Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Experimental Procedure
2.3. Hydrochar Analysis
2.4. Process Water Analysis
2.5. Determination of the Reaction Intensity
2.6. Experimental Design
3. Results and Discussion
3.1. Results of Box–Behnken Design (Raw SEWAGE Sludge 1)
3.2. Surface Analysis of Hydrochars (Raw Sewage Sludge 1)
3.3. Surface Analysis of Process Water Load (Raw Sewage Sludge 1)
3.4. Impact of the Volatile Solids in Feedstock Sewage Sludge on Higher Heating Value
3.5. Impact of Volatile Solids on Process Water Load
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source | DF | Sequential SS | Adjusted SS | Adjusted MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 9 | 16,817,438 | 16,817,438 | 1,868,604 | 16.38 | 0.003 |
Linear | 3 | 16,545,650 | 16,545,650 | 5,515,217 | 48.33 | 0.000 |
T (Temperature, °C) | 1 | 14,284,513 | 14,284,513 | 14,284,513 | 125.18 | 0.000 |
t (time, h) | 1 | 1,168,156 | 1,168,156 | 1,168,156 | 10.24 | 0.024 |
pH (pH-value, -) | 1 | 1,092,981 | 1,092,981 | 1,092,981 | 9.58 | 0.027 |
Quadratic | 3 | 38,745 | 38,745 | 12,915 | 0.11 | 0.949 |
T2 | 1 | 15 | 218 | 218 | 0 | 0.967 |
t2 | 1 | 33,345 | 35,235 | 35,235 | 0.31 | 0.602 |
pH2 | 1 | 5384 | 5384 | 5384 | 0.05 | 0.837 |
2-Way Interactions | 3 | 233,044 | 233,044 | 77,681 | 0.68 | 0.601 |
T·t | 1 | 66,178 | 66,178 | 66,178 | 0.58 | 0.481 |
T·pH | 1 | 153,468 | 153,468 | 153,468 | 1.34 | 0.299 |
t·pH | 1 | 13,398 | 13,398 | 13,398 | 0.12 | 0.746 |
Error | 5 | 570,565 | 570,565 | 114,113 | ||
Lack of fit | 3 | 535,270 | 535,270 | 178,423 | 10.11 | 0.091 |
Pure error | 2 | 35,296 | 35,296 | 17,648 | ||
Total | 14 | 17,388,003 |
Source | DF | Sequential SS | Adjusted SS | Adjusted MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 9 | 5,431,550 | 5,431,550 | 603,506 | 13.25 | 0.005 |
Linear | 3 | 4,789,919 | 4,789,919 | 1,596,640 | 35.06 | 0.001 |
T (Temperature, °C) | 1 | 4,343,878 | 4,343,878 | 4,343,878 | 95.38 | 0.000 |
t (time, h) | 1 | 161,028 | 161,028 | 161,028 | 3.54 | 0.119 |
pH (pH-value, -) | 1 | 285,012 | 285,013 | 285,013 | 6.26 | 0.054 |
Quadratic | 3 | 443,294 | 443,294 | 147,765 | 3.24 | 0.119 |
T2 | 1 | 210,109 | 198,164 | 198,164 | 4.35 | 0.091 |
t2 | 1 | 172,770 | 156,433 | 156,433 | 3.43 | 0.123 |
pH2 | 1 | 60,416 | 60,416 | 60,416 | 1.33 | 0.302 |
2-Way Interactions | 3 | 198,338 | 198,338 | 66,113 | 1.45 | 0.333 |
T·t | 1 | 105,625 | 105,625 | 105,625 | 2.32 | 0.188 |
T·pH | 1 | 66,306 | 66,306 | 66,306 | 1.46 | 0.282 |
t·pH | 1 | 26,406 | 26,406 | 26,406 | 0.58 | 0.481 |
Error | 5 | 227,723 | 227,723 | 45,545 | ||
Lack of fit | 3 | 80,706 | 80,706 | 26,902 | 0.37 | 0.789 |
Pure error | 2 | 147,017 | 147,017 | 73,508 | ||
Total | 14 | 5,659,273 |
Source | DF | Sequential SS | Adjusted SS | Adjusted MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 9 | 492,059 | 492,059 | 54,673 | 62.54 | 0.000 |
Linear | 3 | 475,817 | 475,817 | 158,606 | 181.41 | 0.000 |
T (Temperature, °C) | 1 | 394,938 | 394,938 | 394,938 | 451.73 | 0.000 |
t (time, h) | 1 | 79,501 | 79,501 | 79,501 | 90.93 | 0.000 |
pH (pH-value, -) | 1 | 1378 | 1378 | 1378 | 1.58 | 0.265 |
Quadratic | 3 | 10,266 | 10,266 | 3422 | 3.91 | 0.088 |
