Projection of Future Drought Characteristics under Multiple Drought Indices
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Generating Future Climatic Data
3.2. Meteorological Drought Indices
4. Results and Discussions
4.1. RCP2.6
4.2. RCP4.5
4.3. RCP8.5
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dingman, S.L. Chapter 6, Water in soils: Infiltration and redistribution. In Physical Hydrology, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 2002; p. 646. [Google Scholar]
- Shiau, J.T. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Dupuis, D.J. Statistical modeling of the monthly Palmer drought severity index. J. Hydrol. Eng. 2010, 15, 796–807. [Google Scholar] [CrossRef]
- Pashiardis, S.; Michaelides, S. Implementation of the standardized precipitation index (SPI) and the reconnaissance drought index (RDI) for regional drought assessment: A case study for Cyprus. Eur. Water 2008, 23, 57–65. [Google Scholar]
- Borg, D.S. An application of drought indices in Malta, case study. Eur. Water 2009, 25, 25–38. [Google Scholar]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Nalbantis, I. Evaluation of a hydrological drought index. Eur. Water 2008, 23, 67–77. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Hannah, D.M. Regional hydrological drought in north-western Europe: Linking a new Regional Drought Area Index with weather types. Hydrol. Processes 2011, 25, 1163–1179. [Google Scholar] [CrossRef]
- Gurwin, J. Long-term monitoring and GIS based determination of groundwater drought propagation, the Lower Silesia region, SW Poland. Episodes 2014, 37, 172–181. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-Governmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gocic, M.; Trajkovic, S. Drought characterization based on water surplus variability index. Water Resour. Manag. 2014, 28, 3179–3191. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Moghimi, M.M.; Zarei, A.R.; Mahmoudi, M.R. Seasonal drought forecasting in arid regions, using different time series models and RDI index. J. Water Clim. Chang. 2020, 3, 633–654. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 2014, 15, 89–101. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H.J. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 10, 3–11. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Miao, C.; Ni, J.; Borthwick, A.G.; Yang, L. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Chang. 2011, 76, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Saddique, Q.; Cai, H.; Xu, J.; Ajaz, A.; He, J.; Yu, Q.; Wang, Y.; Chen, H.; Khan, M.I.; Li Liu, D.; et al. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1523–1543. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Li, H.; Feng, L.; Zhou, T. Changes of July-August climate extremes over China under CO2 doubling scenario projected by CMIP3 models for IPCC AR4. Part I: Precipitation. Adv. Atmos. Sci. 2010, 3. [Google Scholar] [CrossRef]
- Duan, Q.; Phillips, T.J. Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections; NOAA: Washington, DC, USA, 2007; Chapter 10; ISBN 978-0521-70596-7. [Google Scholar]
- Zong, Y.; Chen, X. The 1998 flood on the Yangtze, China. Nat. Hazards 2000, 22, 165–184. [Google Scholar] [CrossRef]
- Su, B.; Gemmer, M.; Jiang, T. Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quat. Int. 2008, 186, 22–31. [Google Scholar] [CrossRef]
- Longjun, C.; Bo, W. Climatic type division and potential extent desertification of desertification in China. J. Desert Res. 1997, 17, 111–117. [Google Scholar]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Liu, D.; Fu, Q.; Li, M.; Faiz, M.A.; Khan, M.I.; Li, T. Identification and application of the most suitable entropy model for precipitation complexity measurement. Atmos. Res. 2019, 221, 88–97. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Azmat, M.; Luo, M.; Hu, Y.; Zhang, Y.; Abrar, F.M. Precipitation variability assessment of northeast China: Songhua River basin. J. Earth Syst. Sci. 2016, 125, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, T. Drought over East Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.-F.; Zhang, Y.-H.; Han, D.-M.; Tang, C.-Y.; Yang, L.; Wang, Z.-L. The renewability and quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China. J. Integr. Agric. 2017, 16, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, G.; Xu, Y.J. Assessing climate change impacts on water resources in the Songhua River basin. Water 2016, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P.K.; Díaz, W.; Wilkens, P.W.; Jones, A.L. MarkSim: A Computer Tool that Generates Simulated Weather Data for Crop Modeling and Risk Assessment: Version 1 [CD-ROM]; Centro Internacional de Agricultura Tropical: Cali, Colombia, 2002. [Google Scholar]
