal in industrial enterprises above the
designed size were chosen as input indicators. A feedforward artificial neural network model (ANN)
based on a back-propagation algorithm with two hidden layers was constructed to combine urban
water resources with energy demand. This model used historical data from 1991 to 2016 from Wuxi
City, eastern China. Furthermore, a multiple linear regression model (MLR) was introduced for
comparison with the ANN. The results show the following: (a) The mean relative error values of
the forecast and historical urban water-energy demands are 1.58 % and 2.71%, respectively; (b) The
predicted water-energy demand value for 2020 is 4.843 billion cubic meters and 47.561 million tons
of standard coal equivalent; (c) The predicted water-energy demand value in the year 2030 is 5.887
billion cubic meters and 60.355 million tons of standard coal equivalent; (d) Compared with the MLR,
the ANN performed better in fitting training data, which achieved a more satisfactory accuracy and
may provide a reference for urban water-energy supply planning decisions.

Keywords: water-energy nexus; water demand forecast; energy demand forecast; artificial neural
network model; multiple linear regression

1. Introduction

Water and energy are basic natural and strategic resources, and they form the material basis for
the survival of human society and provide an important guarantee for the sustainable development of
the national economy. At present, the water-energy nexus is the focus of research by domestic and
foreign scholars [1–6]. With intensified global climate change, population growth, and rapid economic
and social development, the comprehensive forecast of water and energy demand in urban areas is of
great significance for policy planning. In the study of water demand forecasting, Cengiz Koç forecasted
the water demand of the Bodrum Peninsula for the next 3 to 40 years of the tourism season based on
the local population statistics [7]. The study only analyzed the impacts of population size and structure
of water demand, and it did not take into account the constraints of other economic factors on water
use. Rathnayaka established Australian urban households as water terminals, divided residential
end-use water into different types, established the urban residential end-use water demand model,
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and verified it on a time scale by the quarter and year [8]. The model only predicted the urban domestic
water use without considering industrial, agricultural, and other departments of the water forecast.

In the energy demand forecast study, two fundamental approaches called the top-down and the
bottom-up approach have been identified to model the residential sector’s energy consumption [9].
Ghiassi studied the bottom-up approach for urban energy computing supported by multivariate cluster
analysis and introduced a two-step approach involving a reductive phase and a re-diversification
process [10]. These methods were applied to forecast the energy demand without studying the
relationship between water and energy instead of taking the relevant constraints of water resources
into account.

Over the last decade, artificial intelligence (AI) techniques have been increasingly used in different
fields for fitting and forecasting. In many quantitative structure-property studies, the multiple linear
regression (MLR) method is commonly used; however, this method also presents certain limitations
when working with a complex system. The flexibility of an artificial neural network (ANN) model
can be used to resolve relatively complex non-linear issues. Tiantian Yang et al. used Random Forest,
ANN, and Support Vector Regression methods to predict one-month-ahead reservoir inflows for
two headwater reservoirs in the United States of America (USA) and China, respectively [11]. Yusuf
Kurtgoz et al. estimated the thermal efficiency, brake specific fuel consumption, and volumetric
efficiency values of a biogas engine operated via spark ignition at different methane ratios and engine
load values with the help of the ANN model, and their study showed that ANN models generate
good results for spark ignition biogas engines that present strong correlations and low error rates [12].
An improved solar forecasting algorithm based on the ANN model with fuzzy logic pre-processing
was proposed, and more accurate solar irradiance forecasting results were found for Singapore [13].

Based on the nexus between water and energy, this paper overcomes the limitations of the
traditional forecasting methods and improves the feedforward ANN to establish a novel model for
the comprehensive forecast of urban water resources and energy demand. Also, MLR is used as a
basic regression method to draw comparisons. Taking Wuxi City as an example, this paper validates
the accuracy and effectiveness of the model’s prediction, reveals the quantitative connection between
the two objects, and provides more intuitive and scientific data support for the nexus between water
and energy.

