# Hydraulic Characteristics of Emerged Rigid and Submerged Flexible Vegetations in the Riparian Zone

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Experiment Apparatus

^{3}) is 5 cm from the sensing elements, and it can measure mean velocity and velocity fluctuation. Via a processing card, the probe was connected to the computer [11]. Real-time data could be recorded using a data acquisition program installed in the sampling computer.

#### 2.2. Vegetation Material

^{2}and the top view of the vegetation can be seen in Figure 3.

#### 2.3. Experiment Method

#### 2.4. Experimental Conditions

#### 2.5. Locations of Flow Measurement

## 3. Analytical Method

#### 3.1. Mean Velocity

#### 3.2. Turbulence Intensity

#### 3.3. Flow Resistance Coefficient

## 4. Results and Discussions

#### 4.1. Mean Velocity Profiles

#### 4.2. Turbulence Intensities

#### 4.3. Reynold Stress

#### 4.4. Manning Coefficient $n$

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Szabo-Meszaros, M.; Navaratnam, C.U.; Aberle, J.; Silva, A.T.; Forseth, T.; Calles, O.; Fjeldstad, H.P.; Alfredsen, K. Experimental hydraulics on fish-friendly trash-racks: An ecological approach. Ecol. Eng.
**2018**, 113, 11–20. [Google Scholar] [CrossRef] - Sonnenwald, F.; Guymer, I.; Stovin, V. A CFD-Based Mixing Model for Vegetated Flows. Water Resour. Res.
**2019**, 55. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Tang, C.; Nepf, H. Turbulent Kinetic Energy in Submerged Model Canopies under Oscillatory Flow. Water Resour. Res.
**2018**, 54, 1734–1750. [Google Scholar] [CrossRef] - Li, D.; Huai, W.-X.; Liu, M.-Y. Investigation of the flow characteristics with one-line emergent canopy patches in open channel. J. Hydrol.
**2020**, 590, 125248. [Google Scholar] [CrossRef] - Leonard, L.A.; Luther, M.E. Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr.
**1995**, 40, 1474–1484. [Google Scholar] [CrossRef] - Kemp, J.L.; Harper, D.M.; Crosa, G.A. The habitat-scale ecohydraulics of rivers. Ecol. Eng.
**2000**, 16, 17–29. [Google Scholar] [CrossRef] - Chen, S.C.; Kuo, Y.M.; Li, Y.H. Flow characteristics within different configurations of submerged flexible vegetation. J. Hydrol.
**2011**, 398, 124–134. [Google Scholar] [CrossRef] - Järvelä, J. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. J. Hydrol.
**2002**, 269, 44–54. [Google Scholar] [CrossRef] - Järvelä, J. Effect of submerged flexible vegetation on flow structure and resistance. J. Hydrol.
**2005**, 307, 233–241. [Google Scholar] [CrossRef] - Stephan, U.; Gutknecht, D. Hydraulic resistance of submerged flexible vegetation. J. Hydrol.
**2002**, 269, 27–43. [Google Scholar] [CrossRef] - Xia, J.; Nehal, L. Hydraulic features of flow through emergent bending aquatic vegetation in the riparian zone. Water
**2013**, 5, 2080–2093. [Google Scholar] [CrossRef] - Zhang, S.; Li, G.; He, X.; Liu, Y.; Wang, Z. Water flow resistance characteristics of double-layer vegetation in different submerged states. Water Sci. Technol. Water Supply
**2019**, 19, 2435–2442. [Google Scholar] [CrossRef] - Weltz, M.A.; Arslan, A.B.; Lane, L.J. Hydraulic Roughness Coefficients for Native Rangelands. J. Irrig. Drain. Eng.
**1992**, 118, 776–790. [Google Scholar] [CrossRef] [Green Version] - Hu, S.; Abrahams, A.D. Resistance to overland flow due to bed-load transport on plane mobile beds. Earth Surf. Process. Landf.
**2004**, 29, 1691–1701. [Google Scholar] [CrossRef] - Hu, S.; Abrahams, A.D. The effect of bed mobility on resistance to overland flow. Earth Surf. Process. Landf.
**2005**, 30, 1461–1470. [Google Scholar] [CrossRef] - Hu, S.; Abrahams, A.D. Partitioning resistance to overland flow on rough mobile beds. Earth Surf. Process. Landf.
**2006**, 31, 1280–1291. [Google Scholar] [CrossRef] - Liu, Y.; Xu, J.; Zhou, G. Relation between crack propagation and internal damage in sandstone during shear failure. J. Geophys. Eng.