T2 | 1 | 9891 | 9896 | 9896 | 11.32 | 0.02 |
t2 | 1 | 98 | 74 | 74 | 0.08 | 0.783 |
pH2 | 1 | 276 | 276 | 276 | 0.32 | 0.598 |
2-Way Interactions | 3 | 5977 | 5977 | 1992 | 2.28 | 0.197 |
T·t | 1 | 1914 | 1914 | 1914 | 2.19 | 0.199 |
T·pH | 1 | 156 | 156 | 156 | 0.18 | 0.69 |
t·pH | 1 | 3906 | 3906 | 3906 | 4.47 | 0.088 |
Error | 5 | 4371 | 4371 | 874 | ||
Lack of fit | 3 | 417 | 417 | 139 | 0.07 | 0.971 |
Pure error | 2 | 3954 | 3954 | 1977 | ||
Total | 14 | 496,431 |
Source | DF | Sequential SS | Adjusted SS | Adjusted MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 9 | 965,646 | 965,646 | 107,294 | 74.06 | 0.000 |
Linear | 3 | 955,835 | 955,835 | 318,612 | 219.92 | 0.000 |
T (Temperature, °C) | 1 | 823,866 | 823,866 | 823,866 | 568.66 | 0.000 |
t (time, h) | 1 | 112,038 | 112,038 | 112,038 | 77.33 | 0.000 |
pH (pH-value, -) | 1 | 19,931 | 19,931 | 19,931 | 13.76 | 0.014 |
Quadratic | 3 | 4239 | 4239 | 1413 | 0.98 | 0.474 |
T2 | 1 | 2707 | 2272 | 2272 | 1.57 | 0.266 |
t2 | 1 | 0.511 | 0.625 | 0.625 | 0.43 | 0.54 |
pH2 | 1 | 1.022 | 1.022 | 1.022 | 0.71 | 0.439 |
2-Way Interactions | 3 | 5571 | 5571 | 1857 | 1.28 | 0.376 |
T·t | 1 | 3801 | 3801 | 3801 | 2.62 | 0.166 |
T·pH | 1 | 0.149 | 0.149 | 0.149 | 0.1 | 0.762 |
t·pH | 1 | 1622 | 1622 | 1622 | 1.12 | 0.338 |
Error | 5 | 7244 | 7244 | 1449 | ||
Lack of fit | 3 | 6296 | 6296 | 2099 | 4.43 | 0.19 |
Pure error | 2 | 0.948 | 0.948 | 0.474 | ||
Total | 14 | 972,890 |
References
- Zhai, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G.; Zhu, Y. Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. Energy 2017, 127, 167–174. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, Y.; Ge, S.; Yoshikawa, K. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Convers. Manag. 2014, 78, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Danso-Boateng, E.; Holdrich, R.G.; Martin, S.J.; Shama, G.; Wheatley, A.D. Process energetics for the hydrothermal carbonisation of human faecal wastes. Energy Convers. Manag. 2015, 105, 1115–1124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-H.; Lin, Q.-M.; Zhao, X.-R. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. J. Integr. Agric. 2014, 13, 471–482. [Google Scholar] [CrossRef]
- Paneque, M.; La Rosa, J.M.; de Kern, J.; Reza, M.T.; Knicker, H. Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? J. Anal. Appl. Pyrolysis 2017, 128, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Bergius, F. Die Anwendung Hoher Drücke bei Chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle; Wilhelm Knapp: Halle, Germany, 1913. [Google Scholar]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Escala, M.; Zumbühl, T.; Koller, C.; Junge, R.; Krebs, R. Hydrothermal Carbonization as an Energy-Efficient Alternative to Established Drying Technologies for Sewage Sludge: A Feasibility Study on a Laboratory Scale. Energy Fuels 2013, 27, 454–460. [Google Scholar] [CrossRef]
- Wang, L.; Li, A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: The dewatering performance and the characteristics of products. Water Res. 2015, 68, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Briceño, C.; Ross, A.B.; Camargo-Valero, M.A. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy 2017, 208, 1357–1369. [Google Scholar] [CrossRef]