2. Data

A water resources and energy demand integrated forecasting system is a non-linear complex
system. Various factors affect the water and energy demands in urban areas and can be divided
into socio-economic and natural factors [14]. Selecting the comprehensive evaluation indicators of
urban water resources and energy demand should follow the principle of testability, reliability, and
adequacy [15]. According to the above principles, the study uses sequential statistics from 1991 to
2016 as the basic data to access the water and energy supply and demand for Wuxi City, and the
following 14 indicators based on different aspects have been selected from the Wuxi Statistical Yearbook
(1991–2016) and the Water Resources Bulletin.

(1) Economic and social development factors

Economic output is a major factor that affects the demand for water and energy. With continued
urbanization and the implementation of the universal two-child policy, China’s urban population has
grown rapidly, which has led to a corresponding increase in the demand for water and energy.
This paper chose the total population (X1), urban population (X2), and the primary, secondary,
and tertiary industry gross domestic product (GDP) (X3) (X4) (X5) as factors to measure the
economic development.

(2) Natural factors
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According to water resources assessment requirements, research on the inter-annual variation
of regional precipitation can provide the evidence for water resources supply and demand. In this
paper, annual precipitation (X6) was used as the natural factor that influences the water demand in
urban areas.

(3) Use and treatment of urban water resources

Urban residents’ activities can consume and pollute many water resources. It is related to the
reuse of water resources via the sewage treatment and recycling. Water consumption is usually
classified into production, living, and ecological water. Given that the latter takes up quite a small
proportion of water, its consumption can be disregarded. Here, agricultural (X7) and industrial water
consumption (X8) are selected as water for production, while tap water supply (X9) proxied for living
water consumption. Additionally, the total discharge of industrial wastewater (X10) and the daily
sewage treatment capacity (X11) were used.

(4) Use of major energy sources

In China, the whole of society’s energy consumption mainly relies on coal, oil, and other primary
energy, which results in low efficiency and utilization and high energy consumption. Meanwhile,
the total electricity consumption accounts for most of the energy consumption. The research selected
total and domestic electricity consumption (X12) (X13), respectively, and the consumption of coal in
industrial enterprises above a designed size (X14).

The above fourteen indices based on different aspects that influence water and energy demand
were used as the indices to establish the network input.

3. Methodology

3.1. Artificial Neural Network Model

The Artificial Neural Network (ANN) is a robust, non-linear regression approach that has been
extensively applied for many classification and regression problems in various fields. The learning
process of the feedforward ANN with the back propagation (BP) algorithm is divided into two stages.
The first stage inputs the known learning samples and calculates the output of the neurons from the
first layer of the network to the following layers using the network structure and the previous iteration
of the weight and threshold. The second stage modifies the weights and thresholds by calculating the
effect of each weight and threshold on the total error from the last layer to the previous layers. The
two processes are repeated alternately until the convergence is achieved.

The back propagation neural network algorithm with double-hidden layers (shown in Figure 1) is
employed as follows:

• Step 1: Network initialization. Confirm the number of network input layer nodes n, the number
of nodes in the first hidden layer l, the number of nodes in the second hidden layer p, and the
number of nodes in the output layer m according to the input and output sequence (X, Y) of
the system. Initialize the connection weights between the input layer, the hidden layer, and the
output layer which are marked as ωij1 , ωj1 j2 , and ωj2k, respectively. Initialize the thresholds of the
hidden layers bj1 , bj2 , the threshold of the output layer bk, and preset the learning rate and the
neuron excitation function.

• Step 2: Calculate the hidden layer’s output. The signal that the first hidden layer transmits to the
second hidden layer is as follows:

Yj1 = f1(
n

∑
i=1

ωij1 Xi + bj1), j1 = 1, 2, · · · , l (1)
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The signal that the second hidden layer transmits to the output layer is as follows:

Yj2 = f2(
l

∑
j1=1

ωj1 j2Yj1 + bj2), j2 = 1, 2, · · · , p (2)

The selection functions of f1 and f2 are written as follows:

f (x) =
1

1 + e−x (3)

• Step 3: Calculate the output layer’s output. The output of the BP Neural Network with double
hidden layers is written as follows:

Yk =
p

∑
j2=1

ωj2kYj2 + bk , k = 1, 2, · · · , m (4)

• Step 4: Calculate the errors. The network prediction error ek is calculated based on the network
predicted output Y and the expected output T. The nodal error of the output layer is:

ek = Tk − Yk, k = 1, 2, · · · , m (5)

where n is the number of output layer nodes and m is the number of input layer nodes.
• Step 5: Update the weights. The connection weights ωij1 , ωj1 j2 , and ωj2k are updated based on

the network prediction error ek. The correction of the weights is conducted along the opposite
direction of the gradient of the error performance function [16].