**2018**, 15, 2104–2109. [Google Scholar] [CrossRef] [Green Version] - Ferro, V. Assessing flow resistance law in vegetated channels by dimensional analysis and self-similarity. Flow Meas. Instrum.
**2019**, 69, 101610. [Google Scholar] [CrossRef] - Guillén-Ludeña, S.; Lopez, D.; Mignot, E.; Riviere, N. Flow Resistance for a Varying Density of Obstacles on Smooth and Rough Beds. J. Hydraul. Eng.
**2020**, 146. [Google Scholar] [CrossRef] - Bialik, R.J.; Karpiński, M.; Rajwa, A.; Luks, B.; Rowiński, P. łM Bedform characteristics in natural and regulated channels: A comparative field study on the Wilga River, Poland. Acta Geophys.
**2014**, 62, 1413–1434. [Google Scholar] [CrossRef] - Parsons, D.R.; Best, J.L.; Orfeo, O.; Hardy, R.J.; Kostaschuk, R.; Lane, S.N. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. J. Geophys. Res. Earth Surf.
**2005**, 110, 1–9. [Google Scholar] [CrossRef] [Green Version] - Shugar, D.H.; Kostaschuk, R.; Best, J.L.; Parsons, D.R.; Lane, S.N.; Orfeo, O.; Hardy, R.J. On the relationship between flow and suspended sediment transport over the crest of a sand dune, Río Paraná, Argentina. Sedimentology
**2010**, 57, 252–272. [Google Scholar] [CrossRef] - Defina, A.; Bixio, A.C. Mean flow and turbulence in vegetated open channel flow. Water Resour. Res.
**2005**, 41, 1–12. [Google Scholar] [CrossRef] [Green Version] - Hui, E.Q.; Hu, X.E.; Jiang, C.B.; Ma, F.K.; Zhu, Z.D. A study of drag coefficient related with vegetation based on the flume experiment. J. Hydrodyn.
**2010**, 22, 329–337. [Google Scholar] [CrossRef] - Busari, A.O.; Li, C.W. Bulk drag of a regular array of emergent blade-type vegetation stems under gradually varied flow. J. Hydro Environ. Res.
**2016**, 12, 59–69. [Google Scholar] [CrossRef] - Parsons, A.J.; Abrahams, A.D.; Wainwright, J. On determining resistance to interrill overland flow. Water Resour. Res.
**1994**, 30, 3515–3521. [Google Scholar] [CrossRef] - Mu, H.; Yu, X.; Fu, S.; Yu, B.; Liu, Y.; Zhang, G. Effect of stem basal cover on the sediment transport capacity of overland flows. Geoderma
**2019**, 337, 384–393. [Google Scholar] [CrossRef] - Sun, Z.L.; Zheng, J.Y.; Zhu, L.L.; Chong, L.; Liu, J.; Luo, J.Y. Influence of submerged vegetation on flow structure and sediment deposition. J. Zhejiang Univ. (Eng. Sci.)
**2021**, 55, 71–80. [Google Scholar] [CrossRef] - Zhang, S.; Wang, Z.; Liu, Y.; Li, G.; Chen, S.; Liu, M. The influence of combined vegetation stalk thickness on water flow resistance. Water Environ. J.
**2019**, 34, 455–463. [Google Scholar] [CrossRef] - Chen, M.; Lou, S.; Liu, S.; Ma, G.; Liu, H.; Zhong, G.; Zhang, H. Velocity and turbulence affected by submerged rigid vegetation under waves, currents and combined wave–current flows. Coast. Eng.
**2020**, 159. [Google Scholar] [CrossRef] - Carollo, F.G.; Ferro, V.; Termini, D. Analyzing Turbulence Intensity in Gravel Bed Channels. J. Hydraul. Eng.
**2005**, 131, 1050–1061. [Google Scholar] [CrossRef] - Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng.
**2002**, 128, 117–126. [Google Scholar] [CrossRef] [Green Version] - Wahl, T.L. Analyzing ADV data using WinADV. Jt. Conf. Water Resour. Eng. Water Resour. Plan. Manag. 2000 Build. Partnerships
**2004**, 104, 1–10. [Google Scholar] [CrossRef] [Green Version] - Hydromechanics, A. Engineering Course: Applied Hydromechanics. 2020. [Google Scholar]
- Yang, K.; Cao, S.; Knight, D.W. Flow Patterns in Compound Channels with Vegetated Floodplains. J. Hydraul. Eng.
**2007**, 133, 148–159. [Google Scholar] [CrossRef] - Fischenich, C. Resistance Due to Vegetation. Ecosyst. Manag. Restorat. Res. Progr.
**2000**, 37, 1–9. [Google Scholar] - Fischenich, C.; Dudley, S. Determining drag coefficients and area for vegetation. Ecosyst. Manag. Restorat. Res. Progr.
**1999**, 2, 36. [Google Scholar] - Wang, W.J.; Peng, W.Q.; Huai, W.X.; Katul, G.G.; Liu, X.B.; Qu, X.D.; Dong, F. Friction factor for turbulent open channel flow covered by vegetation. Sci. Rep.
**2019**, 9, 1–16. [Google Scholar] [CrossRef]