- Weiner, B.; Breulmann, M.; Wedwitschka, H.; Fühner, C.; Kopinke, F.-D. Wet Oxidation of Process Waters from the Hydrothermal Carbonization of Sewage Sludge. Chem. Ing. Tech. 2018, 90, 872–880. [Google Scholar] [CrossRef]
- Holliday, R.L.; King, J.W.; List, G.R. Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Ind. Eng. Chem. Res. 1997, 36, 932–935. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef] [PubMed]
- Asghari, F.S.; Yoshida, H. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d -Fructose in Subcritical Water. Ind. Eng. Chem. Res. 2006, 45, 2163–2173. [Google Scholar] [CrossRef]
- Reza, M.T.; Becker, W.; Sachsenheimer, K.; Mumme, J. Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresour. Technol. 2014, 161, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Klingler, D.; Berg, J.; Vogel, H. Hydrothermal reactions of alanine and glycine in sub- and supercritical water. J. Supercrit. Fluids 2007, 43, 112–119. [Google Scholar] [CrossRef]
- Dote, Y.; Inoue, S.; Ogi, T.; Yokoyama, S. Distribution of Nitrogen to Oil Products from Liquefaction of Amino Acids. Bioresour. Technol. 1998, 64, 157–160. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, Y.; Song, Y.; Zhan, H.; Yin, X.; Wu, C. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment. Bioresour. Technol. 2017, 245, 463–470. [Google Scholar] [CrossRef]
- Chen, H.; Rao, Y.; Cao, L.; Shi, Y.; Hao, S.; Luo, G.; Zhang, S. Hydrothermal conversion of sewage sludge: Focusing on the characterization of liquid products and their methane yields. Chem. Eng. J. 2019, 357, 367–375. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenburg, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef]
- Fan, Y.; Hornung, U.; Dahmen, N.; Kruse, A. Hydrothermal liquefaction of protein-containing biomass: Study of model compounds for Maillard reactions. Biomass Convers. Biorefin. 2018, 8, 909–923. [Google Scholar] [CrossRef]
- Minowa, T.; Inoue, S.; Hanaoka, T.; Matsumura, Y. Hydrothermal Reaction of Glucose and Glycine as Model Compounds of Biomass. J. Jpn. Inst. Energy 2003, 83, 794–798. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Liu, Q. Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application. J. Clean. Prod. 2019, 225, 972–983. [Google Scholar] [CrossRef]
- Sun, X.H.; Sumida, H.; Yoshikawa, K. Effects of Liquid Fertilizer Produced from Sewage Sludge by the Hydrothermal Process on the Growth of Komatsuna. Br. J. Environ. Clim. Chang. 2014, 4, 261–278. [Google Scholar] [CrossRef]
- Ruyter, H.P. Coalification model. Fuel 1982, 61, 1182–1187. [Google Scholar] [CrossRef]
- Dunne, D.J.; Agnew, J.B. Thermal Upgrading of Low-Grade, Low-Rank South Australia Coal. Energy Sources. 1992, 14, 169–181. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; John Wiley & Sons, INC.: New York, NY, USA, 2001. [Google Scholar]
- Bas, D.; Boyaci, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Fröling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Watanabe, M.; Aizawa, Y.; Iida, T.; Aida, T.M.; Levy, C.; Sue, K.; Inomata, H. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr. Res. 2005, 340, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Titirici, M.M.; Thomas, A.; Yu, S.-H.; Müller, J.-O.; Antonietti, M. A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chem. Mater. 2007, 19, 4205–4212. [Google Scholar] [CrossRef]