ωij1 = ωij1 + ηYj1(1 − Yj1)Xi

m

∑
k=1

ωj1 j2 ek, i = 1, 2, · · · , n; j1 = 1, 2, · · · , l (6)

ωj1 j2 = ωj1 j2 + ηYj2(1 − Yj2)ωij1 Xi

m

∑
k=1

ωj2kek, j1 = 1, 2, · · · , l; j2 = 1, 2, · · · , p (7)

ωj2k = ωj2k + ηYj2 ek, j2 = 1, 2, · · · , p; k = 1, 2, · · · , m (8)

• Step 6: Update the thresholds. Update thresholds of the network node bj1 , bj2 and bk according to
the network prediction error ek.

bj1 = bj1 + ηYj1(1 − Yj1)
m

∑
k=1

ωj1 j2 ek, j1 = 1, 2, · · · , l; j2 = 1, 2, · · · , p (9)

bj2 = bj2 + ηYj2(1 − Yj2)
m

∑
k=1

ωj2kek, j2 = 1, 2, · · · , p; k = 1, 2, · · · , m (10)

bk = bk + ek (11)

• Step 7: Determine whether the algorithm iteration ends until the global error

E =
1
2

n

∑
i=1

m

∑
j=1

(Tij − Yij)
2 (12)

meets the conditions in which E ≤ E0, i = 1, 2, · · · , n and j = 1, 2, · · · , m, where E0 is the preset
error accuracy, n is the number of input nodes, and m is the number of output nodes, or reaches
the maximum number of learning times. Then, the iteration ends. Otherwise, return to Step 2.
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Figure 1. Back propagation neural network topology structural diagram.

3.2. Model Establishment and Implementation

In this paper, the BP network functions of the MATLAB R2014b Software [17] are used to realize
the establishment of the network model with double hidden layers. The BP network functions are newff
(), train (), and sim (). newff () is used to design a BP network, train () is applied to train a feedforward
ANN, and sim () is used to predict the functional output of a trained network. The network design is
written as follows:

net = newff (P, T, [S1, S2], {TF1, TF2}, BTF, BLF, PF) (13)

where P and T are the input and output matrices of the training set, respectively. S1 and S2 are the
number of the first and second hidden layer nodes, respectively. TF1 and TF2 are the transfer functions
of the two layers’ nodes, BTF is the training function of the network, BLF represents the learning
function, and PF represents the performance analysis function. net is the value returned back to the
completed BP network model. train () is used to train the network model, such as the following

net = train(net, P, T) (14)

When the network model training is complete, use the function sim () for data simulation, such as
the following

Y = sim(net, X0) (15)

where X0 is the input matrix of the test set and Y is the simulation result of the neural network. Select
the mean square error of the network predicted and the expected value as a measure

mse =
1

mn

n

∑
i=1

m

∑
j=1

(Tij − Yij)
2 (16)

where m is the number of output layer nodes; n is the number of input layer nodes. Yij is the actual
output value of the j-th output of the i-th input sample; and Tij is the expected output value of the j-th
output of the i-th input sample.

Furthermore, the multiple linear regression model (MLR) is used as a basic method to draw
comparisons to the proposed ANN. We set the fourteen indices as the independent variables while
the water resources demand and energy demand were defined as the dependent variables Y1 and
Y2, respectively.
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3.3. Multiple Linear Regression Model

Most statistical calculations are performed using linear regression models, which have been
frequently applied in different fields [18–20]. Almost every discipline utilizes regression analyses as a
basis for comparing improved models [21–23].

Usually, the expression formula of MLR is set as

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi, i = 1, 2, · · · , n (17)

where Y and X denote the dependent and independent variables with the number p, β stands for the
regression coefficient, and εi is the random error.