**Figure 4.**Test run S9 with grasses. (

**a**) The average flow velocity is 0. (

**b**) The average flow velocity is 0.23 m/s.

**Figure 5.**Vertical distributions of point velocity at vertical 4 with Q = 20 L/s for different vegetations: reed and stick at the length of 30 cm, grass at the length of 10 cm, and the chlorella at the length of 5–6 cm.

**Figure 6.**Vertical distributions of $RM{S}_{u}$, $RM{S}_{v}$ and $RM{S}_{w}$ at the vertical 5 with Q = 30 L/s for different vegetations: reed and stick at the length of 30 cm, grass at the length of 10 cm, and the chlorella at the length of 5–6 cm. (

**a**) Vertical distributions of $RM{S}_{u}$; (

**b**) Vertical distributions of $RM{S}_{v}$; (

**c**) Vertical distributions of $RM{S}_{w}$.

**Figure 7.**Vertical distributions of $-\overline{{u}^{\prime}{v}^{\prime}}$, $-\overline{{u}^{\prime}{w}^{\prime}}$ and $-\overline{{v}^{\prime}{w}^{\prime}}$ at verticals 3 and 5, respectively, with Q = 20 L/s for four different vegetations: reed and stick at the length of 30 cm, grass at the length of 10 cm, and the chlorella at the length of 5–6 cm: (

**a**) Vertical distributions of $-\overline{{u}^{\prime}{v}^{\prime}}$ at verticals 3 with Q = 20 L/s; (

**b**) Vertical distributions of $-\overline{{u}^{\prime}{w}^{\prime}}$ at verticals 3 with Q = 20 L/s; (

**c**) Vertical distributions of $-\overline{{v}^{\prime}{w}^{\prime}}$ at verticals 3 with Q = 20 L/s; (

**d**) Vertical distributions of $-\overline{{u}^{\prime}{v}^{\prime}}$ at verticals 5 with Q = 20 L/s; (

**e**) Vertical distributions of $-\overline{{u}^{\prime}{w}^{\prime}}$ at verticals 5 with Q = 20 L/s; (

**f**) Vertical distributions of $-\overline{{v}^{\prime}{w}^{\prime}}$ at verticals 5 with Q = 20 L/s.

**Figure 8.**Manning coefficient n for various vegetations: (

**a**,

**b**): n against relative depth, z/h, where z is the height if measurement location, h is the water depth; (

**c**) n against the Froude number, Fr.

Scheme | Data Number | H (cm) | Discharge (L/s) | Vegetation | Re | Fr | |
---|---|---|---|---|---|---|---|

