Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Hydrological Modelling
2.2.1. Model Description
2.2.2. Databases
2.2.3. Calibration, Sensitivity and Uncertainty Analysis
2.2.4. Parameterization
2.3. Climatic Variability Analysis
2.4. Climatic Change Analysis
3. Results
3.1. Model Calibration and Validation
3.2. Annual Variation of the Hydrometeorological Components in the Last 35 Years
3.3. Climate Change Effect on the Hydrological Cycle Components
3.3.1. Input Parameters: Temperature and Precipitation
3.3.2. Evapotranspiration (ET)
3.3.3. Percolation (PERC)
3.3.4. Surface Runoff (SURQ)
3.3.5. Groundwater Flow (GW_Q)
3.3.6. Water Yield (WYLD)
3.3.7. Relative and Absolute Changes of the Hydrological Balance Components at a Basin Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Average Values Comparison. Climatic Model RegCM4-MPI-ESM-MR; Projection RCP8.5 | |||
---|---|---|---|
Hydrological Parameters | Quino Basin | ||
Historical Period/Inmediate Future | Historical Period/Intermediate Future | Inmediate Future/Intermediate Future | |
Precipitation | 2.22162 × 10−44 | 2.22507 × 10−58 | 9.42665 × 10−62 |
Temperature | 3.166 × 10−154 | 1.2993 × 10−128 | 3.793 × 10−110 |
ET | 1.0493 × 10−44 | 1.47193 × 10−56 | 2.23042 × 10−59 |
PERC | 1.12169 × 10−40 | 8.92672 × 10−42 | 1.97279 × 10−41 |
SURQ | 6.1165 × 10−34 | 7.69659 × 10−53 | 9.02548 × 10−33 |
GW_Q | 2.78038 × 10−52 | 1.84815 × 10−37 | 5.75124 × 10−32 |
WYLD | 7.16781 × 10−52 | 6.69911 × 10−55 | 3.25865 × 10−53 |
Hydrological Parameters | Muco Basin | ||
Historical Period/Inmediate Future | Historical Period/Intermediate Future | Inmediate Future/Intermediate Future | |
Precipitation | 1.17591 × 10−10 | 2.24552 × 10−32 | 6.56955 × 10−40 |
Temperature | 4.73665 × 10−86 | 2.8399 × 10−100 | 1.08209 × 10−98 |
ET | 6.70625 × 10−28 | 3.30886 × 10−42 | 3.51845 × 10−51 |
PERC | 2.21472 × 10−21 | 5.97748 × 10−42 | 5.8181 × 10−46 |
SURQ | 1.77134 × 10−06 | 7.06603 × 10−19 | 8.57832 × 10−35 |
GW_Q | 3.90917 × 10−18 | 1.20551 × 10−40 | 1.14199 × 10−47 |
WYLD | 2.6065 × 10−12 | 5.32872 × 10−34 | 6.41939 × 10−43 |
References
- UNEP GEO 5. Perspectivas del Medio Ambiente Mundial: Medio Ambiente Para el Futuro que Queremos; UNEP: Nairobi, Kenya, 2012. [Google Scholar]
- UNEP GEO-6. Regional Assessment for Latin America and the Caribbean; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Kundzewicz, Z.; Mata, L.; Arnell, N.; Döll, P.; Kabat, P.; Jiménez, B.; Miller, K.; Oki, T.; Sen, Z.; Shiklomanov, I. Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. In Current Opinion in Environmental Sustainability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 173–210. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. In I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1133–1197. [Google Scholar]
- Arnell, N.W.; Reynard, N.S. The effects of climate change due to global warming on river flows in Great Britain. J. Hydrol. 1996, 183, 397–424. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Akoko, G.; Kato, T.; Tu, L.H. Evaluation of irrigation water resources availability and climate change impacts-a case study of Mwea irrigation scheme, Kenya. Water 2020, 12, 2330. [Google Scholar] [CrossRef]
- Núñez-Hidalgo, I. Climate Change: Impacts, Policy and Perspectives. In Chile. Environmental History, Perspectives and Challenges; Alberto, J., Ed.; Alaniz: Santiago, Chile, 2019; pp. 119–154. ISBN 9781536156652. [Google Scholar]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Akester, M.; Naranjo, L. Productivity and sustainable management of the Humboldt current large marine ecosystem under climate change. Environ. Dev. 2016, 17, 126–144. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- CONAMA-DGF. Estudio de la Variabilidad Climática en Chile Para el Siglo XXI; CONAMA: Santiago, Chile, 2006. [Google Scholar]
- Garreaud, R. Cambio Climático: Bases Físicas e Impactos en Chile. Rev. Tierra Adentro-INIA 2011, 14. Available online: http://www.dgf.uchile.cl/rene/PUBS/inia_RGS_final.pdf (accessed on 15 December 2020).