The bias measure of the MLR is the correlation coefficient (R2) for a calibration set with n samples,
which is calculated as follows:

R2 = 1 − RSS
TSS

= 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)2

, i = 1, 2, · · · , n (18)

where yi and yi denote the reference and mean value for the i-th sample, respectively, and ŷi denotes
the corresponding estimated value derived from the MLR model [24]. The R2 value represents the
contribution of the explanatory variable to a change in the predictor variable ranging from 0 to 1.
When the value closes to 1, it means the corresponding MLR model has achieved a high level of
reliability [25].

4. Study Area and Experiment Design

4.1. Overview of Wuxi City, China

Wuxi is located in the south of Jiangsu Province, in the center of China’s economically developed
Yangtze River Delta, and it is south of China’s third largest freshwater body, Taihu Lake. It is an
important economic center, city and regional transportation hub, and represents a famous tourist
destination in China. The city has a total area of 4627 km2, of which the water accounts for 1290 km2,
or 27.9% of the total area. With the energy resources being relatively poor, the contradiction between
energy supply and demand is increasingly acute. Coal, oil, and natural gas and other forms of primary
energy are mainly supplied via nonlocal transfers, while only solar energy on behalf of renewable
energy has large-scale use conditions.

4.2. Urban Water-Energy Demand Training and Forecast

We chose the data of water resources and energy in Wuxi from 1991 to 2016 as samples (See
Appendix A). Typically, in the feedforward ANN, the data have to be divided into 2–3 chunks, with a
segment of data reserved outside of the training phase and validation phase of the model. Then,
we test the performance of the trained model on the reserved dataset as an independent test set to
verify the results (overfitting, accuracy, etc.).

The fourteen impact factors from Section 2 are used here as the input indices of the network.
We chose their values from 1991 to 2010 and the total water and energy consumption in the
corresponding years as the training sets, while we selected the same fourteen variables from 2011 to
2016 as the test sets, aiming to verify the validity of the model. The sample data were drawn from the
Wuxi Statistical Yearbook.

The training sets are divided into two subsets. One is used as a training subset to fit the parameters
of the network (i.e., the gradient, weights, and bias values), which accounts for 80% of the total dataset.
The other subset is known as the validation subset and is used to check for network errors during
training. The latter subset accounts for 20% of the total data. The errors will be reduced in the first



Water 2018, 10, 385 7 of 16

training stage. However, as the network begins to overfit, the errors will increase and the training
needs to be stopped immediately. As a result, the network structure and parameters of the network
can be obtained when the minimum validation error is achieved.

The first hidden layer includes ten process neuron nodes that are used to complete the spatial
weighted aggregation and excitation output of the input signal. The second hidden layer is also made
up of ten process neuron nodes and aims to improve the non-linear mapping capacities of the network.
The transfer functions between the former two layers are both the logarithmic S-type transfer function
logsig. Furthermore, the transfer function of the output layer is the linear function purelin. Set the
network training learning rate as η = 0.02, the momentum factor as ∂ = 0.6, and the mean square error
of convergence as E0 = 0.001. The number of network training iterations is set to 10,000 times, while
the interval numbers of steps of the training results is set to 200 times. The utilized network training
algorithm is the Levenberg–Marquardt algorithm [26], which is the fastest algorithm to train the BP
neural network and allows it overcome the shortcomings of the neural network (slow convergence
speed and easiness to fall into the local minima value). After several training sessions, the network has
met network error requirements to achieve convergence.

5. Results and Discussion

5.1. Results of ANN

After forming the neural network, the former 20 groups of data from the years 1991 to 2010 were
set as the training set, while the rest of the data from the years 2011 to 2016 were used as the testing set.
Furthermore, we used the Rolling Forecast method [27], which incorporates the previous 20 sets of
data into the network, predicts the 21st group of data, and calculates the relative error. When the error
meets the accuracy requirement, the results will continue to be input in the network. Then, the 22nd
group will be forecasted, and the process will continuously repeat.