- Jones, P.G.; Thornton, P.K. Fitting a third-order Markov rainfall model to interpolated climate surfaces. Agric. For. Meteorol. 1999, 97, 213–231. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. A rainfall generator for agricultural applications in the tropics. Agric. For. Meteorol. 1993, 63, 1–19. [Google Scholar] [CrossRef]
- Richardson, C.W. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 17, 182–190. [Google Scholar] [CrossRef]
- Donatelli, M.; Campbell, G.S. A simple model to estimate global solar radiation. In Proceedings of the 5th European Society of Agronomy Congress, Nitra, Slovakia, 28 June 1998; Volume 2, pp. 133–134. [Google Scholar]
- Jones, P. Current availability and deficiencies in data relevant to agro-ecological studies in the geographic area covered by the IARCs. In Agricultural Environments: Proceedings of the Rome Workshop on Agro-Ecological Classification and Mapping; CABI International: Wallingford, UK, 1987. [Google Scholar]
- McKee, T.B. Drought monitoring with multiple time scales. In Proceedings of the 9th Conference on Applied Climatology, Boston, MA, USA, 15–20 January 1995. [Google Scholar]
- Loukas, A.; Vasiliades, L. Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat. Hazards Earth Syst. Sci. 2004, 4, 719–731. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Edwards, D.C. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Master’s Thesis, Defense Technical Information Center, Fort Belvoir, VA, USA, 1997. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall deciles as drought indicators, Bureau of Meteorology Bulletin no. 48. Commonw. Aust. Melb. 1967, 29, 1–33. [Google Scholar]
- Kininmonth, W.; Voice, M.; Beard, G. Australian Climate Services for Drought Management. Drought, a Global Assessment; Routledge: London, UK, 2000; pp. 210–222. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Khan, M.I.; Zhu, X.; Arshad, M.; Zaman, M.; Niaz, Y.; Ullah, I.; Anjum, M.N.; Uzair, M. Assessment of spatiotemporal characteristics of agro-meteorological drought events based on comparing Standardized Soil Moisture Index, Standardized Precipitation Index and Multivariate Standardized Drought Index. J. Water Clim. Chang. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Saddique, Q.; Faiz, M.A.; Li, T.; Qamar, M.U.; Cui, S.; Cheng, C. Projected changes of future extreme drought events under numerous drought indices in the Heilongjiang Province of China. Water Resour. Manag. 2017, 31, 3921–3937. [Google Scholar] [CrossRef]
- Saifullah, M.; Liu, S.; Tahir, A.A.; Zaman, M.; Ahmad, S.; Adnan, M.; Chen, D.; Ashraf, M.; Mehmood, A. Development of threshold levels and a climate-sensitivity model of the hydrological regime of the high-altitude catchment of the Western Himalayas, Pakistan. Water 2019, 11, 1454. [Google Scholar] [CrossRef] [Green Version]
Model | Institution | Resolution (Lat × Long) | |
---|---|---|---|
1 | BCC-CSM | Beijing Climate Centre, China Meteorological Administration | 2.81 × 2.81 |
2 | BCC-CSM 1.1 (m) | Beijing Climate Centre, China Meteorological Administration | 2.81 × 2.81 |
3 | CSIRO-MK3.6.0 | Commonwealth Scientific and Industrial Research Organization and the Queensland Climate Change Centre Of Excellence | 1.87 × 1.87 |
4 | FIO-ESM | First Institute of Oceanography, SOA, China | 2.81 × 2.81 |
5 | GFDL-CM3 | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
6 | GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
7 | GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory, USA | 2.0 × 2.5 |
8 | GISS-E2-H | NASA Goddard Institute for Space Studies, USA | 2.0 × 2.5 |
9 | GISS-E2-R | NASA Goddard Institute for Space Studies, USA | 2.0 × 2.5 |
10 | HadGEM2-ES | Met Office Hadley Centre, UK | 1.24 × 1.85 |
11 | IPSL-CM5A-LR | Institute Pierre-Simon Laplace, France | 1.87 × 3.75 |