- Orrego, R.; Abarca-del-Río, R.; Ávila, A.; Morales, L. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: A case study in a Mediterranean climate (Araucanía Region, south central Chile). Springerplus 2016, 5, 1669. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F. Cambio climático en Chile: Del desafío global a la oportunidad local. Friedich Ebert Stift. 2019. Available online: https://library.fes.de/pdf-files/bueros/chile/15512.pdf (accessed on 20 November 2020).
- McNamara, I.; Nauditt, A.; Zambrano-Bigiarini, M.; Ribbe, L.; Hann, H. Modelling water resources for planning irrigation development in drought-prone southern Chile. Int. J. Water Resour. Dev. 2020, 1–26. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, J.; Chen, J.; Wang, D.; Wang, Y.; Xu, H. Assessment of changes in water balance components under 1.5 °C and 2.0 °C global warming in transitional climate basin by multi-RCPs and multi-GCMs approach. Water 2018, 10, 1863. [Google Scholar] [CrossRef] [Green Version]
- Grusson, Y.; Anctil, F.; Sauvage, S.; Sánchez Pérez, J.M. Coevolution of hydrological cycle components under climate change: The case of the Garonne River in France. Water 2018, 10, 1870. [Google Scholar] [CrossRef] [Green Version]
- Makhtoumi, Y.; Li, S.; Ibeanusi, V.; Chen, G. Evaluating water balance variables under land use and climate projections in the upper choctawhatchee River Watershed, in Southeast US. Water 2020, 12, 2205. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Gatzke, S.E.; Zhang, M. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California. Environ. Pollut. 2010, 158, 223–234. [Google Scholar] [CrossRef]
- Yu, Z.; Man, X.; Duan, L.; Cai, T. Assessments of impacts of climate and forest change on water resources using swat model in a subboreal watershed in northern da hinggan mountains. Water 2020, 12, 1565. [Google Scholar] [CrossRef]
- Stehr, A.; Debels, P.; Arumi, J.L.; Alcayaga, H.; Romero, F. Modelación de la respuesta hidrológica al cambio climático: Experiencias de dos cuencas de la zona centro-sur de Chile. Tecnol. Cienc. Agua 2010, 1, 37–58. [Google Scholar]
- Olson, D.M.; Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Myers, N. Biodiversity Hotspots Revisited. Bioscience 2003, 53, 916–917. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool. Theoretical Documentation; Soil and Water Research Laboratory: Temple, TX, USA, 2005. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT 2012 Input/Output Documentation; Texas Water Resources Institute: College Station, TX, USA, 2012; p. 30. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Samani Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- CIREN Estudio Agrologico IX Región. Descripciones de Suelos: Materiales y Símbolos. (Pub. CIREN N°122); Publicaciones CIREN: Santiago, Chile, 2002; ISBN 956-7153-35-3. [Google Scholar]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Centro de Ciencia del Clima y la Resiliencia (CR)2. Guía Para la Plataforma de Visualizacion de Simulaciones Climáticas; (CR)²: Santiago, Chile, 2018; Volume 36. [Google Scholar]
- Centro de Ciencia del Clima y la Resiliencia (CR)2. Simulaciones Climáticas Regionales. 2018, Volume 26. Available online: http://www.cr2.cl/wp-content/uploads/2019/06/Simulaciones-clima%CC%81ticas-regionales-2018.pdf (accessed on 20 November 2020).