(1) Results for the training and testing periods

The mean relative errors (MRE) of the water and energy demand forecast from 1991 to 2016 are
1.58% and 2.71%, respectively. The neural network training performance can be seen in Figure 2. In the
BP algorithm, an epoch of the net training means the finish of two stages, the forward propagation of
signals, and the back propagation of errors, with the weight and threshold modified. From Figure 2,
the validation shows the best performance in the 6th epoch and shows that the mean square error has
reached the accuracy requirements (mse = 0.001). This finding indicates that the network training speed
is quickly trained by the Levenberg–Marquardt algorithm. Additionally, the training and validation
line fits well, which means that the model offers strong generalization capacities and can be applied to
forecast new data.

(2) Rolling forecast results

The MRE of water demand and energy demand are 2.49% and 3.95%, respectively, which indicates
that the network is highly stable and adaptable and can be used to predict future demand trends.

Graphs of the actual value and forecast result of water and energy demand for Wuxi are shown in
Figures 3 and 4.



Water 2018, 10, 385 8 of 16

Figure 2. Neural network’s training performance.

Figure 3. Results of water resources demand in Wuxi by ANN.
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Figure 4. Results of energy demand in Wuxi by ANN.

(3) Planning level year forecast

Most of the input data for 2020 and 2030 were collected from the Wuxi’s statistical department.
The primary, secondary, and tertiary industry GDP were forecast according to the average annual
growth rate for the past five years.

According to a plan to further develop the Yangtze River Delta’s urban agglomerations [28],
we obtained the total population index. The urban population was calculated with the urbanization
rate up to 77% and 78% in year 2020 and 2030. We chose the average annual precipitation as the value
in 2030 and the average for the last five years for 2020.

Tap water supply index was achieved by using the water quota of residents in the south of
Jiangsu [29]. According to the plan for the construction of sewage treatment plants in Wuxi, the daily
sewage treatment capacity was forecasted.

Based on the National Strategic Action Plan for Energy Development (2014–2020 Years), consumption
of coal in industrial enterprises above designed size was predicted.

Other indices were forecast using the basic time series method which can be stimulated by Oracle
Crystal Ball Software [30]. Due to the persistent effort in saving water in the past five years, the water
consumption per ten thousand yuan for primary industry and secondary industry are both decreasing
slowly, information about which can be obtained from Water Resources Bulletin of Wuxi. We forecasted
the two indices with their average annual rate of decline (from 2011 to 2016) and then calculated the
agricultural and industrial water consumption in 2020 and 2030.

Total discharging of industrial wastewater was done using the second exponential smoothing
method [31]. An Autoregressive Integrated Moving Average Model [32] was used to derive total
and domestic electricity consumption for the whole of society. We used the model to forecast the
water and energy demand for 2020 and 2030 based on the data shown in Table 1 as input values.
The corresponding results are shown in Table 2.
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Table 1. Forecasted data of indices for water and energy demand in Wuxi in 2020 and 2030.

Year Total nt Population
(X1)/Million people

Urban Population
(X2)/Million people

Primary Industry GDP
(X3)/Billion yuan

Secondary Industry
GDP (X4)/Billion yuan

Tertiary Industry GDP
(X5)/Billion yuan

Annual
Precipitation

(X6)/mm

Agricultural Water
Consumption

(X7)/Billion m3

2020 7.20 5.54 15.00 491.48 675.12 1387.5 0.94
2030 8.50 6.63 17.81 668.14 1644.88 1193.5 1.09

Year
Industrial Water

Consumption
(X8)/Billion m3

Tap Water Supply
(X9)/Billion m3

Total Discharge of
Industrial Wastewater

(X10)/Billion m3

Daily Sewage
Treatment Capacity

(X11)/Million t

Consumption of Coal in
Industrial Enterprises above

the Designed Size
(X12)/Million tce

Total Electricity
Consumption

(X13)/Billion kWh

Domestic Electricity
Consumption

(X14)/Billion kWh

2020 3.46 0.39 0.21 1.54 25.00 803.22 6.39
2030 4.38 0.47 0.16 2.11 28.00 1042.81 7.60

Notes: GDP = gross domestic product, tce = ton standard coal equivalent.

Table 2. ANN Forecast of the water-energy demand for Wuxi.