- Titirici, M.-M.; Thomas, A.; Antonietti, M. Back in the black: Hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New. J. Chem. 2007, 31, 787. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Shanableh, A. Production of useful Organic Matter from Sludge using Hydrothermal Treatment. Water Res. 2000, 34, 945–951. [Google Scholar] [CrossRef]
- Sun, X.H.; Sumida, H.; Yoshikawa, K. Effects of Hydrothermal Process on the Nutrient Release of Sewage Sludge. Int. J. Waste Resour. 2013, 3, 2. [Google Scholar]
- Rogalinski, T.; Liu, K.; Albrecht, T.; Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Zou, S.; Wu, Y.; Yang, M.; Li, C.; Tong, J. Thermochemical Catalytic Liquefaction of the Marine Microalgae Dunaliella tertiolecta and Characterization of Bio-oils. Energy Fuels 2009, 23, 3753–3758. [Google Scholar] [CrossRef]
- Abbt-Braun, G.; Frimmel, F.H. Basic Characterization of Norwegian NOM Samples-Similarities and Differences. Environ. Int. 1999, 25, 161–180. [Google Scholar] [CrossRef]
- Stemann, J.; Putschew, A.; Ziegler, F. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour. Technol. 2013, 143, 139–146. [Google Scholar] [CrossRef]
- Yin, F.; Chen, H.; Xu, G.; Wang, G.; Xu, Y. A detailed kinetic model for the hydrothermal decomposition process of sewage sludge. Bioresour. Technol. 2015, 198, 351–357. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Curtis, T.P.; Dolfing, J. Determination of the Internal Chemical Energy of Wastewater. Environ. Sci. Technol. 2011, 45, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Ma, X.; Yao, Z.; Chen, X. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste. Bioresour. Technol. 2019, 285, 121347. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, K.; Park, K.Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014, 130, 120–125. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Holdrich, R.G.; Shama, G.; Wheatley, A.D.; Sohail, M. Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production. Appl. Energy 2013, 111, 351–357. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.I.; Grasham, O.; Ross, A.B.; Dupont, V.; Valero-Camargo, M.A. Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy 2020, 157, 959–973. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Shama, G.; Wheatley, A.D.; Martin, S.J.; Hold, R.G. Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour. Technol. 2015, 177, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Sawayama, S.; Dote, Y.; Ogi, T. Behaviour of Nitrogen during Liquefactoin of Dewatered Sewage Sludge. Biomass Bioenergy 1997, 12, 473–475. [Google Scholar] [CrossRef]
Tested Sewage Sludges | TS % | VS % | C % | H % | N % | HHV MJ/kg TS | COD g O2/kg TS |
---|---|---|---|---|---|---|---|
WWTP A | |||||||
Raw sewage sludge 1 (RS1) | 5.9 | 4.6 | 41.6 | 5.9 | 5.0 | 18.0 | 1201 |
WWTP B | |||||||
Primary sewage sludge (PS) | 4.5 | 3.7 | 42.5 | 6.4 | 1.3 | 17.5 | 1177 |
Waste activated sludge (WAS) | 9.2 | 6.6 | 36.9 | 6.0 | 6.5 | 16.2 | 1026 |
2nd batch WAS | 9.1 | 6.8 | 36.7 | 5.7 | 6.4 | 16.1 | 1022 |