- Javaherian, M.; Ebrahimi, H.; Aminnejad, B. Prediction of changes in climatic parameters using CanESM2 model based on Rcp scenarios (case study): Lar dam basin. Ain Shams Eng. J. 2021, 12, 445–454. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Stehr, A.; Sauvage, S.; Echeverría, C.; Sánchez-Pérez, J.M. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Water 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin, C., Ed.; APA PsycInfo: London, UK, 1948. [Google Scholar]
- Gilbert, R. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Co: New York, NY, USA, 1987; ISBN 0442230508. [Google Scholar]
- Onyutha, C.; Tabari, H.; Taye, M.T.; Nyandwaro, G.N.; Willems, P. Analyses of rainfall trends in the Nile River Basin. J. Hydro-Environ. Res. 2016, 13, 36–51. [Google Scholar] [CrossRef]
- Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeleňáková, M.; Purcz, P.; Poórová, Z.; Alkhalaf, I.; Hlavatá, H.; Portela, M. Monthly Trends of Precipitation in Gauging Stations in Slovakia. Procedia Eng. 2016, 162, 106–111. [Google Scholar] [CrossRef]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176–177, 148–158. [Google Scholar] [CrossRef]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II, III I, II, III. Indag. Math. 1950, 12, 85. [Google Scholar]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Davie, T. Fundamentals of Hydrology; Taylor y Francis: Oxfordshire, UK, 2008. [Google Scholar]
- Han, D. 2010 Concise Hydrology; Bookboon: London, UK, 2010; ISBN 9788776815363. [Google Scholar]
- Fitts, C. Groundwater Science, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 0-12-257855-4. [Google Scholar]
- Fetter, C. Applied Hydrogeology, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2000; ISBN 9780130882394. [Google Scholar]
- Vicuña, S.; McPhee, J.; Garreaud, R.D. Agriculture Vulnerability to Climate Change in a Snowmelt-Driven Basin in Semiarid Chile. J. Water Resour. Plan. Manag. 2012, 138, 431–441. [Google Scholar] [CrossRef]
- Demaria, E.M.C.; Maurer, E.P.; Thrasher, B.; Vicuña, S.; Meza, F.J. Climate change impacts on an alpine watershed in Chile: Do new model projections change the story? J. Hydrol. 2013, 502, 128–138. [Google Scholar] [CrossRef]
- Garreaud, R.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elementa 2018, 6, 74. [Google Scholar] [CrossRef]
- Falvey, M.; Garreaud, R.D. Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res. Atmos. 2009, 114, 1–16. [Google Scholar] [CrossRef]
- Viale, M.; Garreaud, R. Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J. Geophys. Res. Atmos. 2015, 120, 4962–4974. [Google Scholar] [CrossRef]
- Andreini, M.; Giesen, N.; Edig, A.; Fosu, M.; Andah, W. Volta Water Balance; University of Bonn, Center for Development Research (ZEF): Bonn, Germany, 2000. [Google Scholar]
- Pandey, B.K.; Gosain, A.K.; Paul, G.; Khare, D. Climate change impact assessment on hydrology of a small watershed using semi-distributed model. Appl. Water Sci. 2017, 7, 2029–2041. [Google Scholar] [CrossRef] [Green Version]
- Barrientos, G.; Herrero, A.; Iroumé, A.; Mardones, O.; Batalla, R.J. Modelling the Effects of Changes in Forest Cover and Climate on Hydrology of Headwater Catchments in South-Central Chile. Water 2020, 12, 1828. [Google Scholar] [CrossRef]