Year Water Resources Demand/Billion m3 Energy Demand/Million tce

2020 4.843 47.561
2030 5.887 60.355
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According to the 13th Five-Year Plan for Water Resources Development in Jiangsu Province [33],
the province’s total water use is controlled at 52.4 billion m3 for 2020. The water demand forecast in
Wuxi is forecasted to reach 4.843 billion m3 in 2020 according to the Plan for Water Resources Management
in Wuxi under the Three Red Lines [34]. Compared with the planning objectives, the forecasted data
calculated by the neural network model is reasonable. However, according to the 13th Five-Year Plan for
Energy Development of Wuxi [35], the city has focused strictly on controlling the energy consumption
intensity and the total consumption of coal. It has been vigorously applying new energy to promote a
clean energy structure. As a result, the total energy demand in the future increases slowly, and even
has the possibility of negative growth. Therefore, the comprehensive forecast for the network model is
relatively accurate and worthy of reference.

5.2. Results of MLR

The MREs of the water and energy demand fittings are 3.88% and 2.04%, respectively.
The regression coefficients of the MLR models used to fit water resources and energy demand are

shown in Table 3.

Table 3. Regression coefficients of the multiple linear regression (MLR) models.

Regression Coefficient Estimated Values of Coefficients
in Water Model

Estimated Values of Coefficients
in Energy Model

β0 2.05901 13.60573
β1 0.00320 −0.02404
β2 −0.00670 0.01653
β3 0.01728 0.00152
β4 −0.00177 −0.00590
β5 0.00024 0.00680
β6 −0.00018 −0.00148
β7 −0.02755 −0.12851
β8 0.11397 0.27329
β9 −0.28824 −0.40564
β10 −0.08571 0.06477
β11 0.01214 0.01447
β12 0.00044 0.01851
β13 0.00455 −0.02893
β14 0.01092 −0.05302

Figure 5 shows that the fitting of water resources is quite accurate on the whole, while energy
fitting turns out better without considering the small errors of the middle section (Figure 6).

According to MATLAB R2014b software results, the R2 values of the water and energy demand
model are 0.9279 and 0.9976, respectively, indicating that both present strong fitness.

We used the model to forecast the water and energy demand for 2020 and 2030 using the data
shown in Table 1 as input values. The corresponding results are shown in Table 4. A comparison of the
ANN and MLR model is shown in Table 5.
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Figure 5. MLR fitting results for water demand.

Figure 6. MLR fitting results for energy demand.

Table 4. MLR Forecast results of water-energy demand for Wuxi.

Year Water Resources Demand/Billion m3 Energy Demand/Million tce

2020 5.661 49.188
2030 6.355 58.906
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Table 5. Comparison of the two models. MRE = mean relative errors.

Model
Fitting Results

MRE of Water (%) MRE of Energy (%) Average of MRE (%)

ANN 1.58 2.71 2.14
MLR 3.88 2.84 3.96

The MLR model appears to generate higher values of water and energy demand for the planning
level year than that of the planning data written in documents. Overall, these results may serve as a
point of comparison and offer support for the proposed ANN model.

From Table 5, we can see that the ANN model shows a better performance in fitting data of both
water and energy, with a lower average MRE of 2.14% while that of MLR is 3.96%.

6. Conclusions

This paper overcomes the limitations of current traditional forecasting methods for water resources
or energy demand based on the water-energy nexus via the establishment of a comprehensive
forecasting model for water resources and energy demand in urban areas based on the feedforward
neural network. Fourteen indices were chosen from several factors that affect the urban water and
energy demand as input parameters to establish the network. The traditional BP neural network with
the single hidden layer was improved by using the water resources and energy demand as the outputs.
A network model with two hidden layers with local approximations and strong non-linear mapping
capacities was constructed. The network can thus forecast water and energy demand.

The network model was applied to Wuxi. The average relative error values for water and energy
demand forecasts were 1.58% and 2.71% for the testing period, respectively, and 2.49% and 3.95% for
the rolling forecast, respectively. These results indicate that the model has strong reliability and stability.

The average MRE for water and energy demand from the ANN model was 2.14% while that
of the MLR is 3.96%. Both models exhibit excellent performance. Compared with the MLR model,
the proposed method indicates that the ANN can be more efficiently used to measure water and energy
demand. Moreover, the results reveal the consistency and accuracy of the ANN model.