WAS diluted 2.33:3 w/w | 7.1 | 5.1 | 36.4 | 5.8 | 6.4 | 16.3 | 1034 |
WAS diluted 1.67:3 w/w | 5.1 | 3.6 | 37.0 | 5.5 | 6.5 | 16.3 | 1035 |
WAS diluted 1:3 w/w | 3.1 | 2.2 | 36.6 | 5.4 | 6.4 | 16.1 | 1015 |
Raw sewage sludge 2 (RS2) | 6.6 | 5.0 | - | - | - | - | - |
Raw sewage sludge 3 (RS3) | 7.9 | 5.9 | 38.1 | 5.8 | 5.3 | 16.4 | 1197 |
Anaerobically digested sewage sludge (ADS) | 4.2 | 2.4 | 30.9 | 4.6 | 4.4 | 13.1 | 850 |
Operation Settings | Hydrochar | Liquid Phase | |||||
---|---|---|---|---|---|---|---|
Run | T °C | t h | pH - | HHV MJ/kg TS | DOC mg/L | NH4-N mg/L | NH4-N/TN % |
untreated | - | - | - | 18.04 | 1458 | 92 | 26 |
HTC-1 | 220 | 2.25 | 5 | 20.30 | 8510 | 975 | 40 |
HTC-2 | 190 | 0.5 | 5 | 18.74 | 9160 | 575 | 26 |
HTC-3 | 190 | 4 | 5 | 19.07 | 9395 | 730 | 32 |
HTC-4 | 250 | 0.5 | 5 | 21.27 | 8055 | 980 | 45 |
HTC-5 | 250 | 4 | 5 | 22.12 | 7640 | 1223 | 54 |
HTC-6 | 220 | 0.5 | 6.1 | 19.25 | 9160 | 783 | 35 |
HTC-7 | 220 | 4 | 6.1 | 20.08 | 8520 | 1045 | 44 |
HTC-8 | 220 | 0.5 | 3.9 | 20.34 | 8650 | 858 | 38 |
HTC-9 | 220 | 4 | 3.9 | 21.40 | 8335 | 995 | 44 |
HTC-10 | 190 | 2.25 | 6.1 | 18.75 | 9320 | 630 | 27 |
HTC-11 | 250 | 2.25 | 6.1 | 21.70 | 7545 | 1058 | 47 |
HTC-12 | 190 | 2.25 | 3.9 | 19.41 | 8655 | 658 | 32 |
HTC-13 | 250 | 2.25 | 3.9 | 21.57 | 7395 | 1110 | 52 |
HTC-14 | 220 | 2.25 | 5 | 20.55 | 8365 | 893 | 40 |
HTC-15 | 220 | 2.25 | 5 | 20.36 | 8890 | 905 | 39 |
Coefficient | Hydrochar | Liquid Phase | ||
---|---|---|---|---|
HHV | DOC | NH4-N | NH4-N/TN | |
β0 | 17834 | −7743 | −3549 | −56.6 |
β1 | 13.1 | 115.2 | 32.73 | 0.709 |
β2 | −27 | 508 | −122.5 | −4.2 |
β3 | −1259 | 2182 | 65 | −5.24 |
β12 | 2.45 | −3.1 | 0.417 | 0.0186 |
β13 | 5.94 | −3.9 | −0.189 | −0.0058 |
β23 | −30.1 | −42.2 | 16.23 | 0.331 |
β11 | −0.009 | −0.257 | −0.0575 | −0.000872 |
β22 | −31.9 | 67.2 | 1.46 | 0.134 |
β33 | −32 | −105.7 | −7.1 | 0.435 |
R2 | 0.97 | 0.96 | 0.99 | 0.99 |
AAD (%) | 0.600 | 1.210 | 1.369 | 1.546 |
WWTP A | COD mg O2/L | DOC mg C/L | COD/DOC mg O2/mg C | UV254 1/m | SUVA L/(mg·m) |
---|---|---|---|---|---|
RS 1 (untreated) | 3911 | 1458 | 2.68 | 1196 | 0.82 |
RS 1 (HTC) | 26,263 ± 1221 | 8506 ± 614 | 3.10 ± 0.13 | 13,896 ± 1205 | 1.63 ± 0.05 |
WWTP A | f - | DOC mg/L | NH4-N mg/L |
---|---|---|---|
RS1 | 0.13–0.42 | 6088–7938 | 483–1130 |
WWTP B | |||
PS | 0.12–0.31 | 708–6200 | 53–239 |
WAS | 0.12–0.41 | 4693–16,795 | 522–2765 |
RS2 | 0.12–0.28 | 6610–6835 | 347–684 |
RS3 | 0.13–0.31 | 9510–11,485 | 635–1380 |
ADS | 0.13–0.29 | 2896–4108 | 170–448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blach, T.; Engelhart, M. Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids. Water 2021, 13, 1225. https://doi.org/10.3390/w13091225
Blach T, Engelhart M. Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids. Water. 2021; 13(9):1225. https://doi.org/10.3390/w13091225
Chicago/Turabian StyleBlach, Tobias, and Markus Engelhart. 2021. "Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids" Water 13, no. 9: 1225. https://doi.org/10.3390/w13091225
APA StyleBlach, T., & Engelhart, M. (2021). Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids. Water, 13(9), 1225. https://doi.org/10.3390/w13091225