Parameter | Parameter Description | Calibration Values | ||
---|---|---|---|---|
Adjusted Value | Minimum Value | Maximum Value | ||
v_GW_DELAY.gw | Groundwater delay (days) | 7.4 | 0 | 132 |
v_GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 2890 | 2395 | 4792 |
v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.05 | 0.03 | 0.1 |
r_SLSUBBSN.hru | Average slope length (m). | 21.3 | 10 | 62 |
v_CH_K2.rte | Effective hydraulic conductivity in main channel alluvium. | 15.36 | 10 | 50 |
v_CH_N2.rte | Manning’s “n” value for the main channel | 0.01 | −0.01 | 0.1 |
v_CH_K1.sub | Effective hydraulic conductivity in tributary channel alluvium | 49.5 | 0 | 153 |
r_SOL_AWC.sol | Available water capacity of the soil layer | 1.2 | 0.05 | 1.25 |
r_CN2.mgt | Fraction of transmission losses from main channel that enter deep aquifer. | 1.1 | 0.1 | 1.2 |
Annual Change of Water Cycle Parameters: Absolute and Relative Values | ||||
---|---|---|---|---|
Quino Basin | ||||
Historical Period/Inmediate Future | Historical Period/Intermediate Future | |||
Hydrological Parameter | Absolute Change | Relative Change (%) | Absolute Change | Relative Change (%) |
Temperature | 0.81 °C | 7.55 | 1.52 °C | 14.21 |
Precipitation | −37.23 mm | −1.6 | −127.42 mm | −5.4 |
ET | 11.76 mm | 2.03 | 30.54 mm | 5.27 |
PERC | −34.90 mm | −4.11 | −80.32 mm | −9.52 |
SURQ | −15.86 mm | −2.73 | −16.23 mm | −2.38 |
GW_Q | −21.57 mm | −2.05 | −64.40 mm | −7.45 |
WYLD | −44.18 mm | −2.37 | −95.59 mm | −5.26 |
Muco Basin | ||||
Historical Period/Inmediate Future | Historical Period/Intermediate Future | |||
Hydrological Parameters | Absolute Change (mm) | Relative Change (%) | Absolute Change (mm) | Relative Change (%) |
Temperature | 0.78 °C | 7.27 | 1.48 °C | 13.74 |
Precipitation | −41.4 mm | −1.5 | −139.92 mm | −5.05 |
ET | 13.47 mm | 2.35 | 33.52 mm | 5.81 |
PERC | −39.48 mm | −3.87 | −96.23 mm | −9.74 |
SURQ | −21.90 mm | −2.12 | −18.95 mm | −1.76 |
GW_Q | −27.61 mm | −2.40 | −80.82 mm | −8.15 |
WYLD | −55.82 mm | −2.35 | −113.58 mm | −4.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Stehr, A.; Duran-Llacer, I.; Rodríguez-López, L.; Sauvage, S.; Sánchez-Pérez, J.-M. Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile. Water 2021, 13, 794. https://doi.org/10.3390/w13060794
Martínez-Retureta R, Aguayo M, Abreu NJ, Stehr A, Duran-Llacer I, Rodríguez-López L, Sauvage S, Sánchez-Pérez J-M. Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile. Water. 2021; 13(6):794. https://doi.org/10.3390/w13060794
Chicago/Turabian StyleMartínez-Retureta, Rebeca, Mauricio Aguayo, Norberto J Abreu, Alejandra Stehr, Iongel Duran-Llacer, Lien Rodríguez-López, Sabine Sauvage, and José-Miguel Sánchez-Pérez. 2021. "Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile" Water 13, no. 6: 794. https://doi.org/10.3390/w13060794
APA StyleMartínez-Retureta, R., Aguayo, M., Abreu, N. J., Stehr, A., Duran-Llacer, I., Rodríguez-López, L., Sauvage, S., & Sánchez-Pérez, J.-M. (2021). Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile. Water, 13(6), 794. https://doi.org/10.3390/w13060794