S1 | Run01 | 15 | 10.00 | reed | stick | 10,967 | 0.0082 |

S2 | Run02 | 15 | 10.00 | grass | chlorella | 10,967 | 0.0082 |

S3 | Run03 | 15 | 15.00 | reed | stick | 16,620 | 0.0189 |

S4 | Run04 | 15 | 15.00 | grass | chlorella | 16,620 | 0.0189 |

S5 | Run05 | 15 | 20.00 | reed | stick | 22,134 | 0.0335 |

S6 | Run06 | 15 | 20.00 | grass | chlorella | 22,134 | 0.0335 |

S7 | Run07 | 15 | 25.00 | reed | stick | 27,697 | 0.0525 |

S8 | Run08 | 15 | 25.00 | grass | chlorella | 27,697 | 0.0525 |

S9 | Run09 | 15 | 30.00 | reed | stick | 33,200 | 0.0754 |

S10 | Run10 | 15 | 30.00 | grass | chlorella | 33,200 | 0.0754 |

S11 | Run11 | 20 | 10.00 | reed | stick | 9930 | 0.0035 |

S12 | Run12 | 20 | 10.00 | grass | chlorella | 9930 | 0.0035 |

S13 | Run13 | 20 | 15.00 | reed | stick | 14,955 | 0.0080 |

S14 | Run14 | 20 | 15.00 | grass | chlorella | 14,955 | 0.0080 |

S15 | Run15 | 20 | 20.00 | reed | stick | 19,944 | 0.0142 |

S16 | Run16 | 20 | 20.00 | grass | chlorella | 19,944 | 0.0142 |

S17 | Run17 | 20 | 25.00 | reed | stick | 24,885 | 0.0221 |

S18 | Run18 | 20 | 25.00 | grass | chlorella | 24,885 | 0.0221 |

S19 | Run19 | 20 | 30.00 | reed | stick | 29,910 | 0.0319 |

S20 | Run20 | 20 | 30.00 | grass | chlorella | 29,910 | 0.0319 |

S21 | Run21 | 25 | 10.00 | reed | stick | 9068 | 0.0018 |

S22 | Run22 | 25 | 10.00 | grass | chlorella | 9068 | 0.0018 |

S23 | Run23 | 25 | 15.00 | reed | stick | 13,596 | 0.0041 |

S24 | Run24 | 25 | 15.00 | grass | chlorella | 13,596 | 0.0041 |

S25 | Run25 | 25 | 20.00 | reed | stick | 18,082 | 0.0072 |

S26 | Run26 | 25 | 20.00 | grass | chlorella | 18,082 | 0.0072 |

S27 | Run27 | 25 | 25.00 | reed | stick | 22,664 | 0.0113 |

S28 | Run28 | 25 | 25.00 | grass | chlorella | 22,664 | 0.0113 |

S29 | Run29 | 25 | 30.00 | reed | stick | 27,191 | 0.0163 |

S30 | Run30 | 25 | 30.00 | grass | chlorella | 27,191 | 0.0163 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Meng, X.; Zhou, Y.; Sun, Z.; Ding, K.; Chong, L.
Hydraulic Characteristics of Emerged Rigid and Submerged Flexible Vegetations in the Riparian Zone. *Water* **2021**, *13*, 1057.
https://doi.org/10.3390/w13081057

**AMA Style**

Meng X, Zhou Y, Sun Z, Ding K, Chong L.
Hydraulic Characteristics of Emerged Rigid and Submerged Flexible Vegetations in the Riparian Zone. *Water*. 2021; 13(8):1057.
https://doi.org/10.3390/w13081057

**Chicago/Turabian Style**

Meng, Xin, Yubao Zhou, Zhilin Sun, Kaixuan Ding, and Lin Chong.
2021. "Hydraulic Characteristics of Emerged Rigid and Submerged Flexible Vegetations in the Riparian Zone" *Water* 13, no. 8: 1057.
https://doi.org/10.3390/w13081057