The ANN model has also been used to forecast planning years in Wuxi. The forecast results are
consistent with the local planning data, which means that the model has achieved satisfactory levels of
accuracy and meets the actual forecasting requirements. Thus, this model can serve as a reference of
the analysis of the supply and demand balance between urban water resources and energy levels and
provide a foundation for the development of water and energy planning strategies. Further studies
can be conducted on the following issues:

(a) The results obtained from the present study can be compared to the results obtained from different
ANN training algorithms.

(b) Because the ANN tends to overfit the data, other AI models such as the Support Vector Machine
(SVM) and General Regression Neural Network (GRNN) can be used to draw comparisons with
the ANN [36].

(c) Additional data and information on the water and energy demand for Wuxi must be generated
through joint efforts between government officials and researchers.

Acknowledgments: This study has been funded through the National Key R&D Program of China (Grant No.
2017YFC0404605), the International S&T Cooperation Program of China (Grant No. 2015DFA01000), and the
China Postdoctoral Science Foundation Funded Project (Grant No. 2016M601847). The authors would also like to
thank the editor and anonymous reviewers for their reviews and valuable comments related to this manuscript.

Author Contributions: All authors equally contributed to this paper. All authors revised and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2018, 10, 385 14 of 16

Nomenclature

ANN artificial neural network
MLR multiple linear regression
MRE mean relative error
mse mean square error
RSS residual sum of squares
TSS total sum of squares
R2 correlation coefficient
GDP gross domestic product
tce ton standard coal equivalent

Appendix A. Training and Test Data for Water Resources and Energy of the ANN

Table A1. Training and test data for water resources demand in Wuxi.

Year
Water Resources Demand

Actual Value/Billion m3 Learned Value/Billion m3 Relative Error

Training
Samples

1991 1.936 1.950 0.7051
1992 2.293 2.285 0.3654
1993 2.314 2.292 0.9408
1994 2.396 2.353 1.7864
1995 2.442 2.482 1.6191
1996 2.507 2.480 1.0621
1997 2.564 2.578 0.5616
1998 2.623 2.691 2.5848
1999 2.845 2.846 0.0457
2000 3.502 3.435 1.9008
2001 3.419 3.396 0.6751
2002 3.327 3.315 0.3487
2003 3.068 3.184 3.7878
2004 3.072 3.063 0.3071
2005 3.126 3.060 2.1009
2006 3.110 3.138 0.9142
2007 3.093 3.017 2.4486
2008 2.993 3.052 1.9567
2009 2.966 2.970 0.1287
2010 4.170 4.153 0.4102

Test
Samples

2011 3.499 3.653 4.3990
2012 3.492 3.549 1.6293
2013 3.451 3.359 2.6519
2014 3.513 3.564 1.4428
2015 4.231 4.014 5.1200
2016 4.306 4.359 1.2206

Table A2. Training and test data for energy demand in Wuxi.

Year
Energy Demand

Actual Value/Million tce Learned Value/Million tce Relative Error

1991 3.800 3.898 2.5778
1992 4.336 4.422 1.9919
1993 5.881 6.066 3.1597
1994 6.033 6.197 2.7232
1995 6.698 6.623 1.1217
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Table A2. Cont.

Year
Energy Demand

Actual Value/Million tce Learned Value/Million tce Relative Error

Training
Samples

1996 7.074 7.463 5.5036
1997 7.356 8.062 9.5946
1998 10.508 9.853 6.2353
1999 11.020 11.664 5.8382
2000 12.613 12.823 1.6645
2001 13.999 14.837 5.9904
2002 16.632 16.448 1.1045
2003 20.282 21.023 3.6497
2004 25.585 25.435 0.5859
2005 28.389 27.991 1.4026
2006 26.071 26.313 0.9290
2007 31.486 31.033 1.4407
2008 30.559 30.725 0.5423
2009 31.268 31.262 0.0194
2010 33.447 33.364 0.2477

Test
Samples

2011 34.421 33.965 1.3249
2012 34.542 33.418 3.2525
2013 37.327 36.657 1.7965
2014 36.506 35.652 2.3397
2015 35.206 35.806 1.7042
2016 37.717 39.161 3.8272

Note: tce = ton standard coal equivalent.
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