12 | IPSL-CM5A-MR | Institute Pierre-Simon Laplace, France | 1.87 × 3.75 |
13 | MIROC-ESM | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan | 2.81 × 2.81 |
14 | MIROC-ESM-CHEM | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan | 2.81 × 2.81 |
15 | MIROC5 | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan | 1.41 × 1.41 |
16 | MRI-CGCM3 | Meteorological Research Institute, Japan | 1.12 × 1.12 |
17 | NorESM1-M | Agency for Marine-Earth Science and Technology Norwegian Climate Centre | 1.87 × 1.87 |
State | Description | Criterion |
---|---|---|
1 | Mild drought | −0.50 to −0.99 |
2 | Moderate drought | −1.00 to −1.49 |
3 | Severe drought | −1.50 to −1.99 |
4 | Extreme drought | <−2.00 |
Decile Class | Description |
---|---|
Decile 1–2 | Much below normal |
Decile 3–4 | Below normal |
Decile 5–6 | Near Normal |
Decile 7–8 | Above Normal |
Decile 9–10 | Much above Normal |
SPI-3 | SPI-12 | ||||
---|---|---|---|---|---|
DD (years) | DS | DI | DD (years) | DS | DI |
2021–2023(3) | −1.04 | −0.35 | 2021–2023(3) | −1.36 | −0.45 |
2066–2068(3) | −1.04 | −0.35 | 2027–2030(4) | −0.70 | −0.17 |
2073–2076(4) | −1.66 | −0.42 | 2062–2064(3) | −1.00 | −0.33 |
2082–2085(4) | −0.91 | −0.23 | 2087–2089(3) | −0.95 | −0.32 |
2097–2099(3) | −1.85 | −0.62 | 2037–2039(3) | −0.79 | −0.26 |
RDI-3 | RDI-12 | ||||
DD (years) | DS | DI | DD (years) | DS | DI |
2021–2023(3) | −1.09 | −0.36 | 2021–2023(3) | −0.86 | −0.29 |
2025–2027(3) | −0.75 | −0.25 | 2025–2030(6) | −0.91 | −0.15 |
2032–2035(4) | −0.68 | −0.17 | 2074–2076(3) | −1.37 | −0.46 |
2044–2048(5) | −0.84 | −0.17 | |||
2060–2062(3) | −0.83 | −0.28 | |||
2074–2077(4) | −1.01 | −0.25 |
SPI-3 | SPI-12 | ||||
---|---|---|---|---|---|
DD (years) | DS | DI | DD (years) | DS | DI |
2025–2027(3) | −1.14 | −0.38 | 2021–2024(5) | −0.70 | −0.14 |
2053–2056(4) | −0.91 | −0.23 | 2025–2027(3) | −1.04 | −0.35 |
2059–2061(3) | −0.90 | −0.30 | 2031–2034(4) | −0.85 | −0.21 |
2066–2068(3) | −1.72 | −0.57 | 2052–2054(3) | −0.73 | −0.24 |
2083–2087(5) | −1.34 | −0.27 | |||
2091–2093(3) | −0.80 | −0.27 | |||
RDI-3 | RDI-12 | ||||
DD (years) | DS | DI | DD (years) | DS | DI |
2045–2048(4) | −0.96 | −0.24 | 2031–2033(3) | −0.73 | −0.24 |
2049–2051(3) | −0.79 | −0.26 | 2052–2054(3) | −0.90 | −0.30 |
2056–2058(3) | −0.79 | −0.26 | 2072–2074(3) | −0.99 | −0.33 |
2069–2071(3) | −1.40 | −0.47 | 2076–2078(3) | −0.90 | −0.30 |
2077–2079(3) | −0.85 | −0.28 | 2087–2090(4) | −0.85 | −0.21 |
2087–2089(3) | −1.39 | −0.46 | 2093–2095(3) | −1.28 | −0.43 |
2090–2092(3) | −1.27 | −0.42 | 2096–2099(4) | −1.53 | −0.38 |
2096–2098(3) | −0.97 | −0.32 |
SPI-3 | SPI-12 | ||||
---|---|---|---|---|---|
DD (years) | DS | DI | DD (years) | DS | DI |
2025–2028(4) | −1.16 | −0.29 | 2021–2026(6) | −0.93 | −0.16 |
2041–2044(4) | −0.79 | −0.20 | 2027–2032(6) | −1.07 | −0.18 |
2046–2048(3) | −1.15 | −0.38 | 2034–2036(3) | −0.96 | −0.32 |
2053–2056(4) | −1.42 | −0.36 | |||
2071–2073(3) | −1.20 | −0.40 | |||
2091–2093(3) | −0.97 | −0.32 | |||
RDI-3 | RDI-12 | ||||
DD (years) | DS | DI | DD (years) | DS | DI |
2032–2034(3) | −1.81 | −0.60 | 2055–2057(3) | −0.69 | −0.23 |
2084–2086(3) | −0.64 | −0.21 | 2065–2067(3) | −0.67 | −0.22 |
2088–2090(3) | −0.83 | −0.28 | 2071–2077(7) | −1.04 | −0.15 |
2093–2095(3) | −1.35 | −0.45 | 2084–2088(5) | −1.54 | −0.31 |
2097–2099(3) | −1.51 | −0.50 | 2093–2099(7) | −1.50 | −0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.I.; Zhu, X.; Jiang, X.; Saddique, Q.; Saifullah, M.; Niaz, Y.; Sajid, M. Projection of Future Drought Characteristics under Multiple Drought Indices. Water 2021, 13, 1238. https://doi.org/10.3390/w13091238
Khan MI, Zhu X, Jiang X, Saddique Q, Saifullah M, Niaz Y, Sajid M. Projection of Future Drought Characteristics under Multiple Drought Indices. Water. 2021; 13(9):1238. https://doi.org/10.3390/w13091238
Chicago/Turabian StyleKhan, Muhammad Imran, Xingye Zhu, Xiaoping Jiang, Qaisar Saddique, Muhammad Saifullah, Yasir Niaz, and Muhammad Sajid. 2021. "Projection of Future Drought Characteristics under Multiple Drought Indices" Water 13, no. 9: 1238. https://doi.org/10.3390/w13091238
APA StyleKhan, M. I., Zhu, X., Jiang, X., Saddique, Q., Saifullah, M., Niaz, Y., & Sajid, M. (2021). Projection of Future Drought Characteristics under Multiple Drought Indices. Water, 13(9), 1238. https://doi.org/10.3390/w13091238